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An overview on multiple regression models based
on permutation tests

Massimiliano Giacalone’ and Angela Alibrandi®

Abstract

When the population, frorn which the samples are extracted, is not normally distributed,
or if the sample size is particularly reduced, it becomes preferable {o use nonparametric
statistical tests. Within the regression models, it is possible to use permutation tests,
considering their ownerships of optimality, when the normal distribution of the
response variables is not guaranteed especially in the multivariate context. In the
literature there are numerous permutation tests applicable to the estimation of
regression models. In this paper we focused our attention or the permutation tests of
the independent variables, proposed by Oja, and other methods of nonparametric
inference, in the regressicn models context.

1 Permutation test in regression models

In many cases, when the classical conditions of regression models are not
respected, it’s possible to use the permutation tests, considering their ownerships of
optimality, especially in the multivariate context. The evaluation of the parameters’
significance is an inferential procedure, based on randomization tests (if the same
experimental plan justifies them) or permutation tests (if the observed samples are
random:, so that the analyzed samples justify the calculations) (Kempthorne and
Doerfler, 1969). Through the use of permutation tests, we assess the null kypothesis of
casuainess: in fact, it suggests that, if the examined phenomenon has a certain
tendency, confirmed by a model that appears as gives, it 15 a purely accidental effect of
the observations in casual order. We proceed choosing a useful S statistic test to
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measure the entity of the phenomenon of interest in relation to the observed data and
we compare the observed s statistic test value of § and the distribution of §,obtained by
casually rearranging the data. The test is based on the following principie: if the null
hypothesis were true, then all the possible arrangements of the observations would have
equal probability to verify, that is the order of the observed data is one of the possible
equally probable armrangements and s appears as ope of the possible values of the
rendomization distribution of 8. ¥ s 1s a significant value, then the nuil hypothesis is
rejected, then, for implication, the alternative hypothesis is considered more reasonable.
The significance level of s is, the percentage of the values that are great or equal to § in
the randomization distribution. It represents a measure of evidence strength against the
nuil hypothesis.

2 The Oja permutation test of the independent variables

The experimental plan presented by Oja (1987) considers » subjects to which a
treatment variable x is assigned in order to study their effects on a response variable Y.
In addition, for each k subject, further Z explanatory variables (covariates) are
considered. The non-parametric permutaiion tests proposed by Oja are relative to a
completely permuted plane: in fact, they are based on the assumption that the treatment
values are randomly assigned to the subjects. Therefore, the permutation distribution
used to verify the significance of a relationship between X and Y, taking into account
the effects of the Z covariates, is obtained by permuting the X values to the # statistical
units. In formal terms, this is a regression plan model where the results can be
generalized to multiple regression. The model can be expressed as:
Yea+BH+yZitg (1}
with i=1,..,n, where ¢, § and v are unknown parameters, X is the explicative variable of
the plane such that £™=0, z is the explanatory covariable and ¢,,..., &, are indcpendent
and identically distributed random errors with zero mean. The attention is focused on
the b parameter; therefore the null hypothesis is expressed by Hy: f=0; o and y are
nuisance parameters. Let’s suppose that Y, X and Z are given for all /2 the X variable is
considered as a realization of the random permutation x* of x, Then, the corresponding
» values, which have not been realized, are y*=1+p(x*x), from which we can easily
obtain y*-B x*=y-f x. The test statistic proposed by QJA to assess the null hypothesis is:

1 1 1
T= ‘ZkAiﬂryAiﬂ\'xw where Asji'cy il L SR @
g Z; Zj Zy

with i<j<k and similarly for Ay % .
This statistic is not easily calcuiable; so, Oja proposed an alternative form of this test in
order to facilitate the caleulations:

T EZyixi. where 7= ZAUA-}E;&X with Ajkx -

i<k

o1

z, =z
b &
where j<k. Cotlins (1987) iried to approximate the permutation distributions proposed
by Oja, with other distributions. In particular Oja has suggested a standardized normat

approximation or, equivalently, to square the test statistic proposal and compare the

(3)
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result with the critical value of a ¥* . Of cowse there is no cerfainty that these
distributions provide adequate approximation to the corresponding distributions of
permutation. Collins (1987) has proposed, in his work, a reformulation of the Oja
statistics, using easier methods of calculation, to obtain the explicit formulas of the
moments of permutation and especially to have the advantage of being able to
recognize a beta distribution as an approximation of the exact distribution of null
permutation. These procedures presented by Oja and Collins have not bad much
success and development because, by permuting the independent variables, they violate
the principle of ancillarity, according to which the plan should be subject to maintain
the collinearity between the explanatory variables (Kennedy, 1995).

3  Some alternative approaches of permutation tests in
regression

Other methods of nonparametric inference, in a regression model are:

*  The residual permutation test of the complete model, proposed by Ter Braak
{1992), that is analogous to a bootstrap test and it consists of permuting the
residual samples of a multiple regression in order o produce a distribution that can
be compared with the value sample of a statistical test. In effects, this test is not a
permutation test in the traditional sense, because the data are transformed to get
the residues, before their exchange heppens. Moreover, it is hybrid between a
permutation test and a bootstrap test and its justification can be derived from both
value b* aronnd the frue b value in the bootstrap samples. Similarly the variability
of F, to test P=Py are similar to the variability of F* to test B =b. These
appreciable properties are also justified because the F used statistic test is
asymptotically pivotal; whatever the distribution of errors, the F asymptotic
distribution doesn't depend on the parameters in the model. This test is well
applicable with great samples because the variability of & around the truth B is
similar to the variability of the resampled that are not tested (Levin and Robbins,
1983; Gail, Tan and Piantadosi, 1988; Kennedy and Cade, 1996).

¢ The permutation fest of the dependent variable, used fo verify the null
hypothesis Hy: § = 0. It can be performed by comparing the values of the F test
statistic with the disiribution obtained by permuting the 'Y observations, to
casually assign to the sets of the observations of X and Z independent variables.
Manly (1991) proposes three possible motives to justify this type of permutation
approach: in first place, the » observations can be a casual sample from a
population of possible observations, where the Y variable could be independent
from the X and 7 explanatory variables; in according to place, the values of the
experimental variables X and Z can casually be assigned to n statistical units and,
therefore, the values of the Y response variable can be observed (Y would not to
be influenced by the X and Z variables). Besides, if the variable Y and the
explanatory variables X and Z are independent, all the possible joining among
every value Y and every values X and Z are equally probable in relation to a
potential mechanism that generates the data;

« The exact restricted permutation tests for partial regression models,
fundamentally developed by Brown and Maritz (1982), furnishes an exact
permutation test for a partial regression model, within the regression plain. The
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proposed scheme, united t¢ a suitable experimental plan, is used for the inference
on the regression coefficient f§ of X, when exists another explanatory Z vatiable
that influences the Y response. The X coefficient is therefore a disturb parameter.

4  Final remarks

in this paper we revisited the use of permutation tests to evaluate non parametric
inference in a regression model. Comparing the randomization and permutation tests
with the conventional test for inference in a regression model, we can underline some
aspects. First of all, the randomization and permutation tests have two important
advantages: they are valid and opportunely applicable without casual samples and they
allow to select a statistic test appropriated for a particular considered situation.
Nevertheless, it’s not possible to generalize the conclusions of a randomization test to
the whole population of interest. In fact a randomization test identifies the probability
that & phenomenon of interest is casual. The concept of population from which to
extract samples of observations is not fundamental and this is the reason for which the
casual sampling is not required. In the other hand, the generalization of results of the
conventional iests to the whole population is based on the assumption, not always
verifiable, that the observed samples are equivalent to a casual sample or that the data
are available for the whole population of interest (but this last condition is practically
unrealizable). So, randomization and permutation tests represent a methodologically
adequate solution in a large sumber of practical experimental contexts in which the
samples are not random. These methods scem to be appropriate for particular
conditions, alternatively to conventional tests whose assumptions are too restricted.
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