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We  consider  a  network  of  leaky  integrate  and  fire  neurons,  whose  learning  mechanism  is based  on the
Spike-Timing-Dependent  Plasticity.  The  spontaneous  temporal  dynamic  of the  system  is studied,  includ-
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ing its  storage  and  replay  properties,  when  a Poissonian  noise  is  added  to  the  post-synaptic  potential  of
the units.  The  temporal  patterns  stored  in  the  network  are  periodic  spatiotemporal  patterns  of  spikes.
We observe  that,  even  in absence  of  a cue  stimulation,  the  spontaneous  dynamics  induced  by  the  noise
is a sort  of  intermittent  replay  of the  patterns  stored  in  the  connectivity  and  a phase  transition  between
a replay  and  non-replay  regime  exists  at a critical  value  of  the  spiking  threshold.  We  characterize  this
transition by  measuring  the  order  parameter  and  its fluctuations.
. Introduction

We  study the effects of noise in the spontaneous collective
ynamics of a network of N leaky Integrate and Fire (LIF) neu-
ons, whose learning mechanism is based on the Spike-Timing
ependent Plasticity (STDP). The temporal patterns we  consider are
eriodic spike-timing sequences, whose features are encoded in the
elative phase shifts between neurons’spikes. We  review the stor-
ge and replay properties of such LIF networks whose connections
ome from a learning strategy based on STDP with P phase-coded
atterns with random phases.

Then we focus on the effects of an independent Poissonian noise
dded to the post-synaptic potentials during spontaneous activ-
ty. In previous works (Scarpetta and Giacco, 2012; Scarpetta et al.,
010) we focused on the dynamics emerging as a consequence of

 short cue stimulation, and we showed that in order to trigger
pontaneous patterns of activity reminiscent of those stored dur-
ng the learning stage, a few spikes with the right phase relationship

re sufficient. Here we focus on the spontaneous dynamics without
ny external stimulus, and we show that a noisy signal added to the
otentials may  induce an intermittent replay of the stored patterns.

∗ Corresponding author at: Department of Physics ‘E. R. Caianiello’, University of
alerno, 84084 Fisciano (SA), Italy. Tel.: +39 089 969418; fax: +39 089 969658.
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This spontaneous reactivation induced only by noise, is particu-
larly relevant considering that relationship between spontaneous
and evoked cortical activity during development is the object of
many recent studies (Berkes et al., 2011; Han et al., 2008). Notably
we  study the phase-transition which appears in the noisy sponta-
neous dynamics of our model, in absence of external stimulation.
We characterize the critical regime, at the transition between the
region of spontaneous persistent replay and the region of no-replay.
In this critical regime a short transient intermittent replay is initi-
ated by noise. The replay lasts for a short time and after a while
a new pattern may  be transiently reactivated spontaneously. To
characterize the spontaneous activity of the network, we evaluate
the order parameter and its fluctuations as a function of spiking
threshold of the coupled neurons. At a low spiking threshold the
order parameter is high and fluctuations are low, while at the criti-
cal spiking threshold, where there is a transition between no-replay
(high �th) and persistent replay (low �th), the order parameter’s
fluctuations are maximized, as expected for a continuous phase
transition. Interestingly many recent experimental results, such as
Tagliazucchi et al. (2012), suggest that resting brain spends most
of the time near to the critical point of a second order phase transi-
tion. An important result of this paper is the study of the dynamical

critical point and of the different dynamical regimes observed by
changing the excitability parameters of the network.

The paper is organized as follows: in Section 2 we  introduce
the LIF neuronal model and the STDP learning rule used to design
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Fig. 1. Plot of the learning window A(�) used in the learning rule to model STDP
S. Scarpetta et al. / BioS

he connections, with a brief illustration of the evoked behavior
Section 2.1); in Section 3 we study the ability of the noise to induce
he spontaneous recall of the pattern in absence of external stimula-
ion, we introduce an order parameter, and we focus on the critical
egion; summary and discussion are outlined in Section 4.

. The model

The spiking model has been introduced in Scarpetta and Giacco
2012), Scarpetta et al. (2010). We  briefly review the model here.
he single neuron model is a LIF. We  use the Spike Response Model
SRM) formulation (Gerstner and Kistler, 2002; Gerstner et al.,
993) of the IF model. In this picture, the post-synaptic membrane
otential of a neuron i is given by:

i(t) = �i(t) +
∑

j

Jij
∑
t̂j>t̂i

�(t − t̂j), (1)

here i = 1, . . .,  N, N being the numbers of units in the network, �i(t)
s a Poisson noise, Jij are the synaptic connections, �(t) describes the
esponse kernel to incoming spikes on neuron i, and the sum over
j runs over all pre-synaptic firing times following the last spike
f neuron i. Namely, each pre-synaptic spike j, with arrival time

j , is supposed to add to the membrane potential a post-synaptic
otential of the form Jij�(t − t̂j), where

(t − t̂j) = K

[
exp

(
− t − t̂j

�m

)
− exp

(
− t − t̂j

�s

)]
�(t  − t̂j) (2)

here �m is the membrane time constant (here 10 ms), �s is the
ynapse time constant (here 5 ms), � is the Heaviside step func-
ion, and K is a multiplicative constant chosen so that the maximum
alue of the kernel is 1. The sign of the synaptic connection Jij
ets the sign of the post-synaptic potential’s change, so there’s
nhibition for negative Jij and excitation for positive Jij. When the

embrane potential hi(t) exceeds the spiking threshold �i
th

, a spike
s scheduled, and the membrane potential is reset to the resting
alue zero.

We  want to mimic  the spontaneous activity of cortical networks
n vitro, in the absence of external stimulation. There are many
ifferent possible causes of noise in the system. Here, we focus on
he effects of Poisson noise, therefore �i(t) is modelled as

i(t) = Jnoise

∑
t̂noise>t̂i

�(t − t̂noise). (3)

he times t̂noise are randomly extracted for each neuron i, and Jnoise
re random strengths, extracted independently for each neuron i
nd time t̂noise. The intervals between times t̂noise are extracted from

 Poissonian distribution P(ıt) ∝ e−ıt/(N�noise), while the strength
noise is extracted from a Gaussian distribution with mean Jnoise and
tandard deviation �(Jnoise). This describes the noisy environment
n which our network is embedded, in the absence of any external
timulation.

As shown in many raster plot of in vitro spontaneous dynam-
cs with neuronal avalanches, there is often a small subset of units

hich has a higher spiking rate than the other units. These units
ith spontaneous higher spiking rate are modelled here as a sub-

et of units with lower spiking threshold. These units with lower
piking threshold are therefore more sensitive to the Poissonian
oise which acts on the membrane potentials of all the units of
he network. If some of these low-threshold units belongs to one
f the stored pattern and have consecutive phases in this pattern,

hen it may  happen that these units are able to initiate a collective
eplay of the pattern. To check this hypothesis, therefore, we  imag-
ne that for each stored pattern there is a small subset of Z = N/30
nits, with consecutive phases in the pattern, that have low spiking
effects. The parameters of the function A(�) are determined by fitting the experi-
mental data reported in Bi and Poo (1998).

threshold �th1. These low threshold units will be more sensitive to
noise, and their activation may  eventually trigger the replay of the
stored patterns. While the others N − PZ units will have threshold
�th2.

Numerical simulations of the dynamics are performed for a
network with P stored patterns, where connections Jij are deter-
mined via a learning rule previously introduced in Scarpetta and
Giacco (2012), Scarpetta et al. (2010, 2011, 2001, 2002), Yoshioka
et al. (2007). The connections values are frozen, and the collective
dynamics is studied.

Therefore, following Scarpetta and Giacco (2012), the connec-
tions Jij due to the learning of the periodic pattern � is simply given
by

J�
ij

=
∞∑

n=−∞
A(t�

j
− t�

i
+ nT�) =

∑
n

A

(
	�

j

2
��
− 	�

i

2
��
+ n

��

)
, (4)

where t�
j

(t�
i

) is the spike time of unit j(i) in the pattern �. The learn-
ing window A(� = t − t ’) is the measure of the strength of synaptic
change when a time delay � occurs between pre and post-synaptic
activity (Fig. 1). The stored patterns are defined as precise peri-
odic sequence of spikes, i.e. spike-phase coded patterns, as the
ones shown in Fig. 2, made up of one spike per cycle, and each
spike has a phase 	�

j
randomly chosen from a uniform distribu-

tion in [0, 2
). The set of timing of spikes of unit j  in pattern � is
t�
j

+ nT� = (	�
j

)/(2
��) + n/��, where �� = 1/T� is the oscillation
frequency of the neurons in the stored pattern. Thus, each pattern
� is represented through the frequency �� and the specific phases
of spike 	�

j
of the neurons j = 1, . . .,  N.

When multiple phase coded patterns are stored, the learned
connections are simply the sum of the contributions from individ-
ual patterns, namely

Jij =
P∑

�=1

J�
ij

. (5)
As discussed in Scarpetta and Giacco (2012), the function A(�) used
satisfies the balance condition

∫ ∞
−∞ A(�)d� = 0. This assures that in

the connection matrix the summed excitation (1/N)
∑

i,Jij>0Jij and
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ig. 2. Examples of two periodic spatiotemporal (phase-coded) patterns of spikes
hat are stored in our IF network. Only 10 units (randomly chosen) are shown.

he summed inhibition (1/N)
∑

i,Jij<0Jij are equal in the thermody-

amic limit.

.1. Emerging of collective patterns

The recurrent network with N LIF units, with connections fixed
o the values calculated in Eq. (4) for different values of P is studied.
ollowing Scarpetta and Giacco (2012), the response of the system
o a cue external stimulation, in absence of noise, is illustrated in
ig. 3. A short cue with M = 300 spikes with the proper phase rela-
ionship is able to induce the persistent replay of the stored pattern
n a proper region of parameters, i.e. for low spiking thresholds.

hile at high threshold, such as in Fig. 3c, the cue stimulation only
rigger a short transient replay, and at even higher threshold no
ctivity is triggered by the stimulation.

In the regime of correct reply, shown in Fig. 3a and b, we check
hat if the partial cue is taken from pattern � = 2, the neurons phase
elationships recall the phase of pattern � = 2 (uncorrelated with
attern � = 1) (not shown).

Note that, after the short cue presentation, the retrieval dynam-
cs has the same phase relationship among units as the stored
attern, but the replay may  happen on a time scale different from
he scale used to store the pattern, and the collective spontaneous
ynamics is a time compressed (or dilated) replay of the stored
attern. The time scale of replay changes slightly with spiking
hreshold. In the example of Fig. 3a and b, the time scale of the
etrieval dynamics is faster at lower threshold, and is different than
he time scale used to learn the patterns. The time scale of replay
ctivity also depends on ��, as studied in Scarpetta and Giacco
2012). Here we focus on the case �� = 3 Hz because the correspond-
ng time scale of the retrieval dynamics is such that the oscillations
requency is in the range of theta oscillations. The storage capac-
ty, defined as the maximum number of encoded and successfully
etrieved patterns, has been studied in Scarpetta and Giacco (2012)
hen the network respond to a short cue stimulation.

The storage capacity, as defined in Scarpetta and Giacco (2012),
s shown as a function of the spiking threshold �th, in Fig. 4a, when

 = N/10 spikes are used as cue, and �� = 3 Hz. For the proper val-

es of threshold and for P lower than Pmax, the evoked retrieval

s successful (i.e. cue with a few spikes (M = N/10) is able to selec-
ively activate the self-sustained replay of the stored pattern). We
lso show, for the region of correct evoked replay, the value of
s 112 (2013) 258– 264

the oscillation frequency of collective activity during the replay in
Fig. 4b. At spiking threshold higher than a critical value �crit

th
no per-

sistent replay was  possible for any value of P in response to the cue
stimulation. Following results of Scarpetta and Giacco (2012), and
Fig. 4, we  estimate this critical point when N = 3000, � = 3 Hz to be
about �crit

th
� 95. At thresholds close to this critical value the net-

work responds to cue with a transient activity that is a short replay
of the stored pattern, but not with a persistent replay.

The critical regime, near the phase transition, is investigated
here, but in the absence of any external cue stimulation (M = 0).
While in previous works (Scarpetta and Giacco, 2012; Scarpetta
et al., 2010; Yoshioka et al., 2007) we studied the dynamics trig-
gered by a short stimulation cue, in the following we  investigate
the spontaneous dynamics without any cue stimulation, in the
presence of Poissonian noise only.

While in the region of persistent replay the evoked dynamics is
robust wrt  noise, in the region near the critical point the system is
more sensitive to noise, therefore it is important to focus on effects
of noise in this region in the absence of cue stimulation. Notably in
this critical region it is the noise itself which may  initiate a short
replay, without any external trigger.

In the following therefore we  study if a Poissonian noise, in a
network with the proper connectivity as ours, is able to induce tran-
sient pattern replay, in the absence on any cue stimulation. This is
motivated also by recent literature on the intriguing relationship
between evoked and spontaneous cortical activity, and on the pat-
tern replay observed in the post-task sleep. Indeed during sleep
the reactivation of patterns stored in the connectivity is clearly
not triggered by sensory stimulation but induced by noise itself
spontaneously.

3. Effects of noise in the spontaneous critical regime, in
absence of any cue stimulation

We  investigate here if, even in absence of external cue stimula-
tion, collective patterns of activity, reminiscent of stored patterns,
emerge spontaneously, induced by noise. We  therefore study the
network spontaneous dynamics in the critical regime, in absence
of any cue stimulation, in the presence of a Poissonian noise. We
focus here on the critical behavior observed near the dynamical
phase-transition, between the region of permanent replay and the
region of no-replay. Figs. 5–7 show the spontaneous dynamics of a
network of N = 3000 units, P = 2 patterns stored in the connectivity,
and noise given by Eq. (3) with �noise = 1 ms,  Jnoise = 0, �(Jnoise) = 5,
in the absence of external stimulation. A subset of N1 = 200 units
have a low spiking threshold �th1 = 26 (to model the heterogeneity
observed in in vitro dynamics), and the other N − N1 = 2800 units
have �th2 = 80, 90, 105, respectively, in Figs. 5–7. Different values of
�th1 = 20, 22, 24, 26, 28, 30 have been investigated, as well different
values of noise variance, and the phenomena observed are similar
but less pronounced. So we fix these values of �th1 = 26, �(Jnoise) = 5
and we show the spontaneous behavior as a function of threshold
of the majority of units �th2.

At lower threshold, �th2 = 80 in Fig. 5 the collective replay of
the pattern � = 1, in absence of any cue stimulation, is triggered
spontaneously and lasts for a very long time. The raster plot of the
network dynamics is shown with a different sorting of units on
the vertical axes, showing that pattern � = 1 is replayed. The replay
is initiated since the noisy units have triggered it, and the replay
is permanent and very robust in this regime. Fig. 6 shows that at
�th2 = �c

th2 = 90, from time to time, there is a short transient replay

of the patterns. Each replay event lasts for a limited interval of time
and then fades away. In Fig. 6a, the units are sorted according to
increasing values of stored phases in pattern � = 1, while in Fig. 6b
units are sorted according to � = 2. When pattern � = 1 is recalled,
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a b c

Fig. 3. Network dynamics at different values of spiking threshold �th . In these simulations a cue external stimulation (M spikes, shown in green) is used, and a single value
of  spiking threshold is used for all units of the network, and the noise is absent. At proper value of the spiking threshold the cue initiates a persistent retrieval of the
spatiotemporal pattern, while at too high threshold the network is silent or with only a short transient retrieval. Example of selective successful evoked retrieval (a, b) and
example of failure (c) are shown. The raster plot of 50 units (randomly chosen) is shown sorted on the vertical axis according to increasing values of phase 	1

i
of the first

stored  pattern � = 1. The network has N = 3000 IF neurons, �th = 75, 90, 105, respectively, in a, b and c. Connections are given by Eq. (5) with P = 2 stored patterns at �� = 3 Hz.

Fig. 4. (a) Storage capacity ˛c = Pmax/N, defined as in Scarpetta and Giacco (2012), is shown at �� = 3 Hz as a function of spiking threshold, when M = N/10 spikes are used as
cue  stimulation. As always in this paper the number of units is N = 3000. The figure shows that near �crit

th
� 95 there is a transition from a region of evoked persistent replay

to  a region of no-replay. (b) Frequency of the collective oscillations of the network dynamics during evoked replay, as a function of spiking threshold, for P = Pmax .

Fig. 5. Spontaneous dynamics, without any cue stimulation, in a noisy environment (�noise = 1 ms,  Jnoise = 0, �(Jnoise) = 5) with �th2 = 80, �th1 = 26, N = 3000, �� = 3 Hz. Spikes are
shown  with units sorted on the vertical axes according to order of units in the first (a) or second (b) stored pattern. Units with threshold �th1 = 26 are shown in green, the
other  in black. Permanent replay of first pattern is observed, initiated by the noisy units (low threshold, more sensitive to noise).
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Fig. 6. Spontaneous dynamics without any cue stimulation in a noisy environment (�noise = 1 ms,  Jnoise = 0, �(Jnoise) = 5) with �th2 = 90, �th1 = 26, N = 3000, �� = 3 Hz.  Spikes are
shown  with units sorted on the vertical axes according to order of units in the first (a) or second (b) stored pattern. Units with threshold �th1 = 26 are shown in green, the
other  in black. Short transient replays of the two patterns are initiated, from time to time.
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ig. 7. Spontaneous dynamics without any cue stimulation in a noisy environment 

hown with units sorted on the vertical axes according to order of units in the firs
ther  in black. No replay is observed.

 short sorted sequence of spikes appears in Fig. 6a, while when
attern � = 2 is retrieved, a short sorted sequence of spikes appears

n Fig. 6b. At higher threshold, such as �th2 = 105 in Fig. 7 no replay
s observed, and only noisy activity is observed. It is notably that,
t intermediate value �th2 = 90 this intermittent replay is observed
ere, in absence of any external cue stimulation. We  observe a sort
f spontaneous reactivation of all stored patterns, as the one that
eems to happen during sleep, useful for memory consolidation.

.1. The critical point

In order to characterize this transition between a regime of
pontaneous permanent retrieval (in the absence of cue stimula-
ion) to a regime of no-retrieval, we measure the variance and the

ean value m�(Tw) of the order parameter.

In analogy with the Hopfield model, we introduce an order

arameter to estimate the overlap between the network collective
ctivity during the spontaneous dynamics and the stored phase-
oded pattern. This quantity is 1 when the phases 	j of neurons j
= 1 ms,  Jnoise = 0, �(Jnoise) = 5) with �th2 = 105, �th1 = 26, N = 3000, �� = 3 Hz. Spikes are
r second (b) stored pattern. Units with threshold �th1 = 26 are shown in green, the

coincides with the stored phases 	�
j

, and is close to zero when the
phases are uncorrelated with the stored ones.

Therefore, we  consider the following time-dependent dot
product |M�(t, Tw)| =< �(t)|�� > where �� is the vector having

components e
i	�

j , namely:

|M�(t, Tw)| =

∣∣∣∣∣∣∣∣∣∣
1
N

∑
j=1,...,N

t < t∗
j < t + Tw

e
−i2
t∗

j
/Tw

e
i	�

j

∣∣∣∣∣∣∣∣∣∣
(6)

where t∗
j

is the spike timing of neuron j during the spontaneous
dynamics, and Tw is an estimation of the period of the collective
spontaneous periodic dynamics.
Then, we consider the mean value of the order parameter:

m�(Tw) = 1
〈Ns〉 〈|M(t,  Tw)|〉 (7)
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Fig. 8. Mean value m(TW) of the order parameter for pattern � = 1 (circles) and its
fl
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uctuations (stars) as a function of the chosen window Tw ,for different �th2. N = 3000,
th1 = 26 and �� = 3 Hz as in Figs. 5–7.

here the average 〈 · · · 〉 is done on the starting time t of the window,
nd 〈Ns〉 is the average number of spikes on a window of time Tw .

The fluctuations of the order parameter are defined by

2(|M�(t, Tw)|) = 1

〈Ns〉2
[〈|M(t, Tw)|2〉 − 〈|M(t, Tw)|〉2]. (8)

he order parameter |M�(Tw)|, at the optimal time-window Tw ,
.e. with Tw which maximizes |M�(Tw)|, measures the similarity
n the sequence of spiking neurons and in the phase lag between
he spikes. This is a suitable choice especially when the replay of a
patio temporal pattern has to be detected independently from the
ompression of the time scale. Note that if we have a spike train
hat is not periodic, we cannot define the period, however we  can
efine the order parameter looking at the time-window Tw which
aximizes |M�(Tw)|.
In Fig. 8 stars are fluctuations while circles are the mean value

�(Tw), for three values of �th2 = 80, 90, 100, and different values
f the time-window Tw . We  simulate �th1 = 20, 22, 24, 26, 28, 30,
nd we plot results for �th1 = 26 (which is the value which gives
igher order parameter) in Fig. 8. So we evaluate the mean value
nd the fluctuations of the order parameter for the value of Tw

hich maximizes it.
In Fig. 9 the mean value m� of order parameter and its fluctu-

tions �2(|M�|) are shown as a function of spiking threshold �th2,
hen �th1 = 26 and for the optimal Tw . At low spiking threshold

�th2 = 80) m� is high and �2(|M�|) is low, indicating that, as shown
n Fig. 5 the noise is able to initiate a successful retrieval (persistent
eplay) of the stored pattern. At high threshold (�th2 = 100) either
he mean value and the fluctuations of the order parameter are low.
t the critical point (�th2 = 90) between the two regimes, the fluc-

uations of the order parameter are maximized, as expected in a
ontinuous phase transition.

The transition is then characterized by a dynamical order
arameter, in terms of a dynamical phase transition, between two
ifferent dynamical behaviors (all in the absence of any external cue
timulation). A critical behavior, with maximization of fluctuation

f order parameter at the critical threshold, is observed here as in
ontinuous phase transitions. Notably recent results (Tagliazucchi
t al., 2012) show, using large scale fMRI measures, that the brain
pent most time near a critical point. Future works will focus on
Fig. 9. Mean value m(TW) of the order parameter, at optimal Tw ,  and its fluctuations
as  a function of �th2, for N = 3000, �th1 = 26 and �� = 3 Hz as in Figs. 5–7.

the spontaneous activity at the critical threshold from the point of
view of neural avalanches.

4. Discussion

Here, using an STDP-based learning process (Scarpetta and
Giacco, 2012; Scarpetta et al., 2011, 2011, 2009; STDP, 2008), we
store in the connectivity of a LIF network, several spatiotemporal
spike patterns, and we find that, depending on the excitability of
the network, different working regimes are possible, with collec-
tive, transient or persistent, replay activity induced simply by noise.
In our model not only the order of activation of the sequence is pre-
served, but also the precise phase relationship among units of the
periodic spatiotemporal pattern.

While in the region of persistent replay the system is robust
w.r.t. noise, as discussed in Scarpetta and Giacco (2012), in the
region near the critical point the system is more sensitive to noise,
as shown here. In the critical regime indeed, the different sequences
stored in the connectivity may  be reactivated transiently, from time
to time, due to noise, and in absence of any cue stimulation.

We show that at the critical point the fluctuations of the order
parameter are maximized, since the collective activity is made of
different sequences of different lengths, which give rise to corre-
lated activity on the top of a noisy uncorrelated activity.

Recently there is renewed interest in reverberatory activity (Lau
and Bi, 2005) and in cortical spontaneous activity (Ringach, 2009;
Pastalkova et al., 2008) whose spatiotemporal structure seems to
reflect the underlying connectivity, which in turn may  be the result
of the past experience stored in the connectivity.

Similarity between spontaneous and evoked cortical activities
has been shown to increase with age (Berkes et al., 2011), and with
repetitive presentation of the stimulus (Han et al., 2008). Interest-
ingly, in our IF model, in order to induce spontaneous patterns
of activity reminiscent of those stored during the learning stage,
a limited number of spikes with the right phase relationship are
sufficient, and more importantly, even in absence of sensory stim-

ulus, a noise with the right phase relationships is able to induce a
pattern of activity reminiscent of a stored pattern. Therefore, by
adapting the network connectivity to the phase-coded patterns
observed during the learning mode, the network dynamics builds a
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epresentation of the environment and then, during proper
onditions, such as sleep or rest, the dynamical attractors cor-
esponding to the stored patterns are transiently activated by
oise.

Regarding place cells for example, a possible scenario is that, the
attern activated repeatedly during experience is stored in the con-
ectivity, and then activated during sleep when the network is near
ritical point and noise is able to initiate short replay sequences, in
bsence of sensory stimulation. During exploration, when the ani-
al  visit adjacent place fields, the evoked activity of the place cells

s a sequence of spikes with the consecutive activation of place
ells, then also inside a single theta cycle the cells are activated in
he right sequence. During sleep, in the absence of external inputs,
he role of recurrent connections increases, probably due to an
ncrease of excitability via neuromodulators or other mechanisms,
nd the spontaneous activity of the network shows temporarily
hort replay of stored patterns, probably initiated simply by the
oise, as proposed in this work.
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