
1 23

Journal of Physiology and
Biochemistry
Official Journal of the University of
Navarra, Spain
 
ISSN 1138-7548
Volume 68
Number 4
 
J Physiol Biochem (2012) 68:541-553
DOI 10.1007/s13105-012-0172-0

LCAT cholesterol esterification is associated
with the increase of ApoE/ApoA-I ratio
during atherosclerosis progression in rabbit

Alessandro Carlucci, Luisa Cigliano,
Bernardetta Maresca, Maria Stefania
Spagnuolo, Giovanni Di Salvo, Raffaele
Calabrò, et al.



1 23

Your article is protected by copyright and

all rights are held exclusively by University

of Navarra. This e-offprint is for personal

use only and shall not be self-archived in

electronic repositories. If you wish to self-

archive your work, please use the accepted

author’s version for posting to your own

website or your institution’s repository. You

may further deposit the accepted author’s

version on a funder’s repository at a funder’s

request, provided it is not made publicly

available until 12 months after publication.



ORIGINAL PAPER

LCAT cholesterol esterification is associated with the increase
of ApoE/ApoA-I ratio during atherosclerosis progression
in rabbit

Alessandro Carlucci & Luisa Cigliano &

Bernardetta Maresca & Maria Stefania Spagnuolo &

Giovanni Di Salvo & Raffaele Calabrò &

Paolo Abrescia

Received: 13 October 2011 /Accepted: 11 April 2012 /Published online: 5 May 2012
# University of Navarra 2012

Abstract Apolipoprotein A-I and Apolipoprotein E
promote different steps of reverse cholesterol transport,
including lecithin-cholesterol acyltransferase stimula-
tion. Our aim was to study the changes in the levels of
Apolipoprotein A-I, Apolipoprotein E, and lecithin-
cholesterol acyltransferase activity during atherosclero-
sis progression in rabbits. Quantitative echocardio-
graphic parameters were analyzed in order to evaluate,
for the first time, whether atherosclerosis progression in
rabbit is associated to apolipoproteins changes and

alteration of indices of cardiac function, such as systolic
strain and strain rate of the left ventricle. Atherosclerosis
was induced by feeding rabbits for 8 weeks with 2 %
cholesterol diet. The HDL levels of cholesterol and
cholesteryl esters were measured by HPLC. The
lecithin-cholesterol acyltransferase activity was evaluat-
ed both ex vivo, as cholesteryl esters/cholesterol molar
ratio, and in vitro. Apolipoproteins levels were analyzed
by ELISA. The HDL levels of cholesterol and choles-
teryl esters increased, during treatment, up to 3.7- and
2.5-fold, respectively, compared to control animals. The
lecithin-cholesterol acyltransferase activity in vitro was
halved after 4 weeks. During cholesterol treatment,
Apolipoprotein A-I level significantly decreased,
whereas Apolipoprotein E concentration markedly in-
creased. The molar ratio Apolipoprotein E/Apolipopro-
tein A-I was negatively correlated with the enzyme
activity, and positively correlated with both increases
in the intima-media thickness of common carotid wall
and cardiac dysfunction signs, such as systolic strain and
strain rate of the left ventricle.
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Introduction

The HDL apolipoproteins ApoA-I and ApoE impair
the onset and progression of atherosclerosis by playing
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a pivotal role in a multi-step process called “reverse
cholesterol transport” (RCT) [13, 17, 19]. In particu-
lar, Apolipoprotein A-I (ApoA-I) and Apolipoprotein
E (ApoE) promote the efflux of cholesterol excess
from cells [19], and stimulate lecithin cholesterol acyl-
transferase (LCAT) to convert free cholesterol into
cholesteryl esters, which are embedded into the lipo-
protein core, and change particle shape and density [4,
11, 42]. Spherical lipoproteins are thus formed and
mostly contribute to the heterogeneous population of
circulating HDL [19]. Finally, ApoA-I and ApoE act
as HDL ligands for hepatocyte receptors and deliver
their lipid cargo, including free cholesterol and cho-
lesteryl esters, to liver for elimination [17, 19]. Plasma
levels of large or small HDL subfractions were
reported to be associated with the progression of cor-
onary atherosclerosis [8, 27].

Rabbits share with humans most HDL-remodelling
enzymes and, when fed a high cholesterol diet, rapidly
develop severe hypercholesterolemia leading to ath-
erosclerosis [14, 40]. They have been used as animal
model to study potential predictors of atherosclerosis
development or therapies against the progression of
the disease [40]. We focused on cholesterol-fed rabbits
because they represent an ideal animal model to create
extreme conditions of cholesterol excess and study
consequent alteration of critical players of RCT, i.e.,
LCAT, ApoA-I, and ApoE.

A major problem is the lack of sensitive and objec-
tive plasma markers for early diagnosis of individuals
at risk of coronary heart disease and/or to follow the
progression of the disease. The aim of this study was
to analyse, in cholesterol fed rabbits, the changes in
the levels of ApoA-I, ApoE, and LCAT activity during
atherosclerosis progression. Furthermore, this study
sought to determine whether cholesterol treatment
induces alteration of both intima-media thickness and
indices of cardiac function. The correlation of these
parameters with changes of apolipoproteins or LCAT
activity was also explored.

Materials and methods

Materials

RAM11 (mouse monoclonal antibody anti-rabbit mac-
rophage) was purchased from Santa Cruz [Santa Cruz,
California, USA]. Goat anti-ApoE polyclonal

antibody was purchased from Chemicon [Millipore,
Billerica, MA, USA]. Human ApoE was obtained
from Calbiochem [La Jolla, CA, USA]. Sheep anti-
ApoA-I purchased from Serotec [Oxford, UK].
[1α,2α-3H]Cholesterol (45 Ci/mmol) was obtained
from Perkin Elmer [Boston, MA, USA]. Sil-G plates
for Thin Layer Chromatografy (TLC; thickness
0.25 mm) were obtained from Macherey-Nagel
[Düren, Germany]. Chemicals of the highest purity,
thyroglobulin, ferritin, lactate dehydrogenase, bovine
serum albumin (BSA) cholesterol, egg yolk lecithin,
rabbit anti-goat HRP-conjugated (RAG-HRP) IgG,
donkey anti-sheep HRP-conjugated (DAS-HRP) IgG,
goat anti-mouse HRP-conjugated peroxidase (GAM-
HRP) IgG, o-phenylenediamine, dextran sulphate
(DS, 50 kD), 4-chloro-1-naphtol, molecular weight
markers, Supelcosil LC-18 (5 μm particle size, 250×
4.6 mm I.D.) were obtained from Sigma-Aldrich [St
Louis, MO, USA]. Ketamine, Acepromazine, Diaze-
pam, and Tanax were obtained from Alcyon [Marene,
CN, Italy]. LDL-cholesterol direct colorimetric kit was
obtained from PKL, Pokler [Salerno, Italia]. PVDF
transfer membrane of Millipore [Bedford, MA, USA]
was used. Organic solvents were purchased from
Romil [Cambridge, UK]. Polystyrene 96 wells plates
were purchased from Nunc [Roskilde, Denmark].

Methods

Rabbits' treatment

Male New Zealand white rabbits weighing 1.4–1.6 kg
(Harlan, Correzzana (MI), Italy) were fed for 8 weeks
with Purina® standard feed as such (control group) or
containing 2 % (w/w) cholesterol (treated group). Both
feeds were purchased from Cargill (Milano, Italia).
During treatment, blood samples were collected from
the marginal ear vein. Plasma was separated by cen-
trifugation at 800×g for 15 min at 4°C. During the
echocardiographic analysis, the rabbits were anesthe-
tized with intravenous injection of Ketamine (25 mg/
Kg), Acepromazine (1 mg kg−1), and Diazepam
(2 mg kg−1). After 8 weeks, the rabbits were anesthe-
tized and then sacrificed by administration of Tanax
(0.3 ml kg−1). The aortic arch of each rabbit was
dissected free of adhering tissue, washed with physi-
ological solution, and perfusion-fixed with Bouin's
fluid for 18 h [10]. The specimens were then dehy-
drated through a graded ethanol series, soaked in
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paraffin, and serially and transversally cut for histo-
chemistry. Standard principles of laboratory animal
care were in accordance with accepted institutional
policies, and all procedures were approved by the
Animal Ethics Committee of the University of Naples
Federico II.

Histochemistry

Tissue cross-sections (5 μm thick) were prepared from
aortic arch. Some of them were stained with Azan-
Mallory trichrome method according to a published
procedure [10]. Other sections were processed for
histochemistry using a monoclonal antibody
(RAM11) against the macrophage marker CD68. In
detail, deparaffinized and hydrated sections were
washed in PBS (50 mM Na2HPO4/NaH2PO4,
pH 7.4) for 10 min, treated with 0.3 % hydrogen
peroxide for 30 min, incubated with 0.5 % BSA for
30 min, and finally challenged with RAM11 (dilution
1:100 in PBS containing 0.25 % BSA) at 4°C over
night. After washing by PBS, the sections were incu-
bated with GAM-HRP (dilution 1:100 in PBS contain-
ing 0.25 % BSA) for 60 min, washed again by PBS,
incubated with 0.1 % diaminobenzidine tetrahydro-
cloride and 0.3 % H2O2 in PBS, and finally counter-
stained with Mayer's hematoxylin and mounted for
light microscopy. Negative controls were prepared by
omitting the incubation with the primary antibody.
Images of the treated sections were acquired by a
software-assisted camera system (KS300 from Zeiss,
Zaventem, Belgium).

ELISA

Plasma concentrations of ApoA-I and ApoE were
titrated by ELISA. Rabbit ApoA-I, isolated according
to a published procedure [3] and exhibiting over 98 %
purity by electrophoresis and densitometric analysis,
was used for calibration. The level of ApoE was
determined by using the human antigen as standard
for calibration. The ApoA-I and ApoE levels were
determined both in the whole plasma and in the super-
natant obtained after precipitation of plasma LDL and
VLDL with 0.1 % DS in 50 mM MnCl2 (DS-treated
plasma). Aliquots of plasma or DS-treated plasma
(50 μL from 1:1,000, 1:10,000, 1:20,000, 1:45,000,
1:60,000, and 1:100,000 dilutions in 7.3 mM Na2CO3,
17 mM NaHCO3, 1.5 mM NaN3, pH 9.6), were loaded

into the wells of a microtiter plate, and processed
essentially according to a published procedure [6]. In
particular, sheep or goat IgG (anti-ApoA-I, 1:1,500
dilution, or anti-ApoE, 1:2,000 dilution, respectively)
was used as primary antibody, and DAS-HRP IgG or
RAG-HRP IgG (1:3,000 dilution and 1: 8,000 dilu-
tion, respectively) as secondary antibody for color
development.

LCAT activity assay

Plasma samples from cholesterol-fed and control ani-
mals were treated with 0.1 % DS in 50 mM MnCl2 to
remove VLDL and LDL [6]. The in vitro activity of
LCAT was measured as described previously [5, 32],
using a proteoliposome (ApoA-I: lecithin: choles-
terol01.5:200:18 molar contribution; 0.7 μM ApoA-I
in the assay) as substrate. The enzyme activity was
expressed as nanomole of cholesterol esterified per
hour per milliliter of plasma (units). The efficiency
of LCAT stimulation by ApoA-I or ApoE was inves-
tigated by incubating a pool of DS-treated plasma,
obtained from control rabbits (as enzyme source) with
proteoliposomes containing different molar ratios of
ApoA-I with ApoE (4:0, 3:1, 2:2, 1:3, or 0:4; 0.4 μM
apolipoprotein in the assay) as substrate.

Titration of cholesterol and cholesteryl esters in HDL

Plasma samples of cholesterol-fed or control animals
were treated with 0.1 % DS in 50 mM MnCl2 for
removing VLDL and LDL [6]. The absence of VLDL
and LDL in DS-treated plasma was verified by enzy-
matic colorimetric method [1], using a commercial kit,
according to the manufacturer's instructions. After this
treatment, two aliquots of DS-treated plasma (25 μL)
were used for measuring the amount of free cholesterol
(FC) and total cholesterol. In detail, one aliquot was
incubated with 0.25 mL of ethanol, while the other
one with 0.25 mL of ethanol containing 5 M KOH.
After incubation (1 h, 75°C), both mixtures were sup-
plemented with 0.15mL of 1 %NaCl and, after addition
of 2 mL of ice-cold hexane, were vigorously shaken for
2 min. Each hexane extract was taken on and the lower
phase was likewise extracted two more times. The three
extracts were pooled and dried under nitrogen stream.
The residue was dissolved in 0.2 mL of acetonitrile/
isopropanol (57:43, v:v), and 20 μL were processed by
reverse-phase HPLC. The chromatography was
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performed by a C18 column at 40°C with 1 mL min−1

flow rate, according to a published procedure [6]. The
amounts of free and total cholesterol, as measured in the
samples processed without and with KOH, respectively,
were used to calculate the amount of cholesteryl esters
(CE) as “total minus free cholesterol”. Calibration
curves (r2≥0.9997), obtained by injecting different
amounts (n012) of standard FC, were used for quanti-
tative analysis.

Electrophoresis and densitometry

In order to check whether DS-treated plasma was con-
taminated by ApoB-containing lipoproteins, pools of
whole plasma (N05) and DS-treated plasma from
cholesterol-fed (after 8 weeks of diet) and control rabbits
were analyzed by electrophoresis. Proteins were frac-
tionated by 3–10 % (w/v) polyacrylamide gradient gel
electrophoresis, under denaturing and reducing condi-
tions, and then blotted onto PVDF membrane [5]. After
protein blotting, the membrane was rinsed in TBS
(130 mM NaCl, 20 mM Tris–HCl, pH 7.4) containing
0.05 % (v/v) Tween 20 (T-TBS), and treated with 0.5 %
BSA in TBS for 1 h at 37°C. ApoB presence was
analyzed by incubating the membrane with goat anti-
ApoB IgG (1:1,000 dilution in TBS containing 0.25 %
BSA; 1 h at 37°C), followed by RAG-HRP IgG
(1:3,000 dilution; 1 h at 37°C). The immune complexes
were detected by using hydrogen peroxide and 4-chloro-
1-naphthol for color development. ApoB was detected
only in whole plasma, but not in DS-treated plasma,
confirming that all ApoB containing lipoproteins were
precipitated by DS treatment (data not shown).

The separation of HDL population in subfractions
was performed as follows. Aliquots (2 μL) of a pool of
DS-treated plasma obtained from cholesterol fed and
control rabbits were processed for electrophoresis on
4–30 % (w/v) polyacrylamide gradient gel [18]. Homo-
geneity and hydrodynamic diameter of HDL were esti-
mated using reference globular proteins (thyroglobulin,
ferritin, lactate dehydrogenase, and albumin; Stokes' di-
ameter, 17, 12.2, 8.1, and 7.1, respectively) [18]. After
electrophoresis, proteins were blotted onto PVDF mem-
brane. The membrane was treated with 5 % non fat milk
in T-TBS (1 h, 37°C), and then incubated, overnight at 4°
C, with sheep anti-ApoA-I or goat anti-ApoE IgG (1:
1,000 dilution in T-TBS containing 0.25% non fat milk).
The immunocomplexes were detected by DAS-HRP or
GAR-HRP IgG, respectively (1:1,000 dilution in T-TBS

containing 0.25 % non fat milk), using hydrogen perox-
ide and 4-chloro-1-naphthol for color development. Dig-
ital images of membranes were analyzed by
densitometry with the Gel-ProAnalyser software (Media
Cybernetics, Silver Spring, MA). The band intensities
were recorded as peaks on a densitogram and arbitrarily
expressed as Integrated Optical Density (IOD).

Echocardiography

Echocardiographic studies were performed at baseline,
4, and 8 weeks of cholesterol treatment. Two-
dimensional targeted M-mode traces were obtained at
the level of the papillary muscles using an echocardio-
graphic system equipped with a 10-MHz phased-array
transducer. Anterior and posterior end-diastolic wall
thickness, left ventricular (LV) contractility end-
diastolic, and end-systolic dimensions were measured,
according to the American Society for Echocardiogra-
phy leading-edge method [31], from at least three con-
secutive cardiac cycles. LV volume and ejection fraction
were calculated on the basis of the Teichholtz formula
[34]. Data were collected by the Aplio XG echo-scanner
and the Toshiba PSM-70AT transducer (5–10 MHz)
with high temporal and spatial resolution. The transduc-
er was placed directly on the chest wall and fixed at the
parasternal view and then at the apical 4 chamber view
(for color Doppler myocardial imaging, CDMI) using a
mechanical arm. Using a zoomed image window, myo-
cardial velocity data were acquired at rate of 203
frames s−1, a sector angle of 30°, and an image depth
of 15 mm. Beam focus was set at 10 mm. Digital data of
ten consecutive heart cycles were recorded and trans-
ferred to a personal computer workstation for off-line
analysis. Longitudinal myocardial velocities, systolic
strain (S), and strain rate (SR) of the left ventricle were
calculated from CDMI data using the Toshiba software.
SR and S profiles were analyzed on the basal part of the
interventricular septum. The region of interest was
placed in the wall always in order to reduce the angle
between the ultrasound beam and the muscle. S estima-
tion length of 1.0 mm was used depending on the
thickness of the wall (end-diastolic wall thickness be-
tween 1.1 and 2 mm). Start and end of the ejection phase
were properly defined using ECG and velocity trace, as
previously demonstrated in humans [33]. SR and S
profiles were handled without smoothing. Peak systolic
SR and S values were measured in each of ten heart
cycles. The maximal and minimal values were
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discarded, and the remaining eight values were aver-
aged. The serial changes of peak systolic SR and S,
before and during treatment, were then evaluated. All
the echocardiographic analyses were performed on dig-
itally stored raw data (gray scale bidimensional images
and CDM images) by two investigators blinded to the
treatment group and to the histological findings.

Statistical analysis

The samples for measurement of apolipoprotein con-
centration and LCAT activity were processed in tripli-
cate. Echocardiographic data were also collected in
triplicate. Data were expressed as means±standard
deviation (SD). Statistical differences were determined
using t test or, where appropriate, one-way ANOVA,
followed by Tukey's test for multiple comparisons
(GraphPad Software Inc., San Diego, CA). Differen-
ces were considered statistically significant when the
two-sided P value was less than 0.05.

Results

Influence of cholesterol diet on lesion formation

Histological analysis of the aortic arch was performed
to assess the presence of atherosclerotic plaques. The
sections were obtained from rabbits fed standard diet
or high cholesterol diet for 8 weeks. The intima was
barely visible and no plaque was detected, after Azan-
Mallory staining, in aorta sections from control group
(Fig. 1a). In the cholesterol-treated group, the intima/
media ratio was approximately twofold greater than
that in control group, and atherosclerotic plaques were
detected (Fig. 1c). In particular, these plaques
contained a large amount of thick fatty streaks with
round lipid-loaded cells, which turned out to be mac-
rophages as detected by anti-RAM11 antibodies
(Fig. 1d vs. b). The macrophages clearly displayed
penetration into the media layer.

Ratio of CE with FC in HDL of normal
or cholesterol-fed rabbits

The activity of LCAT was evaluated in rabbit plasma
by measuring the amount of CE and FC in HDL. In
particular, the molar ratio of CE with FC in HDL, a
parameter used to evaluate the enzyme activity ex vivo

[6], was calculated. Plasma samples were collected
from cholesterol-fed (N05) or control rabbits (N05),
and analyzed at different time lengths. The CE level
was found markedly higher in cholesterol fed rabbits
than in controls, starting from the fourth week of
treatment (4 weeks, 2.38±0.36 vs. 1.2±0.1 mM, P<
0.01; 6 weeks, 2.6±0.24 vs. 1.3±0.1 mM, P<0.01;
8 weeks, 2.9±0.42 vs. 1.1±0.15 mM, P<0.01)
(Fig. 2a). As expected, the HDL FC level was higher
in cholesterol-fed rabbits than in controls (Fig. 2a),
from the fourth week of treatment (4 weeks, 0.72±
0.22 vs. 0.20±0.03 mM in controls, P<0.01) and from
then onwards (6 weeks, 0.8±0.1 vs. 0.25±0.05 mM,
P<0.01; 8 weeks, 0.86±0.25 vs. 0.23±0.04 mM,
P<0.01). It is worth to note that the level of HDL-
FC increased more than that of HDL-CE during treat-
ment (about 3.8- and 2-fold, respectively). The CE/FC
ratio did not change after 1 week of treatment, whereas
it decreased afterwards as a logarithmic function of
time length (r00.9522), thus indicating that the HDL
composition in FC and CE was not immediately mod-
ified by the cholesterol loading but only a few days
later. The ratio progressively and significantly de-
creased from the second to the third week of treatment
(down to 53±10 % of the value at the starting point),
and poorly changed ever since (8 weeks, 50±12 %)
(Fig. 2b). In particular, after 2 weeks of treatment, the
CE/FC ratio was significantly lower (30 % lower of
initial value) than that in controls. The control group
did not display significant alterations of CE/FC ratio.
In agreement with these data, the amount of plasma
LCAT, when measured in vitro by determining the
enzyme activity after 4 weeks of treatment, was found
to be about half of that in control rabbits (3.3±0.8 vs.
7.8±0.6 units, P<0.01), and no further significant
decrease until the end of treatment was observed (3.9
±0.9 vs. 8.1±0.7 units, P<0.01) (Fig. 3).

ApoA-I and ApoE levels in normal or cholesterol-fed
rabbits

The major LCAT stimulating effectors are ApoA-I and
ApoE [4, 11, 42]. Therefore, in order to get more
insight into the regulation of enzyme activity, it was
mandatory to analyze the levels of these two apolipo-
proteins during the dietary treatment. Plasma from
rabbits, fed with normal or cholesterol diet, was col-
lected at different times (0, 2, 4, 6, and 8 weeks) and
treated with DS to remove VLDL and LDL. Then,
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ApoA-I or ApoE were titrated by ELISA, using anti-
ApoA-I or anti-ApoE antibodies, respectively. The
level of ApoA-I progressively decreased in
cholesterol-fed rabbits during treatment, as compared
to that in controls (4 weeks, 30.3±1.4 vs. 44.2±
1.7 μM, P<0.01; 8 weeks, 18.5±1.7 vs. 45±2.5 μM,
P<0.01) (Fig. 4a). The level of ApoE was found mark-
edly increased in cholesterol-fed rabbits (4 weeks, 16.1
±1.4 vs. 2±0.2 μM in controls, P<0.01; 8 weeks, 30.5±
2.9 vs. 1.3±0.5 μM, P<0.01) (Fig. 4b). The decrease in
ApoA-I level concomitantly accompanied the increase
in ApoE level from just the start of the treatment. A
negative correlation was found between these levels (r0
−0.9462, P<0.01), and the function which better de-
scribed the changes of ApoE/ApoA-I during treatment
was represented by a linear curve (r00.948).

In order to measure the ApoE amount in HDL and
non-HDL lipoproteins from cholesterol-fed rabbits,
the plasma was collected after 8 weeks of treatment
and processed by ELISA. Plasma aliquots were ana-
lyzed as such, and after fractionation with DS. ApoE

was mostly (over 90 %) found as HDL-bound form
(30.5±2.9 μM in HDL fraction), whereas in control
animals, the amount of HDL-bound form was compa-
rable to that in non-HDL fraction (Fig. 5). These
findings indicate that cholesterol loading essentially
caused ApoE accumulation in the HDL fraction. Con-
versely, ApoA-I levels in the HDL fraction and in the
whole plasma were comparable both in control (45±
2.5 and 47.4±1.9 μM, respectively) and cholesterol-
fed rabbits (18.5±1.7 and 18.9±1.5 μM, respectively).

Effect of ApoE/ApoA-I ratio on LCAT activity in vitro

Proteoliposomes containing either ApoE or ApoA-I or
different molar ratios of ApoE with ApoA-I (4:0, 3:1,
2:2, 1:3, or 0:4) were used to stimulate LCAT in vitro.
Proteoliposomes with ApoE stimulated the enzyme
1.97-fold less than those with ApoA-I (4±0.12 vs.
7.86±0.04 U, P<0.01), and the enzyme activity de-
creased as the ApoE/ApoA-I ratio increased (Fig. 6a).
These data indicate that LCAT activity is negatively

Fig. 1 Analysis of aortic arch from control and cholesterol-fed
rabbits. Serial cross-sections showing immunohistochemical
staining of aortic arch of rabbits fed either a normal diet or
cholesterol diet. a, c Sections obtained from representative
control or cholesterol-fed rabbit, respectively, stained with Azan
Mallory's (original magnification, 10×). b, d Sections obtained

from representative control or cholesterol-fed rabbit, respective-
ly, stained with RAM11 monoclonal antibody (original magni-
fication, 10×). e, f Particular of atherosclerotic lesion stained
with Azan Mallory's method or RAM11 monoclonal antibody
(original magnification, 40×). In d and f, positive immunostain-
ing is indicated by a brown color
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correlated to the ApoE/ApoA-I ratio in vitro (r0
−0.993). This association might exist also in vivo. To
support this hypothesis, HDL isolated from plasma of
treated rabbits, collected at weekly intervals, were ana-
lyzed for their ApoE/ApoA-I and CE/FC ratios. As a
matter of fact, the HDL CE/FC ratio was found de-
creased as the ApoE/ApoA-I ratio increased during the
cholesterol diet (Fig. 6b). In particular, CE/FC was
negatively correlated to Ln [ApoE/ApoA-I] (P<0.001).

Distribution of ApoA-I and ApoE among HDL
subclasses

To evaluate how cholesterol diet affect ApoA-I and
ApoE distribution over the different HDL subclasses,

Fig. 2 FC and CE levels in HDL, from control and cholesterol-
fed rabbits, at different times of treatment. The HDL fraction
was isolated from plasma of cholesterol-fed or control rabbits,
and analyzed for its FC and CE content by HPLC. a The
concentrations of FC and CE in treated (full circles and squares,
respectively) or control rabbits (open circles and squares, re-
spectively) at 0, 2, 4, 6, and 8 weeks are shown. b The molar
ratio of CE with FC in treated (N05; full triangles) or control
rabbits (N05; open triangles), was calculated at each time, and
expressed as percent of the initial value in each animal. Data are
expressed as mean±SD at each time length. The dotted curve
represents the trend expressed by CE/FC091.7–22.3 Ln (time)
(r00.9522)

Fig. 3 Time-dependent modifications of LCAT activity in vitro.
The in vitro activity of LCAT was measured in plasma samples
from treated (N05; full bars) and control rabbits (N05; open
bars), after 0, 4, and 8 weeks of treatment, using an ApoA-I-
containing proteoliposome (0.7 μM) as substrate. The enzyme
activity is expressed as enzyme units (nanomole of cholesterol
esterified per hour per milliliter of sample). Data are reported as
mean±SD at each time length

Fig. 4 Levels of ApoA-I and ApoE in normal and cholesterol
treated rabbits. Plasma samples were collected from treated (N0
5; full symbols) and control rabbits (N05; open symbols) at
different times (0, 2, 4, 6, and 8 weeks). The concentrations of
ApoA-I (panel a) and ApoE (panel b) were measured by ELISA
in samples of plasma, treated with 0.1 % DS and 50 mM MnCl2
to remove VLDL and LDL. Data are expressed as mean±SD at
each time length
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the HDL fraction from cholesterol-fed rabbits was
processed by non-denaturing electrophoresis and im-
munoblotting with antibodies against ApoA-I and
ApoE (Fig. 7a). Three distinct patterns of immunore-
activity to antibodies against ApoA-I or ApoE were
observed in HDL samples analyzed at different times
of treatment (0, 4, and 8 weeks). Densitometric scan-
ning of antibody-reacted ApoA-I or ApoE in the frac-
tionated HDL population was carried out (Fig. 7). In
samples collected at the beginning of treatment, HDL
particles of 10.55 and 7.47 nm contained most of
ApoA-I (40.3 % and 19 % of total amount, respective-
ly). In samples collected after 4 weeks, the ApoA-I
amount increased in the HDL particles sized from 7.6
to 9 nm, whereas it decreased in particles of 10.55 and
7.47 nm. After 8 weeks of treatment, ApoA-I de-
creased in all the HDL population, and was mostly
associated to the HDL subclasses with 9 and 10.55 nm
particle size.

ApoE was not detected in HDL isolated from plas-
ma of cholesterol-fed rabbits at baseline (time 0). After
4 weeks of treatment, ApoE was present in large HDL
particles (19.6 and 21.6 nm) and mostly associated to
those displaying 19.6 nm size particles (73.6 % of the
total amount). After 8 weeks, ApoE was mostly
detected in 21.6 nm sized particles (63.2 % of the total
amount). Furthermore, at this time, ApoE was detected
in 9 and 10.55 nm sized particles (7.5 % and 13.7 % of
the total amount, respectively).

Correlation of ApoE/ApoA-I or CE/FC
with parameters of cardiovascular dysfunction

Previous studies investigated the relationship between
structural and functional changes in the carotid arteries
and LV myocardial function in patients with cardio-
vascular risk factors and found that LV relaxation is
significantly associated with carotid stiffness [23].
Notably, ultrasonic strain imaging revealed subclinical
changes in intrinsic myocardial deformation that could
not be detected by the conventional methods, includ-
ing transmitral flow and mitral annular motion veloc-
ities, used to evaluate LV function [23].

Although echocardiographic indices of cardiac
function are different end-point from the functional

Fig. 5 ApoE level in plasma and lipoprotein fractions. Aliquots
of plasma were collected, after 8 weeks of treatment, from both
control (N05) and treated (N05) rabbits, and used as such or
processed by DS for separating the HDL fraction from the non
HDL fraction. The volumes of both fractions were adjusted to
that of starting plasma. ApoE was titrated in the total plasma, in
the HDL fraction, and in the non HDL lipopropotein fraction of
each rabbit (see the insert for symbols). Each sample was
analyzed in triplicate: deviations over 5 % from the average
were not found. Data are expressed as mean±SD

Fig. 6 Effect of ApoE/ApoA-I ratio on LCAT activity in vitro,
and on CE/FC in HDL. a LCAT activity was analyzed in vitro
by using a pool of DS-treated plasma, obtained from control
rabbits, as enzyme source and liposomes containing ApoA-I, or
ApoE, or different molar ratios of both apolipoproteins as sub-
strate. The activity is expressed as enzyme units (nanomoles of
cholesterol esterified per hour per milliliter of plasma). The data
are reported as mean±SD. The negative correlation is graph-
ically represented by the drawn curve (r00.9928). b Correlation
between CE/FC and ApoE/ApoA-I ratio. Plasma samples were
collected at 1 week intervals during treatment of rabbits (N05)
with cholesterol-supplemented diet. Each sample was used to
measure the molar concentration of ApoE, Apo A-I, FC, and CE
in isolated HDL. The data are expressed as means±SD
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end-points we focused in our study, we also studied
whether cardiac function indexes, as well as IMT,
undergoes a variation during cholesterol loading, and
whether this alteration is associated to changes of
apolipoproteins or CE/FC ratio. All cardiac indices
evaluated by echocardiography are reported in Table 1.
Data obtained at the beginning of the treatment and
after 4 or 8 weeks, indicate that IMT significantly
increased whereas SR-s and S decreased during ath-
erosclerosis progression in rabbit (Table 1). No change
in these parameters was found in controls. In detail,

the putative markers of atherosclerosis studied (HDL
associated-ApoE/ApoA-I and CE/FC) were compared
with IMT, a validated morphological marker of the
disease, and with the cardiac function indexes SR-s
and S, which reliably reflect myocardial contractility.
In cholesterol-fed rabbits, IMTwas positively correlated
with SR-s and S (r00.96, P<0.05 and r00.96, P<0.05,
respectively), and SR-s was positively correlated with S
(r00.96, P<0.05). The values of IMT were found pos-
itively correlated with ApoE (r00.99, P<0.01) and
negatively correlated with ApoA-I (r00.99, P<0.01).
SR-S and S positively correlated also with ApoE (r0
0.98, P<0.05 and r00.99, P<0.01, respectively) and
negatively with ApoA-I (r00.96, P<0.05 and r01, P<
0.01, respectively). The values of IMT, SR-s, and Swere
matched with those of the ApoE/ApoA-I ratio in homol-
ogous samples of plasma. This ratio was found positive-
ly correlated with IMT (r00.99, P<0.01), and both SR-
S (r00.99, P<0.01) and Strain (r00.95, P<0.05)
(Fig. 8). No correlation between the CE/FC ratio and
IMT, SR-S, or S was found. These results further sug-
gest that, as atherosclerosis rises, the analysis of the
levels of both ApoE and ApoA-I or the ApoE/ApoA-I
ratio (an index of the changes in both proteins), might
reflect the worsening of cardiovascular conditions
whereas CE/FC, although representing an early re-
sponse to cholesterol loading, does not mark the disease
severity in later stages of treatment.

Discussion

Our results show that cholesterol diet induces in rabbit
plasma an increase in ApoE concentration, and a

Fig. 7 Distribution of ApoA-I and ApoE among the HDL
subclasses. Plasma samples from rabbits (N05) were collected
and pooled at time 0, and after 4 or 8 weeks of cholesterol diet.
The HDL population was fractionated by electrophoresis on 4–
30 % (w/v) polyacrylamide gradient gel, followed by immunos-
taining with anti-ApoA-I IgGs or Anti ApoE IgGs. a Represen-
tative Western Blot for ApoA-I (lanes 1, 2, and 3 represent 0, 4,
and 8 weeks of cholesterol diet, respectively) and ApoE (lanes
4, 5, and 6 represent 0, 4, 8 weeks of cholesterol diet, respec-
tively). Numbers on both sides refer to Stokes' diameter values,
calculated by using a calibration curve with globular proteins as
migration standards. b–d The band intensities of ApoA-I and
ApoE, detected at each time of treatment, were recorded as
peaks on a densitogram, and arbitrarily expressed as Integrated
Optical Density (IOD). The fractionation patterns of lipopro-
teins containing ApoA-I (black) or ApoE (gray) are shown.
Particle sizes are expressed as Stokes' diameters. b Time 0; c
4 weeks of treatment; d 8 weeks of treatment

�
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decrease in both the LCAT activity and the level of
ApoA-I, which is the LCAT major stimulator. This
enzyme function can actually be limited or lost under
inflammatory conditions [17]. The decrease of ApoA-I
concentration in HDL, during atherogenesis, can de-
pend on reduced synthesis, enhanced clearance, or
replacement by serum amyloid A [17, 25]. Both hu-
man and animal studies showed that a high cholesterol
diet leads to elevations in ApoE plasma levels [20,
22]. ApoE concentration also increased in patients
with coronary artery disease [28]. Thus, CE depletion,

ApoA-I decrease, and ApoE increase [17, 20, 22] in
HDL are all resulting from traffic and activities on the
scenario of altered RCT. The CE/FC molar ratio (rath-
er than the concentration of either) in HDL might
reflect the complex pathways of lipid metabolism in
RCT and mark compositionally altered HDL. We ac-
tually found this ratio decreased during the first stages
of treatment (0 to 4 weeks), as expected by the alter-
ation of LCAT activity and the levels of its effectors.
This enzyme was expected to work less than in normal
conditions as atherosclerosis worsened, just because

Table 1 Echocardiographic parameters and IMT measured in control and treated rabbits

Echocardiographic parameters Sample Time 0 Time 4 weeks Time 8 weeks

Body weight (kg) C 1.42±0.03 2.71±0.06* 3.44±0. 21*,**

T 1.37±0.06 2.78±0.31* 3.31±0.38*, **

SIVd (mm) C 2.02±0.15 2.00±0.08 1.95±0.06

T 2.05±0.12 2.07±0.21 2.13±0.06

PPd (mm) C 2.05±0.10 2.00±0.18 1.95±0.13

T 2.06±0.08 2.08±0.28 2.03±0.11

LVd (mm) C 15.35±0.85 15.35±0.85 15.12±0.58

T 15.57±0.78 15.60±1.00 16.20±0.30

SIVs (mm) C 3.02±0.26 3.01±0.28 3.05±0.24

T 3.03±0.26 2.91±0.18 2.97±0.25

PPs (mm) C 3.10±0.18 3.10±0.23 3.20±0.10

T 3.12±0.17 3.13±0.18 3.17±0.25

LVs (mm) C 10.60±0.96 10.50±0.96 10.60±0.64

T 10.80±0.84 10.40±0.90 11.80±0.72

EF (%) C 64.00±3.90 63.20±2.70 63.50±2.40

T 63.00±3.50 64.60±3.30 64.70±3.10

SF (%) C 34.00±4.10 33.70±3.80 34.20±3.10

T 32.80±3.70 33.60±3.00 33.00±2.00

IMT (mm) C 0.19±0.03 0.19±0.03 0.19±0.02

T 0.19±0.01 0.21±0.01 0.23±0.03*

Strain (%) C −31.00±1.35 −31.25±1.25 −30.25±0.85
T −30.30±0.21 −26.50±0.56* −23.30±0.88*, **

Strain rate S C −2.86±0.05 −2.85±0.03 −2.82±0.03
T −2.87±0.03 −2.49±0.22 −1.8±0.05*, **

Strain rate E C 2.60±0.53 2.60±0.53 2.50±0.28

T 2.65±0.48 2.50±0.48 2.65±0.11

The data are expressed as means±standard deviation. Statistical differences were calculated by one-way ANOVA followed by Tukey's
test for multiple comparisons

*Significantly different from time 0 (p<0.01); **significantly different from 4 weeks (p<0.05)

C rabbit fed with normal diet, T rabbit fed with 2 % cholesterol-supplemented diet, SIVd end-diastole interventricular septum thickness,
PPd end-diastole posterior wall thickness, LVd left ventricular diastolic diameter, SIVs, end-systole interventricular septum thickness,
PPs end-systole posterior wall thickness, LVs left ventricular systolic diameter, EF ejection fraction, SF shortening fraction, IMT intima
media thickness
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the stimulation on the enzyme activity decreased. In
fact, the increase of ApoE level during the treatment
could not make up for the decrease of ApoA-I level. In
vitro LCAT stimulation by ApoE was actually found to
be about a half of that by ApoA-I, according to previous
information [42]. We also report here experimental ev-
idence that ApoE liposomes stimulated rabbit LCAT
less efficiently than ApoA-I liposomes. However, since
it has been reported that ApoE is more efficient than
ApoA-I as LCAT activator on large HDL particles [42],
it cannot be excluded that the constant trend of the ratio
CE/FC, at late stages of treatment, could be due to the
increase in ApoE concentration. Several lines of evi-
dence suggested a potent anti-atherogenic role for
ApoE. Indeed, ApoE −/− mice are severely hypercho-
lesterolemic and rapidly develop atherosclerosis [37].
ApoE was reported to prevent the progression of ath-
erosclerosis in hyperlipidemic rabbits [39]. A prominent
HDL subclass, enriched in ApoE and referred to as
HDL-1, was detected in cholesterol-fed rabbits [21].
We cannot exclude that ApoE might influence the rate
of atherogenesis not only by modulating the RCT path-
way but also by positively modifying cellular functions
in the arterial wall.

LCAT activity might also be reduced by oxidative
stress as it has been reported that oxidation of ApoA-I or
ApoE, as occurring during inflammatory conditions,

can be associated to the loss of the ability of these
apolipoproteins to stimulate LCAT [29, 30]. It was
recently shown that HDL from patients with coronary
artery disease is oxidatively modified and that oxidation
impairs RCT mediated by HDL [2, 24]. However cho-
lesterol esterification, though negatively affected by
reduced stimulation and possible oxidative stress, seems
to be driven by enhanced levels of circulating cholester-
ol. Therefore, the observed poor change of CE/FC in
HDL, during the second month of cholesterol-loading,
might depend on balance between high CE production
and increased availability of dietary cholesterol. In-
creased cholesterol availability might be also enhanced
by reduced uptake by hepatocytes or macrophages. In
fact, the expression of SR-BI was previously found
significantly decreased in the liver of hypercholesterol-
emic rabbits as compared with control group [15, 41].

The HDL population shows considerable composi-
tional heterogeneity with respect to both lipid and
apolipoprotein components. As changes in these com-
ponents among HDL subclasses might influence RCT
and predict cardiovascular disease [35], we choose to
analyze the distribution of ApoE and ApoA-I among
HDL subclasses. Our analysis of the HDL population
in the plasma of rabbits shows that cholesterol-diet, in
the early stages of treatment, raises the amount of
HDL-2, which are considered less efficient than
HDL-3 in stimulating RCT and weakening atheroscle-
rosis. In later stages of treatment, most of ApoE was
localized in large HDL-1. This marked increase of
ApoE concentration on HDL might represent a phys-
iological response to face high cholesterol accumula-
tion and counteract inflammation and atherosclerosis.

Previous studies showed that HDL and ApoA-I
negatively correlated with IMT in humans [16]. Lower
level of ApoA-I, higher level of ApoB, and the ratio
ApoB/ApoA-I were suggested to be independent risk
factors for coronary heart disease [26]. In addition, a
link between ApoE phenotype prevalence and IMT
was found [38]. S and SR reflect myocardial deforma-
tion properties [9, 33], do not depend on overall heart
motion or rotation induced by contraction of adjacent
myocardial segments, and reliably represent the heart
local deformation [7, 36]. In particular, regional SR
was proposed to be a strong index of left ventricular
contractility [12]. Our study suggests that the analysis of
S and SR-s, which was previously shown to be effective
in detecting early subclinical myocardial abnormalities
[9], allows detecting longitudinal myocardial damage

Fig. 8 Correlation between ApoE/ApoA-I ratio and IMT, SR-s,
or S. Rabbits were analyzed at the beginning of treatment with
cholesterol diet (t00) and after 4 and 8 weeks (t04 and t08,
respectively). Measurements of SR-s, S, and IMT were per-
formed by image analysis for each animal, and the average is
reported: deviations over 5 % from the average were not found.
The ratio ApoE/ApoA-I in HDL was determined in triplicates
from each sample, and the average values were used to obtain
means±SD, as indicated on the figure bottom. This ratio is
positively correlated with SR-s (P<0.01), S (P<0.05), and
IMT (P<0.01)
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in rabbit treated with cholesterol diet. To our knowl-
edge, this is the first time that SR-s imaging was used
to compare right ventricular and left ventricular re-
gional function in cholesterol-fed rabbit. The CE/FC
ratio was not correlated with IMT or with the indices
of cardiac function. On the other hand, we found the
ratio ApoE/ApoA-I correlated both with IMT and
with function S and SR-s. These data suggest that
the alteration of ApoE/ApoA-I ratio, in HDL, might
reflect the severity of atherosclerosis, as quantified by
IMT, as well as the alteration of cardiac function, as
evaluated by the cardiac parameters used in this study.
This ratio might also reflect the HDL remodeling
caused by the changes in enzyme activities and apo-
lipoprotein metabolism occurring in response to high
levels of dietary or endogenous cholesterol. In con-
clusion, our study suggests that the cardiac function
might be altered by the increase of IMT, which in turn
should be altered by changes in reverse cholesterol
transport. Prospective studies on patients with athero-
sclerosis are required to verify whether relationships
of cause–effect between insufficient RCT and cardiac
function do exist and to confirm the usefulness of the
ApoE/ApoA-I ratio as a marker for evaluating athero-
sclerosis progression in longitudinal analysis.
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