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Editorial

The Third International Conference on L;-Norm and Related Methods was
held in Neuchatel, Switzerland, from August 11-15, 1997, as a Satellite
Meeting to the 51st International Statistical Institute Session in Istanbul.
Thirty seven of the ninety two papers presented at the Conference appeared
in Volume 31 of the Lectures Notes.- Monograph Series published by the
Institute of Mathematical Statistics, Hayward, California.

The present issue of Student contains a selection of another thirteen
refereed papers presented during the Conference. As Student is used to
offer a variety of statistical materials, we thought it would be instructive
to bring together here a collection of papers which would demonstrate the
necessity of future research in different fields of statistics using as base other
measures of distance than the traditional Ls-norm.

The Editor

Nearly all the participants of the Third L;-Norm Conference,
August 11, 1997.
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L,-Norm Estimation for Nonlinear
Regression Models

Massimiliano Giacalone

University of Naples “Federico IT”, Italy

Abstract: We examine the use of Ly,-norm estimators in the framework
of nonlinear regression models, assuming an Exponential Power Function
as error distribution. In this work, we suggest a new criterion to jointly
estimate the L,-norm exponent p and the regression parameters. This
approach is motivated by theoretical error distribution considerations.
These distributions are elements of a class of density functions (E.P.F.),
which are related to L,-norm estimators. Finally, we present a simulation
study that leads us to conclude that L,-norm estimators are a suitable
tool for studying nonlinear regression problems in the case of nonnormal
symmetric error distributions.

Key words: Exponential Power Function, adaptive procedures, kurtosis
indexes.

1 Introduction

This study deals with the construction of an adaptive estimation procedure
for nonlinear regression models. In this context, the Ly-norm estimation
methods are investigated for different values of p over a range of error
distributions with varying kurtosis. A previous work showed the same
procedures applied to the location model (Giacalone, 1996).

As it is well known, in order to obtain the L,-norm estimator of the
unknown regression parameter vector §, we minimize the sum of the p-th
power of the absolute deviations of the observed points from the regression
function:

Sp(ﬂ)=ilyi—g(zi,ﬂ)l” 1<p<oo (1)

i=1
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A rule for selecting the most appropriate value of p for any given error
distribution is proposed, based on the Geary length of tails index and on
the Pearson kurtosis of the error distribution. The relative efficiencies of
the different examined estimators are discussed. In general, the true error
distribution, and hence the kurtosis, is not known. In order to overcome
this problem, the performances of the relationships between p and the two
Kurtosis sample indexes as well as the related algorithm are examined.
The new adaptive scheme suggested is then compared with that of sev-
eral commonly used proposed alternatives. The E.P.F., here considered as
underlying error distribution, is a family of density functions proposed by
Subbotin (1923) and studied by Vianelli (1963), Lunetta (1963) and Mineo
(1989). A brief introduction is given at this point. The density function is:

z2—-—M

. ] (2)

1 1
fp (2) = T ©Xp [——
2p'/P o, T (1 + 5) P

Op

with o, > 0, p>0, ~00< z < 400,

where Mp = E (z) is the location parameter, o, = (E [|z — M,IP])M? is
the scale parameter, and p is the shape parameter. In fact, as p varies from
0 to oo the (2) assumes several shapes with different length of tails and
kurtosis. Considering the Pearson kurtosis index B2 we distinguish:

1. 0 < p <1: double exponential distributions, cuspidate, very long
tailed and 82 > 6 ;

2. p=1: the Laplace distribution, cuspidate, long tailed with B2=6;

3. 1 <p <2: leptokurtic distributions with long tails and 3 < B2 <6

4. p =2 : the Gaussian normal distribution with 8, = 3 ;

9. p > 2 : platikurtic distributions with short tails and 1.8 < B2 <3;

6. p — oo : the uniform distribution with g, — 1.8 .

As previously stated, we assume that the error distribution of the re-
gression model is a member of this class of symmetric functions. In this
case, the optimal exponent p for the Ly-norm estimators of the regression
parameters is the shape parameter p of the E.P.F. Qur estimate of p is
based on the two indexes, length of tails and kurtosis, strictly related to
the shaped parameter and to the sample residuals.

2 Lp-norm nonlinear regression

Let us consider a sample of n observed data (z;, Yi), where ¥; is the depen-
dent variable and z; the independent nonrandom predictors. The general
nonlinear regression model is:
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vi=9(z;,8) +e (3)

where g is a derivable function, § = (6,8, ...,0;) is the unknown real
parameter vector to be estimated, and the random errors e; are independent
and identically distributed variables according to E.P.F. scheme with mean
zero and o, constant.

Under the supposed assumptions the loglikelihood related to the sample
is given by:

L(,0p,p) = -nlog [2p1/”0pr‘ (1+%)] +

~ |(pop) ™ X Iy — 9(2:,0) F] (4

where we consider z = y; and M, = g(z;, 8)

When p is known it is easy to calculate the first partial derivatives with
respect to 6 to get the system of n nonlinear equations with n equations
and k + 1 variables:

5L _ i ) p—1 . 69 _
693 - Z Iyl g (.a_:ug)l 51gn (yl g (QUQ)) 69_7 =0

i=1

The solution of this system gives us the maximum likelihood estimators
of the regression parameters. The same equations are obtained by mini-
mizing the sum of the p-th power of the absolute deviations of the observed
points from’ the regression function, by applying the L,-norm estimators:

dolyi—g9(z, @) =min  with p>1 (5)

This result shows that the optimal exponent p is equal to the shape
parameter of the E.P.F. assumed as underlying error distribution and is
very useful in connecting the Ly-norm estimators to the E.P.F. theoretical
scheme. When the value of p is unknown, we consider two related problems:
the estimate of a suitable exponent p based on the sample data and the
choice of the minimization algorithm used to obtain the regression parame-
ters estimation. Even if the least squares, the least absolute deviations and
the minimax estimators are particular cases of Ly-norm estimators (respec-
tively with p = 1, p = 2, p = 00), there is no theoretical reason for values
of p other than 1, 2, oo, not to be considered. We do not consider the case
p < 1, that is the quasi-norm problem (Ekblom et al., 1969).

It should be noted that p = 1, p = 2, p = oo provide exact solutions,
while the other values of p give rise to a nonlinear programming problem,
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whose solution can only be found in a given level of convergence. Different
values of p have been proposed in the literature.

Forsythe (1972) suggested that p = 1.5 might be a good compromise
value, as it provides estimates which are substantially better than the least
squares when the error distribution has long tails, and is not bad when
the errors have a Normal distribution. Harter (1977) proposed p with the
following rule: if ﬁg > 3.8 use p = 1 (the regression of the least absolute
values), if 2.2 < f; < 3.8 use p = 2 (the regression of the least squares) if
Bs < 2.2 use P = 0o (minimax or Chebychev regression), where f3; is the
sample kurtosis.

Money et al. (1982) and Sposito et al. (1983) respectively obtained the
following criteria for the choice of p by means of an extended simulation
study:

p=9/p2+1 for 1<p<oo (6)

ﬁ=6/[§2 for 1<p<?2 (7)

Recently, the choice of a suitable value of p, for the linear regression
case, was based on the relationships between some particular indexes of
the E.P.F. and the sample residuals. This approach (Mineo, 1989) intro-
duced the “generalized kurtosis” index to estimate p assuming the E.P.F
as residual distribution. The likelihood estimation of p was considered by
Agro (1995).

3 The shape parameter, the Pearson kurtosis,
and the length of tails.

For the density (2), we observe that the theoretical moment of order k is a,
function of the shape parameter p:

- (k+1)
Elz—Mp|* = (pof) e 2P/ _ 8)
r{;)
p

This important relation shows that the ratios of the moments of order
2k and k? depend only on the shape parameter p.
From (8) we obtain the theoretic relation called “Generalized Kurtosis”:
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8, = pok b (113) b (%;1)
A e

if k = 2 we can write the Pearson Kurtosis inclex:

"(3)" ()

e

If k = 1, considering the square root of the reciprocal, we have the Geary
length of tails index:
2
r (-
[ p

== = )— (10)
ERUOHE

"The indexes I and $; show a different behavior according to the variation
of p. For example if p increases from 1 to 4 the index 5 decreases from 6
to 2.1884, while I increase from 0.7071 to 0.8409. (see Table 1).

Let us now consider the following sample kurtosis of the resulting resid-
uals obtained by the ratios of empirical moments. An estimation of Gy is
given by:

ﬁ* - nZi (Ei - 5)4
2 [Z: (e — 5)2]2

This estimation is strongly influenced in samples with many outliers
because of the fourth moment, while the one based on I,

= Z’i IE'i — é‘_l

~AVE

is particularly disturbed in samples with many values centered around the
location parameter value. In Table 1 are shown the values of I and f; for p
varying from 0.5 to 10 derived from equations (9) and (10). In the opposite
way, calculating the sample values of I and s, it is possible to obtain, by
inverse interpolation, two different estimations of p.
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p B2 I p B I p B2 I

0.5 25.20000 .54772 3.7 2.24068 .83771 6.9 1.95463 .85587
0.6 15.57876 .59685 3.8 2.22208 .83879 7.0 1.95099 .85611
0.7 11.06208 .63441 3.9 2.20470 .83990 7.1 1.94748 .85634
0.8 8.56514 .66392 4.0 2.18844 .84090 7.2 1.94409 .85657
0.9 7.02556 .68766 4.1 2.17320 .84184 7.3 1.94082 .85678
1.0 6.00000 .70711 4.2 2 15889 .84273 7.4 1.93767 .85699
1.1 5.27660 .72330 4.3 2.14543 .84357 7.5 1.93462 .85719
1.2 4.74348 73696 4.4 2.13276 .84436 7.6 1.93167 .85739
1.3 4.33681 .74861 4.5 2.12081 .84511 7.7 1.92883 .85758
1.4 401786 .75891 4.6 2.10952 .84583 7.8 1.92607 .85776
1.5 3.76195 .76738 4.7 2.09885 .84651 7.9 1.92341 .85794
1.6 3.55270 77503 4.8 2.08875 .84715 8.0 1.92083 .85811
1.7 3.37882 .78178 4.9 2.07918 .84776 8.1 1.91833 .85827
1.8 3.23236 .78776 5.0 2.07010 .84834 8.2 1.91592 . .85843
1.9 3.10751 .79310 5.1 2.05327 .84942 8.3 1.91357 .85859
2.0 3.00000 .79788 5.2 2.04547 .84993 84 191130 .85874
2.1 2.90460 .80206 5.3 2.03803 .85041 8.5 1.90910 .85889
2.2 2.82473 80609 5.4 2.03095 .85087 8.6 1.90696 .85903
2.3 2.75252 .80963 5.5 2.02418 .85131 8.7 1.90489 .85917
24 2.68841 .81285 5.6 2.01773 .85173 8.8 1.90288 .85930
25 2.63116 .81580 5.7 2.01155 .85213 3.9 1.90093 .85943
2.6 257977 81849 5.8 2.00565 .B5252 9.0 1.89903 .85956
2.7 2.53342 .82097 5.9 2.00000 .85289 9.1 1.89719 .85968
2.8 2.49143 .82326 6.0 1.99459 .R5324 9.2 1.89539 .85970
2.9 2.45325 .82537 6.1 1.,98930 .85358 9.3 1.89452 .85981
3.0 2.41840 .82732 6.2 1.98442 .85301 9.4 1.89365 .85991
3.1 2.38648 .82914 6.3 1.97965 .85422 9.5 1.89196 .86002
3.2 2.35716 .83082 6.4 197506 .85452 9.6 1.89031 .86013
3.3 2.33015 .83239 6.5 1.97065 .85481 9.7 1.88871 .86024
3.4 2.30827 .83993 6.6 1.96641 .85500 9.8 1.88715 .86034
3.5 2.28286 .83522 6.7 1.96234 .85536 9.0 1.88564 .86044
3.6 2.26064 .83651 6.8 1.95841 .85562 10.0 1.88416 .86054

Table 1: Theoretical values of 8, and I, evaluated for p varying from 0.5
to 10.

Gonin and Money (1987) considered the unbiased estimates of the second
and fourth order sample moments with correction factors depending on the
sample size n:

. 1 2
u2=n—_—12i:(€i*6)

. (n® — 2n + 3) 4 3(r-1)(2n-3),
“4‘(n-1)(n—2)(n—3)z(5‘ é) n(n-z)(n-a)“%

i
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The same result is available using the r-th K-statistics and their relations
with the sample moments (Lunetta, 1966, Kendall-Stuart, 1966).
The ratio of fi4 and /2 gives an unbiased estimator of Ba:

5 _
f2==—= 11
pi2 (D)

For the I empirical index we can only consider the correction factor of
the second sample moment, consequently we use:

2ilei—€ vn-—1

1/Z-|Ei —€|2 n (12)

4 'The proposed algorithm

I=

The proposed algorithrn is based on a two steps alternating procedure that
firstly estimates the § parameter vector by means of the classical conju-
gated gradient algorithm (Fletcher-Reeves, 1964) and secondly estimates
p using a joint inverse function of I and 8, obtained comparing empirical
and theoretical moments. The algorithm stops when the variation of p is
not significant. In order to obtain our estimate, we minimize the difference
between empirical and theoretical indexes (13) to avoid some convergence
problems encountered when we investigate a different algorithm considering
this difference equal to zero (Giacalone, 1994).
The function used to estimate p is therefore the following:

[(1-1): 0.86054]2 +[(B2- o) : 25.2]2 = min (13)

where I, I, B2, B, are respectively given by (10), (12), (9) (11).

For simplicity we can express this condition as [f (p) ]2+ [g (p)] = min.

We observe that the indexes I and 8y show different variability and dif-
ferent average order size related to the variation of p. For a joint evaluation
we have to eliminate the difference in average order size, therefore setting
0< f(p) <1and0<g(p) <1.

The maximum theoretical values of f(p) and g(p) are the chosen stan-
dardization factors. Unfortunately the 8y index diverges to oo, for p — 0.
In order to standardize g(p), we use the max 2 value equal to 25.2 and
corresponding to p = 0.5, which is the lower bound in our simulation study.
In an analogous way, to standardize f(p}, we use the max I value equal to
0.86054 and related to p = 10, which is the upper bound in our simulation
study.

"The proposed algorithm is then specified in the following steps:
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STEP 0: Set i =0 and py = 2;

STEP 1: Fit the model to the data using the previous step value p;;

STEP 2: Compute the estimated residuals &; = y; — g(z;,8), their
average €, and insert these quantities in the (13) which is equal to the sum
of two squared functions to minimize;

STEP 3: Minimize the function (13) to obtain p;y1, new estimate of ;

STEP 4: Compare the estimated P:+1 with the previous p;, and if
[pi+1 — pi| > 0.01 then set ¢ =i+ 1 and repeat Steps 1-4, otherwise:

STEP 5: Stop the algorithm assuming the values §; = 85, as Ly-norm
estimators for the parameters ¢, and the value p = p; as joint estimation of
.

In Step 1 a nonlinear L,-norm estimation is considered. The problem
could be resolved using the optimality conditions encountered in uncon-
strained optimization (McCormick, 1983). The minimization algorithm
(Fletcher-Reeves, 1964) is used because it takes the special structure of the
problem (1) directly into account. In Step 3 we use the parabolic interpola-
tion method (Everitt, 1987) to find the minimum sum of squared functions
(13). The convergence of the proposed algorithm was empirically verified
by simulating samples of different sizes for fixed theoretical values of .

5 Design of the simulation study and conclusive
notes

The performance of the above method was tested using a simulation study.
The unbiasedness and the asymptotic behavior of the new estimation proce-
dure for nonlinear regression model parameters and for the shape parameter
p was verified by a Montecarlo experiment (see Tables 2 and 4). We con-
sidered 500 samples of sizes n = 50, 100, 200, generated from E.P.F., for 6
different values of p, ranging from 1.0 to 3.5 with step 0.5. The algorithm
used to generate the pseudo-random standardized deviates ; (for p > 1)
was proposed by Chiodi (1986). The samples x; (i =1, 2, ...T) were gen-
erated from a uniform distribution (0.5, 1.5). The values of z; = Y; are
given by the simple exponential model:

Yi=06"% te;,  i=12.n (14)

We used model (14) with 500 samples estimates and 6, = 0.5, 6, =
1.0, op = 1.0 as parameter values, to obtain the corresponding empirical
frequency distributions and the relative analysed constants (mean, variance
and mean squared error).
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P [ ME) V@) ME) V@) ME) Vi) MG V)
n =50 n = 200

1.0 | 4516 .1283 1.0671 .1645 | .4975 .0249 1.018% 0338
1.5 4791 1167 1.0426 .1534 | 4974 .0226 1.0037 0283
20| 4738 0994 1.0548 .1266 | .4915 .0178 1.0158 .0232
25| 4747 0782 1.0418 .1013 | 4918 .0145 1.0089 0196
| 3.0 | 4744  .0657 1.0579 .0785 | .4927 .0116 1.0106 0168
3.5 | 5204 .0587 1.0409 .0692 | .4998 .0093 1.0049 .0143

Table 2: Mean and variance of 8y, 65, for a simple exponential model
(14) (61 = 0.5, 63 = 1.0, 0p = 1) estimated with L,_. method, on 500
samples of size n = 50, n = 200.

Here we present a comparative analysis using five different Ly-norm
estimations:

Least squares estimators (Lg);

Lp-norm estimators with theoretical p of the E.P.F. (Lp);

Lp-norm estimators with p estimated as in (6) (Gonin and Money, 1989)
(prm);

Lp-norm estimators using the maximum likelihood estimate of p (Agro,
1995) (Lpy ).

Lp-norm estimators with p estimated as in our proposal (13) (Lyp,...)-

From the experimental results, partially reported in Tables 2 and 3,
we can observe that for any p, the parameter estimates of §; and 02 are
biased for n = 50. Their variances decrease for increasing values of n.
This is true for all the methods used and for all the theoretical values of D
and depends on the nonlinearity of the model that yields the unbiasedness
of the estimates only for middle-large samples sizes (see when n = 200).
Considering the relative efficiency (see Table 3) we note that all the Lyp-
norm estimators give us better parameter estimates with respect to the
least squares method especially for theoretical values of p away from 2.

We can also observe the gain in efficiency using the Ly-norm estimators
that is higher for the Ly method in all cases considered except when p = 2
where L3 and Ly methods are equal. The Ly, ,., Ly, , L, . methods give us
different efficiency parameter values depending on the criterion used to esti-
mate p and could be considered half way between L, and L, methods. The
most important difference between the L,-norm estimators examined are
presented in Table 4 where we consider the empirical sample distributions
of p estimates.

For all methods considered, the estimate of p is generally biased. This
bias is higher for p > 2, and for n = 50. In an analogous way, the variance
of the p estimates increases as p rises and decreases in proportion to the
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increase in sample size n. For the cases p = 1.0 and P = 1.5 the proposed
method L, . -seems to be the most efficient considering the variance and
the mean squared error of the p estimate. The worst behavior of the Ly,..

method depends on the bias of the p estimate that is reflected in the values
of the mean squared error.

p 1.0 1.5 2.0 2.5 3.0 3.5
0, | 8 | 6, | Gy | 84 ] B> | & | 6, 61 | 6 | 64 | 62

n = 50
Ly, 225 1.88 1.33 1.25 1.00 1.00 1.11 1.24 1.45 1.29 1.82 1.394
prm 1.88 1.69 1.61 1.36 0.69 0.93 1.07 1.32 1.22 1.18 1.61 123 g
Ly, 176 1.66 1.41 1.27 0.68 095 0.81 1.11 1.08 1.03 1.65 129’5?
s win | 216 177 134 1.48 0.85 098 0.89 0.99 1.33 1.24 1.73 1.33

n = 200
Ly 1.88 1.65 1.45 1.19 1.00 1.00 1.19 1.16 1.25 1.17 1.48 1.50
Ly, |127 122 123 1.08 0.96 0.95 1.03 1.01 1.07 1.08 1.08 1.01
Ly, 1.85 1.54 1.09 1.07 098 0.95 1.02 1.05 1.13 1.11 1.28 1.26
L, . |18l 1.52 131 1.09 0.97 0.94 1.13 1.07 1.20 1.14 1.32 1.31

Table 3: Relative efficiency of Ly-norm estimators with respect to the least
squares.

Case p = 2 proves to be the most efficient with Lp,,, related to Ly, and
Lp, for the given sample sizes. Gonin and Money’s method achieves, for
all the examined theoretical values of p, estimates around the value p=2.
For the cases p = 2.5 p = 3.0 and p = 3.5 Gonin and Money’s procedure
gives a lower variance and mean squared error compared to the Ly, and
Ly, methods, but presents a very high bias for n = 200 sample size.
‘The most important result is related to the asymptotic behavior of the p
estimates. The methods Ly, and L,_. seem to show a possible asymptotic
convergence to a Normal distribution while the L, . method shows that
the bias increases even when the sample size increases (see p = 3.5).

Looking at the simulation results, it seems reasonable to distinguish
two cases. For p < 2, the L, . method here proposed gives us the best
performance. The case p > 2 is well dealt using either the Lp i OF the Ly,
methods. Agro’s method achieves the best results when the sample size is
high as the maximum likelihood methods generally do.

Finally, our simulation study shows how our algorithm achieves good
efficient estimates for regression and shape parameters when compared to
the results obtained by the Gonin and Money’s procedure. In particular, the
asymptotic unbiasedness is a fundamental aspect for the proper function of

every estimation procedure. In non-normal symmetric distribution, better
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performance of variances of p and parameter estimates are obtained when
using the proposed Lp_. method.

min

Methods: Ly, , Ly, , Lp,..
P 1.0 1.5 2.0 2.5 3.0 3.5
n = 50

M(pgm) 1.3349 1.8927 22161 25012 2.6938 2.8734
V(pgm) 0.1097 0.1546 0.2236 0.2479 0.2566 0.2637

MSE(pym) | 0.2219 0.3088 0.2703 0.2479 0.3504 0.6563

M(p4) 14957 1.0985 2.5561 3.0392 3.5245 4.0822
V(ps) 0.3515 0.4846 1.8152 2.1054 2.4206 3.1064
MSE(p;) | 05972 0.7331 2.1244 2.3061 2.7047 3.4453

M(Pmin) 1.2374 1.7485 2.2656 2.7222 3.2114 3.4099
V(Pmin) 0.1221 0.3577 0.6451 1.0566 1.4437 1.6687
MSE(pmin) | 0.1784 0.4135 0.7156 1.1060 1.4884 1.6768
n = 200

M(pgm) 1.3307 1.7143 2.0596 2.3458 2.5733 2.7622
V(pgm) 0.0207 0.0446 0.0559 0.0589 0.0514 0.0585
MSE(pgm) | 0.1301 0.0905 0.0594 0.0827 0.2335 0.6028

M(p,.) 1.2157 1.7386 2.0861 2.5182 2.9188 3.3094
V{py) 0.0495 0.0221 0.0624 0.1608 0.2747 0.3564
MSE(p4) | 0.0960 0.0790 0.0698 0.1611 0.2813 0.3927

M(Pmin) | 1.0784 15553 2.0641 2.5311 3.0423 3.5289
V{(Prmin) 0.0348 0.0476 0.0975 0.2741 0.4996 0.6135
MSE(prmin) | 0.0411 0.0507 0.1016 0.2751 0.5014 0.6143

Table 4: Mean, variance and mean squares error of p estimated on samples
of sizes n = 50, n = 200 generated on E.P.F., considering different methods
to estimate p.
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