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PREFACE

International Federation of Classification Societies

The International Federation of Classification Societies (IFCS) is an agency
for the dissemination of technical and scientific information concerning
classification and data analysis in the broad sense and in as wide a range of
applications as possible; founded in 1985 in Cambridge (UK) from the following
Scientific Societies and Groups: British Classification Society - BCS; Classification
Society of North America -CSNA; Gesellschaft fiir Klassifikation - GfKl; Japanese
Classification Society - JCS; Classification Group of Italian Statistical Society -
CGSIS; Société Francophone de Classification - SFC. Now the IFCS includes the
following Societies: Dutch-Belgian Classification Society - VOC; Polish
Classification Section - SKAD; Portuguese Classification Association - CLAD;
Group-at-Large; Korean Classification Society - KCS.

Biannual Meeting of the Classification and Data Analysis
Group of SIS

The biannual meeting of the Classification and Data Analysis Group of
Societa Italiana di Statistica (SIS) was held in Pescara, July 3 - 4, 1997.

The 69 papers presented were divided in 17 sessions. Each session was
organized by a chairperson with two invited speakers and two contributed papers
from a call for papers. All the works were referred. Furthermore, during the
meeting a discussant was provided for each session. A short version of the papers
(4 pages) was published before the conference.

The scientific program covered the following topics:

» (lassification Theory

Fuzzy Methods - Hierarchical Classification - Non Hierarchical Classification -
Optimisation approach in Classification. - Classification of Multiway Data -
Probabilistic Methods for Clustering - Consensus and Comparison Theories in
Classification - Spatial data and Clustering - Validity of Clustering - Neural
Networks and Classification - Genetic Algorithms - Class1ﬁcatlon with Constraints

o Multivariate Data Analysis

Categorical Data Analysis - Factor Analysis and Related Methods - Discrimination
and Classification - Visual Treatment in Data Analysis Symbolic Data Analysis -
Non Linear Data Analysis

o Multiway Data Analysis

Analysis of Multiway Data - Panel Data Analysis

s Praximity Structure Analysis

Multidimensional Scaling - Similarities and Dissimilarities -

o Software Developments for Classification and Data Analysis



i

Algorithms for Hierarchical and Non Hierarchical Classification - Computer Data

Visualization. Statistical Algorithms for Multivariate Analysis

 Applied Classification and Data Analysis in Social, Economic, Medical, and
other Sciences .

Classification and Data Analysis of Textual Data - Data Analysis in Economics -

Classification and Discrimination Approaches in Medical Science

The present volume contains 45 referred papers presented in four chapters
as follows:
Classification
» Methodologies in Classification
» Fuzzy clustering and fuzzy methods
Other Approaches for Classification
» Discrimination and Classification
¢ Regression Tree and Neural Networks
Multivariate and Multfidimensional Data Analysis
Proximity Methodologies in Classification
Factorial methods
Spatial Analysis
Multiway Data Analysis
Multivariate analysis
Case Studies
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Shewhart's Control Chart: Some Observations

Massimiliano Giacalone
Department of Mathematics and Statistics, University of Naples "Federico II".
Complesso Monte S. Angelo, Via Cinthia, 80126 Naples.
e-mail: max @matstat.dms.unina.it

Abstract: Data Analysis in Shewhart's Control Chart, to use the original m
samples n sized intensities, is the main subject of this paper. Given mxn
intensities we examine three alternatives to sintetize the variability: a)

arithmetic mean of m standard deviations ('S); b) root mean square of m

variances ( S); c) global dispersion (75). We prefer the global dispersion to

estimate parent population ¢”.
As an alternative we suggest to analyze all the items of an unique random
sample dimensioned in such a manner to have an efficient ¢° estimate. A

second introducted proposal is to use the Factory’s needs: (Pn B0, B, Land U).
Some examples are given in the last session of the paper.

Keywords: Shewart’s Control Chart, Sigma's Estimate, Data Analysis.

1. Introduction

Using S.C.C. (Shewhart's Conirol Chart) it is customary to operate 2 stages; a
first stage devoted to data collection and limits LCL-, UCL., LCL,, UCL,

(Lower Control Limit and Upper Control Limit for mean and dispersion)
computation. The second stage is devoted to chart's use.

In the first stage it is customary to produce K = m-N items, (in other words we
have m lots N sized), to draw m single random samples n size from each lot
N sized. The population is gwen by all 1tems produced and to be produced, its
mean is |t and its variance is o%; L and ¢’ supposed stable in the first stage
(items produced).

Let us call x; the ith intensity of the jth sample, so the jth sample mean is:

X, =3, x;/n (i=12,..n)
=3l %) fere 0

is the jth sample variance estimate;
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is the mean of the sample means. ,
Sample mean synthesis create no problem, not the same happens for s or s .
Indeed some authors (W.A. Shewhart, 1931); (A. J. Duncan, 1965); (P.L.
Piccari, 1974); (D.C. Montgomery, 1991) propose to compute:

.S=Esj/m (2)

Some other authors (Mittag-Rinne, 1993) propose to compute:

w 112
= {z s; /m} (3)
finally one may also compute:

12

R

In this paper we study the rationale of each solution and we suggest an
alternative proposal.

2. Synthesis analysis

Since root mean square is greater than or equal to arithmetic mean, we may
write:

5<’S,
and declare that one of the introduced formulae can't be correct. Relation (2) is
the main suspect because since:

E(s)#a
The same may be said for (3), and this means S to be a biased o estimate.
Someone notes that, if the underlying population is normal, S actually estimates

G-c,; this is statistically correct but a little cumbersome. We remember that cH
is a constant depending on the sample size a:

e ={2/(n-1)}" T{(n-1/2}

tabulated values are presented in Duncan (1965).
Let us now consider the synthesis of sample variances (3). Kenney and Keeping
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(1956), showed that:
E (sz) =g?,

not only for simple samples, but also in presence of m simple samples. In case
h independent samples are available from the universe, they suggest to use:

-~

6t = Q/(U—h);
where
Q=n, 5} +n, 82 +.....+n, 85

and s? is the variance in the ith sample consisting of n, variates.
If n,=n is the same for every sample, we have:

6% =n(s) +53 +..... 457 J(U-h);

where U=n-h. Clearly the last relation may be written in the form:
(n—l)/nv62=(sf+s§+ ...... +s;‘:)/h

The constant {(n—1)/n is present because the authors started with
Y
sf =X (X,.j —X) /n instead of s? , but if the degrees of freedom are used, the

result is comrect and consistent with: E(s’):c’. This solution records time
variations. In other words we have a trace of variability changes during data
collection period.

Finally relation (4) is based on the whole group. It may be seen as the total
variance, while 'S’ may be seen as within variance. Deviances are the same if
between variance is equal to zero.

There is someone discouraging its use. For instance D.C. Montgomery (1991),
affirms that the estimate of the process standard deviation ¢ used in
constructing the control limits is calculated from the variability within each
sample. Consequently, the estimate of ¢ reflects within-sample variability only.
It is not correct the estimate of ¢ based on the usual quadratic estimator, say
“'S, because if the sample means differ, then this will cause ~S to be too large.
Consequently, in this way ,o could be overestimated.

A. J. Duncan (1965) shares the same opinion, and retaines that is not correct to
estimate the process standard deviation from all the data (e. g. ~S) and use this
in setting up limits for the X-chart. The estimate of the process standard
deviation to be used in setting up limits for the X -chart must be computed from
the within-sample variation to the exclusion of the between-sample variation.
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Let us remember that if a production process presents stable between-sample
variation it could be a good rule to look for the trouble and to remove it if
possible.If the problem persist we do not see why to ignore it, computing the so
called within variation. Another important remark is the difference between
“first stage” and “second stage”. In the second stage production must be
monitored so that it is very useful to divide output into lots, let us say N sized,
and investigate every single lot produced. If no trouble appears production can
continue; on the contrary, if a trouble comes out it is much better to stop
production and to look for happenings. In the second stage, points are regarded
as independent events and O.C.C. (Operating Characteristic Curve) is computed
under this assumption (G. Rouzet, 1957). In short, the division of production
into lots N sized is a suitable procedure for the second stage as we said before.

The first stage problem is a different one. to estimate 1 and ¢® related to the
character of interest. The subject involved is the parent population and its
parameters. The division of items into lots N sized is not an essential operation.
Perhaps the sample repetition is a mechanical consequence of the second stage
technique, to some extent necessary if n=5, because I and o® estimates based
on so a little sample should be extremely poor ones, so to have both ways saved
some authors suggested to repeat the sample (and the lot) m times (Mittag-

Rinne,1993). It seemed therefore a natural consequence to compute X, s; and
S, Sand”S.

3. Simulation

In order to emphasize our opinion we consider a simulation. We shall use Wold's
Random Normal Deviates divided into lots N=50 sized, one numbers column for
lot. From each column we draw one sample n sized and this operation will be
repeated m (=20) times as in the first stage practice. We compute m x and
m ¢*,and the synthesis “S? is compared with “S*. We define: DifTot = o — 006
and DifUni = ¢® ~'"'S?. We also noted that here o2 is the population variance
computed on N-m data = 1000 considering series of 100 samples. If
DifTot<DifUni one point is given to *'S?, but if DifUni<DifTot then one point is
given to "' S,

For series of samples n=>5 sized we found more than 75% points for DifUni,
then for '’ §2.

4. Alternative proposals

The first stage procedure is a very expensive one. Infact after m samples we
must revise the production process, therefore to save time and money we



suggest to analyze all the items produced within the first stage and dimension
this sample according to wanted protection.

Our suggestion seems particularly useful for destructive control analysis

because with customary procedure if not analyzed items are out of tolerance,
production-control costs increases.

Calling N the first stage lot’ size, we shall have: ?=2 : X / N, and
$'=3%. (X -xy / (N-1), as af unbiased o® estimate.

A different suggestion is based on the introduction of Factory's needs”
(PD,Pl,a, ﬂ.LandU). Many authors, use symbol L for Lower specification
limit and symbol U for Upper specification limit.

Now let us call P, the well known Acceptable Quality Level and we underline
that it seemns suitable subdivide P, into to parts, the one on the left | F, (fraction
of too small items) and the other on the right P, (fraction of too large items),
of course P, + 4P, =F,. This is enought for the computation of: -

Xo=(Lzy-Uz,)/(Zy-Z.): (Z,<0)

0y =(U-L)/(Zy~Z.)

where Z, is the normal standardized fractile given | F,, and Z,, the one given
B, Xo and o, are the parameters to be used for Shewhart's variables Control
Chart computation.

The SCC so obtained is a very different tool because it privileges Factory's
-needs, whereas customary procedure privileges process capability. Therefore,
once obtained the new SCC (UCL; , LCL;, UCL,) we must look if production

process is able to output material just as designer wants (L and U).
For this test we must collect N data related to the character of interest and

—\2
compute S* = E‘(X1 - X) / (N —1) , the variance of the last N items produced
and compare §* with d5. If §* < 0} the process is capable. .
According to capability studies experience it is better to accept the process if
§*/a?<1.23. We did not use here the so called natural tolerance concept

because it is enought to compare directly variances in order to have the test
accomplished.

If production process is not able we suggest an innovative maintenance keeping
into account cost embroiled with this.operation.

To complete Factory needs list we remember F known as Lot Tolerance
Percent Defective; ¢, the producer's risk or first type error probability; B, the

consumer's risk or second type error probability. All these values must be
contractually chosen.
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5. An example

Let us take some data based on the: "Inside diameter for automobile engine
piston rings” (Montgomery, 1991, pag. 234).

We have: X = 74.001; 'S = 0.0090; 'S = 0.0099;""S = 0.010L The limits for
the x chart are;

UCL: =X+A,'S = 74.001+(1427) (0.009) = 74.014;

LCL; =X-A,'S = 74.001~(1427) (0.009) = 73.98;
and for the § chart:

UCL, = B, 'S = (2.089)(0.009)=0.019.

If we introduce : L =73981; U=7402L; ,P, =1% P, =1% (P = 2%) we
can compute the new parameters according to our proposal. We consider:

z, =—232635, z, =232635 xi., = 1692386
Xo= (L zy-U-z,) /(24 - z,) = 74001,

o, =(U-L)/(z, -2, ) = 0.0086.
Therefore:

UCL; =74.001 + 3 (0.0086)/~/5 = 74.0125¢;

LCL; =74.001 - 3 (0.0086)/~5 = 7398946,

UCL, = 0, y/x* /(n-1) = 0.0086-/1692386 = 0.0177.

We note that our UCL, is based on the x*-distribution as suggested by Duncan
(1965). Qur limits are slightly narrower than Montgomery's ones, but if factory
needs are the declared ones (L and U) we have a production process not

capable. Here is very important the designer responsibility because a little larger
tolerances would change the situation.

We repeat the observation outlined above. Customary control charts privileges
process capability. In presence of a chart (UCL and LCL for x and 5) we



must verify if designer's needs (L and U) are satisfied. On the contrary with our
control chart designer needs are privileged but we do not know if production
process is capable. In order to get this last peace of information we must
compare 'S with g,. Of course if 'S < g, the process can satisfy designer's
needs; on the contrary we must solve the trouble. For the process capability
analysis many references are given by Montgomery (1991).

6. t]se of the chart

In order to use the chart we draw a sample with n = 5 and compute x and 5.

With the following data ; 74.002; 73.990; 73.997; 74.003, 74.001, we obtain:
X = 74002 5 = 0.002588. The points are within limits so. that production is
good. Let us now try to use the s? chart as proposed by Duncan. We have:
s* = 0.0000067 and (UCL,)2 = 0.000079-4.230965 = 0.000313; the point is

within limits as before. If we suppose to have a point very near the limit e.g. §
=0.0176, squaring it we get; @ =0.00030976 and it is also within limits.

If the point is just out of control e.g. 5 =0.0178, we get s = 0.00031684 and
the point is just out of control also in the new chart.

7. Conclusions

SCC (Shewart's Control Chart) is based on process ability to produce wanted
itemns. Indeed, if contro] limits (UCLi LCL; UCLS) are computed on either

§? or "' §%, it is not worthy to insist on process ability. Clearly there is also the
designer and their needs (L,U) to be considered so we must consider a
capability study to test if they are in accordance. -

We have seen how it is possible to get new control limits based on X, and g,
keeping into account designer's needs (L and U). Items must be output by
production process so that now must look if it is able to do its work.

A different subject is the dispersion estimate related to SCC taking into account
the presence of m lots. We have seen that 's is a biased statistic very
cumbersome to be adjusted. A simulation leads to prefer 'r' §% but this means to
use a o*chart instead of a o chart. Nevertheless in our example we used 'S
and "' S? in order to simplify the discussion.

It seems worthy to remember that customary control chart construction
privileges production process capability whereas our suggestion privileges
designer needs. In every case we must verify the second coin’s face to compare
"S with g, or better 'S with q,. Better else to compare “'§?witho; because
"'$?isa ¢ unbiased estimate.
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