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Abstract To overcome the drawbacks of Shannon’s entropy, the concept of cumula-
tive residual and past entropy has been proposed in the information theoretic literature.
Furthermore, the Shannon entropy has been generalized in a number of different ways
by many researchers. One important extension is Kerridge inaccuracy measure. In
the present communication we study the cumulative residual and past inaccuracy
measures, which are extensions of the corresponding cumulative entropies. Several
properties, including monotonicity and bounds, are obtained for left, right and doubly
truncated random variables.
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1 Introduction and preliminary results

The concept of using the cumulative distribution function of a random variable to
define its information content was first introduced by Rao et al. (2004). In recent
years, there has been a great interest in the measurement of uncertainty of probability
distributions. It is well-known that the traditionalmeasure of uncertainty contained in a
randomvariable X is the Shannon’s (1948) differential entropywhich hasmushroomed
into a large body of knowledge revolutionizing many areas such as financial analysis,
data compression, statistics, and information theory.

Let X be an absolutely continuous nonnegative random variable with support
(0,∞), probability density function f , distribution function F(x) and reliability func-
tion F(x) = 1−F(x). Then the Shannon entropy (also known as differential entropy)
is defined as

H(X) = −
∫ ∞

0
f (x) ln f (x)dx . (1)

In spite of its enormous success, this measure has some drawbacks and in certain
situations it may not be appropriate. For example, Shannon entropy (1) may take
any value on the extended real line and is defined only for distributions possessing a
density function (see Rao et al. 2004, for other details). To get rid of these drawbacks
an alternative measure of uncertainty, called cumulative residual entropy (CRE), has
been proposed by Rao et al. (2004) as follows:

ε(X) = −
∫ ∞

0
F(x) ln F(x)dx . (2)

Thismeasure is defined similarly as the Shannon’s entropy for lifetime distributions,
in the sense that it takes into account the reliability function F(x) instead of the density
function f (x). In this case the measurement of uncertainty is based on cumulative
information rather than local information. Some properties and applications of CRE
in reliability engineering and computer vision have been also studied by Rao et al.
(2004) and Rao (2005).

We recall that if X is a random variable with support (0,∞) and finite expectation
E(X), then the equilibrium random variable of X is usually denoted by Xe, and has
density

fe(x) = F(x)

E(X)
, x ∈ (0,∞) (3)

(see Gupta 2007, and references therein, for instance). The equilibrium distribution
arises as the limiting distribution of the forward recurrence time in renewal processes,
and thus it deserves interest in various applications in reliability and queueing. Here-
after we pinpoint the connection between the CRE and the entropy of the equilibrium
distribution.
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Proposition 1.1 If X is a nonnegative random variable having support (0,∞) and
finite expectation E(X), then the following identity holds:

ε(X) = E(X){H(Xe) − ln E(X)}, (4)

where H(Xe) is the Shannon entropy of the equilibrium distribution of X.

Proof The proof follows from identity H(Xe) = − ∫ ∞
0 fe(x) ln fe(x)dx , with fe(x)

given in (3), after straightforward calculations. ��
Clearly, from (4) we have that the CRE is a linear increasing transformation of the

Shannon entropy of the equilibrium distribution. Specifically, from Proposition 1.1
we see that ε(X) is, apart from a constant term, a measure of the entropy of Xe in the
unity measure of E(X). Indeed, if E(X) = 1 then ε(X) = H(Xe).

Recently, Di Crescenzo and Longobardi (2009) introduced an information measure
based on the cumulative distribution function F(x), called cumulative past entropy
(CPE) and defined as:

ε(X) = −
∫ ∞

0
F(x) ln F(x)dx . (5)

Furthermore, numerous definitions and generalizations of (1) have been proposed
in the literature. An important development in this direction is the inaccuracy measure
due toKerridge (1961),which involves two absolutely continuous nonnegative random
variables X and Y with support (0,∞), and having distribution functions F(x),G(x),
reliability functions F(x),G(x) and probability density functions f, g, respectively.
If f (x) is the actual density corresponding to the observations and g(x) is the density
assigned by the experimenter, then the inaccuracy measure of X and Y is given by

HX,Y = −
∫ ∞

0
f (x) ln g(x)dx . (6)

It has applications in statistical inference, estimation and coding theory. Clearly, if
g(x) = f (x) then (6) reduces to (1).

Analogous to CRE and CPE the following informationmeasures can be considered.
Let X and Y be nonnegative random variables having support (0,∞), distribution
functions F(x) and G(x), reliability functions F(x) and G(x), respectively. Then, the
cumulative residual inaccuracy (CRI) is defined as

C HX,Y = −
∫ ∞

0
F(x) lnG(x)dx; (7)

the cumulative past inaccuracy (CPI) is defined as

C HX,Y = −
∫ ∞

0
F(x) lnG(x)dx . (8)
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Similarly as in (2) and (5), the basic idea is to replace the density function by
survival (distribution) function in Kerridge inaccuracy measure. Also, the measures
given in (7) and (8) are defined even if X and Y do not possess a probability density.
Moreover, inmany practical situations the distribution function deserves larger interest
and is observable. For example, if the random variable is the life span of a machine,
then the event of main interest is whether the life span exceeds t , rather than it equals
t . It is to be noted that (7) and (8) can be viewed as the cumulative analogue of
Kerridge inaccuracy measure and represent the information content when using G(x),
the distribution asserted by the experimenter due to missing/incorrect information in
expressing statement about probabilities of various events in an experiments, instead
of true distribution F(x).

In analogy with Proposition 1.1 we are now able to state the following result, which
relates the CRI to the inaccuracy measure of the equilibrium distributions. The proof
is omitted being similar.

Proposition 1.2 Let X andY be nonnegative randomvariables having support (0,∞)

and finite expectations E(X) and E(Y ). Let fe(x) = F(x)
E(X)

, x > 0, and ge(x) = G(x)
E(Y )

,
x > 0, be the densities of the equilibrium distributions of X and Y , respectively. Then,

C HX,Y = E(X){HXe,Ye − log E(Y )}, (9)

where HXe,Ye = − ∫ ∞
0 fe(x) ln ge(x)dx .

Propositions 1.2 shows that C HX,Y expresses, apart from a constant term, the
inaccuracy measure of Xe and Ye in the unity measure of E(X). Indeed, if E(X) = 1
and E(Y ) = 1 then C HX,Y = HXe,Ye .

We also recall the Kullback–Leibler distance of X and Y , defined as

K L(X,Y ) := H(X) − HX,Y = −
∫ ∞

0
f (x) ln

f (x)

g(x)
dx .

This is another quantity of interest in information theory, which can be viewed as the
“information” lost when the density g is used to approximate f . Let us now express
the Kullback–Leibler distance of equilibrium distributions in terms of CRE and CRI
(the proof is omitted for brevity).

Proposition 1.3 Let X andY be nonnegative randomvariables having support (0,∞)

and expectations E(X) and E(Y ). Then,

K L(Xe,Ye) = log
E(X)

E(Y )
+ 1

E(X)
{ε(X) − C HX,Y }. (10)

Hence, we note that if E(X) = 1 and E(Y ) = 1 then K L(Xe,Ye) = ε(X) −
C HX,Y .

The following example illustrates the role of CRI and CPI in the comparison of
random lifetimes having exponential and Erlang (2) distributions. In particular, it is
shown an instance in which HX,Y = HY,X even if the measures defined in (7) and (8)
take different values when the role of X and Y is interchanged.
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Example 1.1 Let X andY denote random lifetimes of twocomponentswith probability
density functions f (x) = e−x , x ∈ (0,∞) and g(x) = λ2xe−λx , x ∈ (0,∞), λ > 0,
respectively. By simple calculations, from (6) we have HX,Y = γ + λ − 2 ln λ, where
γ � 0.577216 is the Euler’s constant, and HY,X = 2/λ. Let λ be the solution of
the transcendental equation γ + λ − 2 ln λ − 2/λ = 0, i.e. λ � 0.624182. Hence,
in this instance we have HX,Y = HY,X , so that the Kerridge inaccuracy measure
doesn’t bring out any differences between these two cases. However, from (7) we have
C HX,Y = 0.809178 andC HY,X = 1.13724. Therefore, the inaccuracymeasure of the
observer for the observations X (resp. Y ) taking Y (resp. X ) as corresponding assigned
outcomes by the experimenter are identical. Nevertheless, C HX,Y < C HY,X , i.e., the
CRI of the observer for X,Y is lower than that for Y, X . Similarly, their CPIs are also
different; indeed from (8) we have C HX,Y = 0.955988 and C HY,X = 0.458129.

We recall that for a nonnegative random variable X with support (0,∞), the cumu-
lative hazard rate and the cumulative reversed hazard rate are defined respectively
as

RF (x) = − ln F(x) =
∫ x

0
λF (t)dt,

TF (x) = − ln F(x) =
∫ ∞

x
φF (t)dt, x > 0,

where λF (t) = f (t)/F(t) is the hazard rate function of X , and φF (t) = f (t)/F(t) is
the reversed hazard rate function of X . Let RG(x) and TG(x) be similarly defined for
Y . In order to pinpoint a probabilistic meaning of CRI and CPI let us now consider
the following functions, defined for x > 0:

R(2)
F (x) =

∫ x

0
RF (t)dt = −

∫ x

0
ln F(t)dt,

R(2)
G (x) =

∫ x

0
RG(t)dt = −

∫ x

0
lnG(t)dt, (11)

T (2)
F (x) =

∫ ∞

x
TF (t)dt = −

∫ ∞

x
ln F(t)dt,

T (2)
G (x) =

∫ ∞

x
TG(t)dt = −

∫ ∞

x
lnG(t)dt. (12)

We thus note that the functions introduced in (11) and (12) are related to quantities of
interest in reliability theory (see Barlow and Proschan 1975, and Shaked and Shan-
thikumar 2007, for details).We are now able to expressC HX,Y andC HX,Y as suitable
expectations.

Proposition 1.4 Let X and Y be nonnegative random variables having support
(0,∞). Then,

C HX,Y = E
[
R(2)
G (X)

]
, C HX,Y = E

[
T (2)
G (X)

]
. (13)
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Proof Recalling (7) and (8), the proof of identities (13) follows from Eqs. (11) and
(12) after straightforward calculations, similarly as Proposition 2.1 of Di Crescenzo
and Longobardi (2013). ��

The considered measures C HX,Y and C HX,Y are useful for comparing:

(i) the true density f to the used density g in statistical modeling,
(ii) the lifetime distributions of two independent components in reliability modeling.

In case (i) only C HX,Y and C HX,Y are meaningful. In such a case the role of C HX,Y

emerges from Proposition 1.2, whereas the meaning of C HX,Y can be similarly
obtained on the ground of analogous results provided in Park et al. (2012) and in
Di Crescenzo and Longobardi (2015). In case (ii) in addition to C HX,Y and C HX,Y it
is also useful to considerC HY,X andC HY,X , since these measures are not symmetric.
Namely, C HX,Y measures an information amount carried when F is the true distribu-
tion and is comparedwithG, whereas their role is inverted forC HY,X ; a similar remark
holds for C HX,Y . This is also confirmed by the results given in Proposition 1.4. For

instance, condition C HX,Y < C HY,X means that E
[
R(2)
G (X)

]
< E

[
R(2)
F (Y )

]
, and

thus the information amount carried by X with respect to Y is smaller than that carried
by Y with respect to X . In agreement with analogous measures, the use of C HX,Y is
suggested when F is the actual distribution corresponding to the observations and G
is the distribution chosen by the experimenter.

The functions defined in (11) and (12) can also be used to express CRE and CPE
as means. Indeed, from (2) and (5) we have

ε(X) = E
[
R(2)
F (X)

]
, ε(X) = E

[
T (2)
F (X)

]
, (14)

in agreement with Proposition 3.1 of Di Crescenzo and Longobardi (2009). The equal-
ities shown in Eqs. (13) and (14) suggest to introduce the following suitable ratios.

Definition 1.1 Let X and Y be nonnegative random variables having support (0,∞).
Then, the cumulative residual inaccuracy ratio (CRIR) is defined as

CRX,Y = C HX,Y

ε(X)
=

E
[
R(2)
G (X)

]

E
[
R(2)
F (X)

] ; (15)

the cumulative past inaccuracy ratio (CPIR) is defined as

CRX,Y = C HX,Y

ε(X)
=

E
[
T (2)
G (X)

]

E
[
T (2)
F (X)

] . (16)

The above ratios give adimensional measures of closeness between X and Y .
Clearly, we have CRX,Y = CRX,Y = 1 if X and Y are identically distributed.
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Fig. 1 Plots of CRIR and CPIR when X has exponential density with mean 1 and Y has (i) Weibull density
with parameters (1, r), and (ii) gamma density with parameters (1, r), for r ∈ (0, 3) (cf. Example 1.2). Left
picture CRX,Y (full line) and CRX,Y (dashed line). Right picture CRY,X (full line) and CRY,X (dashed
line)

Moreover, recalling that the Kullback–Leibler distance is nonnegative, from (10) we
obtain the following upper bound:

CRX,Y ≤ 1 + E(X)

ε(X)
ln

E(X)

E(Y )
.

Similar results can be obtained by resorting to the extensions of Kullback–Leibler
information investigated in Di Crescenzo and Longobardi (2015). In the following
example the measures defined in (15) and (16) are employed to compare suitable
lifetime distributions.

Example 1.2 Let X be exponentially distributed with mean 1, and Y have (i) Weibull
density g(x) = r xr−1e−xr , x ∈ (0,∞), and (ii) gamma density g(x) = 1

Γ (r) x
r−1e−x ,

x ∈ (0,∞), where in both cases Y has scale 1 and shape r > 0. Figure 1 shows the
cumulative residual and past inaccuracy ratios for (X,Y ) and (Y, X). We note that
such measures are not monotonic in r .

We remark that CRX,Y and CRX,Y are not symmetric and thus, for instance,
CRX,Y and CRY,X have a different meaning. Roughly speaking, CRX,Y measures
the discrepancy in the information amount carried by the cumulative residual entropy
when the true distribution F is replaced by a different distribution G. Finally, in brief
we note that CRX,Y < 1 means that using the distribution G instead of F gives less
information in the sense of CRI rather than that carried by CRE of F . A similar remark
can be given for CRX,Y .

In several contexts related to reliability theory dynamical measures are useful to
describe the information content carried by random lifetimes as age varies. This led
several authors to deal with dynamic information measures. See, for instance, Asadi
and Zohrevand (2007), Chamany and Baratpour (2014), Di Crescenzo and Longobardi
(2009), Kundu and Nanda (2015), Misagh and Yari (2011), Navarro et al. (2010),
Sunoj et al. (2009). Dynamic versions of CRE and CPE have also been proposed in
the literature. Hereafter we consider CRI and CPI for truncated random variables.

The rest of the paper is arranged as follows. In Sect. 2 we study some properties
of CRI and dynamic CRI. Some bounds and inequalities are obtained. Analogous
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discussion is made for CPI and dynamic CPI in Sect. 3. Section 4 is devoted to the
study of CRI and CPI for doubly truncated random variables. Conclusions are finally
presented in Sect. 5.

2 Results on (dynamic) CRI

Asadi and Zohrevand (2007) considered the dynamic version of CRE, called dynamic
cumulative residual entropy (DCRE), which is defined as CRE of the residual lifetime
[X − t |X > t], i.e.

ε(X; t) = −
∫ ∞

t

F(x)

F(t)
ln

F(x)

F(t)
dx, t > 0. (17)

They studied the relation between DCRE and well-known reliability measures. Other
interesting properties are given in a recent paper by Navarro et al. (2010). Baratpour
(2010) studied the CRE of first order statistics. A dynamic measure of discrimina-
tion between two lifetime distributions based on CRE is introduced in Chamany and
Baratpour (2014). In order to pinpoint the age effect on the information concerning the
residual lifetime of a system, an analogous dynamic version of CRI, called dynamic
cumulative residual inaccuracy (DCRI) is defined as

C HX,Y (t) = −
∫ ∞

t

F(x)

F(t)
ln

G(x)

G(t)
dx = −

∫ ∞

t
Ft (x) lnGt (x)dx, t > 0,

(18)

where Ft (x) = F(x)
F(t)

and Gt (x) = G(x)
G(t)

, x > t . When the two distributions

coincide, the measure (18) reduces to (17). Moreover, from Eqs. (7) and (18),
limt→0+ C HX,Y (t) = C HX,Y .

Let us study some properties and bounds of CRI in terms of CRE and means of X
and Y .

Proposition 2.1 If X and Y are two nonnegative random variables with finite means
E(X) and E(Y ), respectively, then

(i) C HX,Y � ε(X) + E(X) ln E(X)
E(Y )

,
(ii) C HX,Y � ε(X) + [E(X) − E(Y )].

Proof The proof is immediate on using the log-sum inequality and the inequality
a ln a

b � a − b,∀a, b > 0. ��
We recall that a random variable X is said to be less than Y in the usual stochastic

order, written as X �st Y , if F(x) � G(x) (see Shaked and Shanthikumar 2007).

Proposition 2.2 Let X and Y be two nonnegative random variables.

(i) If X �st Y , then C HX,Y � min{ε(X), ε(Y )}.
(ii) If X �st Y , then C HX,Y � max{ε(X), ε(Y )}.

123



On cumulative residual (past) inaccuracy for truncated… 343

The following proposition will be used to prove the upcoming theorem. The proof
is easy and hence omitted.

Proposition 2.3 Let X,Y and Z be nonnegative random variables.

(i) If Y �st Z then C HX,Y � C HX,Z .
(ii) If X �st Y then C HX,Z � C HY,Z .

On using the above result we have the following theorem.

Theorem 2.1 Let X,Y and Z be nonnegative random variables. If X �st Z �st Y ,
then

C HY,X � max{C HY,Z ,C HZ ,X }.

The following corollary involves mixture distributions, which play an important
role in many branches of statistics and applied probability. The proof follows from
Theorem 2.1, and from the fact that if X �st Y and Z is a mixture of X and Y , then
X �st Z �st Y .

Corollary 2.1 Let X and Y be nonnegative random variables, and let Z be a mixture
of X and Y . If X �st Y , then C HY,X � max{C HY,Z ,C HZ ,X }.

We now show that the triangle inequality for the CRI is satisfied under some con-
ditions.

Theorem 2.2 Let X,Y and Z be nonnegative random variables with survival func-
tions F,G and H, respectively. If (i) X �st Y and Z �st Y or (ii) Y �st X and
Y �st Z , then

C HX,Y + C HY,Z � C HX,Z .

Proof Let us assume that (i) or (ii) holds. Then C HX,Y + C HY,Z � ε(Y ) + C HX,Z .
Hence, the result follows by noting that ε(Y ) is nonnegative. ��

Now we obtain similar results for the DCRI. Note that (18) can be rewritten as

C HX,Y (t) = δF (t) lnG(t) − 1

F(t)

∫ ∞

t
F(x) lnG(x)dx, t > 0,

where δF (t) = E[X − t |X > t] = 1
F(t)

∫ ∞
t F(x)dx , t > 0, is the mean residual life

of X , and δG(t) is similarly defined for Y .

Remark 2.1 CRI and DCRI need not exist for all distributions. For example, let X
follow Pareto-I distribution with F(x) = x−1, x � 1, and let Y be standard exponen-
tial. It is easy to prove that C HX,Y and C HX,Y (t) are not finite. Thus, all the results
discussed here are based on the assumption that CRI and DCRI are finite.
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Fig. 2 Plot of C HX,Y (t) for
t ∈ (3, 4) (Example 2.1)

, ( )X YCH t

t

Differentiating (18) with respect to t , we get

d

dt
C HX,Y (t) = λF (t)C HX,Y (t) − λG(t)δG(t),

where λF and λG are hazard rates of X and Y , respectively. Therefore, DCRI is
increasing (decreasing) in t iff

C HX,Y (t) � (�)
λG(t)

λF (t)
δG(t).

In analogy with DCRE (ref. Examples 3.6 and 3.7 of Navarro et al. 2010), DCRI may
be increasing and decreasing in t . To see that not all distributions are monotone in
terms of DCRI consider the following example.

Example 2.1 Let X have survival function

F(x) =
⎧⎨
⎩
1, x � 3
e6−2x , 3 < x < 4
e2−x , x � 4

and for Y , G(x) =
√
F(x). Then the dynamic cumulative residual inaccuracy is

C HX,Y (t) =

⎧⎪⎪⎨
⎪⎪⎩

e2t−6

4

[
(2t − 9)e−2 − (2t − 7)

] −
(
t−5
2

)
et−4, t � 3

1
4

[
(2t − 9)e2t−8 + 1

] −
(
t−5
2

)
et−4, 3 < t < 4

1
2 , t � 4

Figure 2 shows that C HX,Y (t) is not monotone.

Let us now discuss the effect of linear transformations on DCRI.

Theorem 2.3 Let X and Y be nonnegative random variables X and Y . For all a > 0
and 0 < b < t we have

C HaX+b,aY+b(t) = aC HX,Y

(
t − b

a

)
.
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Classification of distributions with respect to ageing properties is a popular theme
in reliability theory. We recall the following classes of distributions which arise in the
study of replacement and maintenance policies: A nonnegative random variable X is
said to be

(i) new better than used (NBU) [new worse than used (NWU)] if F(x + t) � [�
]F(x)F(t), for all x, t > 0;

(ii) new better than used in expectation (NBUE) [new worse than used in expectation
(NWUE)] if δF (t) � [�]δF (0) = E(X), for all t > 0.

See Barlow and Proschan (1975) for the details of some other concepts of ageing
properties.

In the following we obtain lower bounds for DCRI. The proof follows on the same
line of Proposition 2.1 and hence is omitted.

Proposition 2.4 Let X and Y be nonnegative random variables with finite means.
Then, for t > 0

(i) C HX,Y (t) � ε(X; t) + δF (t) ln
(

δF (t)
δG (t)

)
;

(ii) C HX,Y (t) � ε(X; t) + (E(X) − E(Y )) if X and Y are NWUE and NBUE,
respectively.

We now find an upper bound for the difference between C HX,Y and C HX,Y (t).

Proposition 2.5 For two nonnegative random variables X and Y , if X is NWU and
Y is NBU then

C HX,Y − C HX,Y (t) � ε(X) − ε(X; t), t > 0.

Proof On using the definitions of NWU and NBU, we have

∫ ∞

0

F(x + t)

F(t)
ln

F(x + t)/F(t)

G(x + t)/G(t)
dx �

∫ ∞

0
F(x) ln

F(x)

G(x)
dx .

Hence the result follows. ��
In the following theorem, by using the concept of the hazard rate order, we obtain

bound of DCRI in terms of DCRE. Recall that a random variable X is said to be smaller
than Y in hazard rate order, written as X �hr Y , if λF (t) � λG(t), t � 0.

Proposition 2.6 Let X and Y be nonnegative random variables.

(i) If X �hr Y , then C HX,Y (t) � min{ε(X; t), ε(Y ; t)}, t � 0.
(ii) If X �hr Y , then C HX,Y (t) � max{ε(X; t), ε(Y ; t)}, t � 0.

Proof The proof follows from (18) and using the fact that X �hr Y is equivalent to
Ft (x) � Gt (x), for x, t � 0. ��

The following result is on the same line of Proposition 2.3.
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Proposition 2.7 Let X,Y and Z be nonnegative random variables.

(i) If Y �hr Z then C HX,Y (t) � C HX,Z (t), t � 0,
(ii) If X �hr Y then C HX,Z (t) � C HY,Z (t), t � 0.

On using the above we have the following theorem.

Theorem 2.4 Let X,Y and Z be nonnegative random variables. If X �hr Z �hr Y ,
then C HY,X (t) � max{C HY,Z (t),C HZ ,X (t)}, t � 0.

Corollary 2.2 Let X and Y be nonnegative random variables, and let Z be a mixture
of X and Y . If X �hr Y , then C HY,X (t) � max{C HY,Z (t),C HZ ,X (t)}, t � 0.

The proportional hazards model (also known as Cox model) is largely employed in
survival analysis and statistics (see, for instance, Cox and Oakes 1984). It refers to a
pair of nonnegative random variables X and Y , whose survival functions are related
by this relation:

F(x) = [G(x)]α, x � 0, (α > 0, α 
= 1). (19)

The following result is an immediate consequence of Eqs. (17), (18) and (19).

Proposition 2.8 Let X and Y be nonnegative random variables with reliability func-
tions F(x) and G(x), respectively, satisfying the proportional hazards model (19).
Then,

C HX,Y (t) = α · ε(X; t), t ≥ 0.

We conclude this section by showing that the triangle inequality for C HX,Y (t) is
satisfied under stronger conditions than those of Theorem 2.2. The proof is similar
and then omitted.

Theorem 2.5 Let X,Y and Z be nonnegative random variables with survival func-
tions F,G and H, respectively. If (i) X �hr Y and Z �hr Y , or (ii) Y �hr X and
Y �hr Z, then

C HX,Y (t) + C HY,Z (t) � C HX,Z (t), t � 0.

3 Results on (dynamic) CPI

Measure of uncertainty in past lifetime distribution plays an important role in the
context of information theory, forensic sciences, and other related fields. Suppose that
a system or a component fails at time t (>0). Then Di Crescenzo and Longobardi
(2009) proposed dynamic cumulative past entropy (DCPE) based on CPE for the past
lifetime distribution corresponding to the random variable [X |X � t] as

ε(X; t) = −
∫ t

0

F(x)

F(t)
ln

F(x)

F(t)
dx, t > 0. (20)
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They studied the monotonicity properties of this measure and certain bounds. Some
other results on DCPE are available in Navarro et al. (2010). It should be noted that
the random variable X(t) = [X |X � t] has a nice application in economics, since it
represents the income distribution of the poor for a poverty line t . In analogy with
(18), we define the dynamic cumulative past inaccuracy (DCPI) as

C HX,Y (t) = −
∫ t

0

F(x)

F(t)
ln

G(x)

G(t)
dx = −

∫ t

0
Ft (x) lnGt (x)dx, t > 0, (21)

where Ft (x) = F(x)
F(t) and Gt (x) = G(x)

G(t) , 0 � x � t . Now we study some properties
and bounds ofCPI in analogywithCRI. The proofs are omitted. For some recent results
on CPI and empirical CPI based on suitable stochastic orderings, see Di Crescenzo
and Longobardi (2013).

Proposition 3.1 Let random variables X and Y take values in [0, b] with b finite.
Then

(i) C HX,Y � ε(X) + (b − E(X)) ln
(
b−E(X)
b−E(Y )

)
;

(ii) C HX,Y � ε(X) + (E(Y ) − E(X));
(iii) if X �st Y , then C HX,Y � max{ε(X), ε(Y )};
(iv) if X �st Y , then C HX,Y � min{ε(X), ε(Y )}.
Proposition 3.2 Let X,Y and Z be random variables with finite support [0, b].
(i) If Y �st Z then C HX,Y � C HX,Z .
(ii) If X �st Y then C HX,Z � C HY,Z .
(iii) If X �st Z �st Y then C HY,X � max{C HY,Z , C HZ ,X }.
Corollary 3.1 Let X and Y be random variables with finite support [0, b], and let Z
be a mixture of X and Y . If X �st Y , then C HY,X � max{C HY,Z , C HZ ,X }.

The following theorem investigates the triangle inequality for C HX,Y .

Theorem 3.1 Let X,Y and Z be nonnegative random variables with finite support
[0, b]. If (i) X �st Y and Z �st Y or (i i) Y �st X and Y �st Z , then

C HX,Y + C HY,Z � C HX,Z .

Now we consider analogous results for DCPI. Note that (21) can be written as

C HX,Y (t) = lnG(t)mF (t) − 1

F(t)

∫ t

0
F(x) lnG(x)dx, t > 0,

where mF (t) = E[t − X |X � t] is the expected inactivity time of X , and mG(t) is
similarly defined for Y . An alternative expression to (21) is provided hereafter. We
recall that an analogous expression for (20) is given in Remark 5.1 of Di Crescenzo
and Longobardi (2009).
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Proposition 3.3 For two absolutely continuous nonnegative random variables X and
Y ,

C HY,X (t) = E[τ (2)
F (Y, t)|Y � t], t > 0,

where

τ
(2)
F (x, t) = −

∫ t

x
ln

F(u)

F(t)
du, 0 � x < t.

Proof Using Fubini’s theorem, for t > 0, we have

E[τ (2)
F (Y, t)|Y � t] = −

∫ t

0

g(u)

G(t)

(∫ t

u
ln

F(x)

F(t)
dx

)
du

= −
∫ t

0

1

G(t)

(∫ x

0
g(u)du

)
ln

F(x)

F(t)
dx = C HY,X (t).

��
Remark 3.1 Differentiating (21) with respect to t , we get

d

dt
C HX,Y (t) = φG(t)mF (t) − φF (t)C HX,Y (t),

where φF and φG are reversed hazard rates of X and Y , respectively. Therefore, DCPI
is increasing (decreasing) in t iff

C HX,Y (t) � (�)
φG(t)

φF (t)
mF (t).

The following example shows that DCPI is not monotone for all distributions.

Example 3.1 Let X and Y have distribution functions

F(x) =
⎧⎨
⎩
exp{−1/2 − 1/x}, 0 < x � 1
exp{−2 + x2/2}, 1 < x � 2
1, x � 2

and G(x) =
{
x2/4, 0 < x � 2
1, x � 2.

Then, for t � 2,

C HX,Y (t) = −2

[∫ 1

0
e1/t−1/x ln(x/t)dx +

∫ 2

1
e(x2−t2)/2 ln(x/t)dx

]
,

which is not monotone as shown in Fig. 3.

In analogy with Theorem 2.3 we now discuss the effect of linear transformations
on DCPI.
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Fig. 3 Plot of C HX,Y (t) for
t ∈ (2, 5) (Example 3.1)

, ( )X YCH t

t

Theorem 3.2 For two nonnegative random variables X and Y , for all a > 0 and
0 < b < t ,

C HaX+b,aY+b(t) = aC HX,Y

(
t − b

a

)
.

Now we show an identity for the DCPI and DCRI of symmetric distributions. The
proof follows from (21) and (18).

Theorem 3.3 Let X and Y be random variables with finite support [0, b], and sym-
metric with respect to b/2, i.e., F(x) = F(b−x) and G(x) = G(b−x) for 0 � x � b.
Then,

C HX,Y (t) = C HX,Y (b − t).

The following properties and bounds of DCPI are analogous to the same results for
CPI and thus the proof is omitted. Recall that a random variable X is said to be smaller
than Y in reversed hazard rate order, written as X �rh Y , if φF (t) � φG(t), t � 0, or
equivalently, X(t) �st Y(t) for all t � 0.

Proposition 3.4 For two nonnegative random variables X and Y , for t � 0,

• C HX,Y (t) � ε(X; t) + mF (t) ln
(
mF (t)
mG (t)

)
;

• C HX,Y (t) � ε(X; t) + (mF (t) − mG(t));
• C HX,Y (t) � min{ε(X; t), ε(Y ; t)}, if X �rh Y ;
• C HX,Y (t) � max{ε(X; t), ε(Y ; t)}, if X �rh Y .

Proposition 3.5 Let X, Y and Z be nonnegative random variables. Then, for t � 0,

• C HX,Y (t) � C HX,Z (t), if Y �rh Z;
• C HX,Z (t) � C HY,Z (t), if X �rh Y ;
• C HY,X (t) � max{C HY,Z (t),C HZ ,X (t)}, if X �rh Z �rh Y .

Proposition 3.6 Let X and Y be nonnegative random variables and let Z be a mixture
of X and Y . If X �rh Y , then

C HY,X (t) � max{C HY,Z (t), C HZ ,X (t)}.
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Theorem 3.4 Let X and Y be absolutely continuous nonnegative random variables
satisfying X �rh Y and μX (t) < μY (t) for all t > 0, where μX (t) = E[X(t)], and
μY (t) is similarly defined for Y(t). If both C HY,X (t) and ε̄(X; t) are finite, then for
all t > 0

C HY,X (t) = ε̄(X; t) + E[τ̇ (2)
F (Zt , t)]{μY (t) − μX (t)},

where τ̇
(2)
F (z, t) = (d/dz)τ (2)

F (z, t) and Zt = Ψ (X(t),Y(t)) is an absolutely continu-
ous nonnegative random variable with probability density (cf. Proposition 3.1 of Di
Crescenzo 1999)

fZt (x) = 1

μY (t) − μX (t)

[
F(x)

F(t)
− G(x)

G(t)

]
, 0 < x < t.

Proof On using Theorem 4.1 of Di Crescenzo (1999), the proof is an immediate
consequence of Proposition 3.3, and Remark 5.1 of Di Crescenzo and Longobardi
(2009). ��

Dual to the model considered in Eq. (19), the proportional reversed hazards model
refers to the distribution functions of nonnegative random variables X and Y that are
related by the following relation (see for instanceDi Crescenzo 2000; Gupta andGupta
2007; Sankaran and Gleeja 2008):

F(x) = [G(x)]θ , x � 0, (θ > 0, θ 
= 1). (22)

Similarly to Proposition 2.8, the following result follows fromEqs. (20), (21) and (22).

Proposition 3.7 Let X and Y be nonnegative random variables satisfying the propor-
tional reversed hazards model. Then,

C HX,Y (t) = θ · ε(X; t), t ≥ 0.

We conclude this section by showing that the triangle inequality is also satisfied for
DCPI under suitable conditions, similarly to Theorem 2.5.

Theorem 3.5 Let X,Y and Z be three nonnegative random variables. If (i) X �rh Y
and Z �rh Y or, (ii) Y �rh X and Y �rh Z, then

C HX,Y (t) + C HY,Z (t) � C HX,Z (t), t > 0.

4 Some properties of interval CRI and CPI

Most of the real life observations are truncated in nature. In information theory and
reliability, one has information about the lifetime of an individual between two time
instants. Thus, an individual whose event time is not in this interval is not observed.
For example, in insurance, claim time of a policy holder is doubly truncated between
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starting date and maturity date of the policy. Doubly truncated data play an important
role in the statistical analysis of astronomical observations also. These reasons moti-
vate us to consider the inaccuracy measure of two nonnegative absolutely continuous
doubly truncated random variables [X |t1 � X � t2] and [Y |t1 � Y � t2] where
(t1, t2) ∈ D := {(u, v) ∈ R

2+ : F(u) < F(v) and G(u) < G(v)}. Then, the interval
inaccuracy measure of X and Y in the interval (t1, t2) is given by

HX,Y (t1, t2) = −
∫ t2

t1

f (x)

F(t2) − F(t1)
ln

g(x)

G(t2) − G(t1)
dx . (23)

Various aspects of (23) have been discussed inKundu andNanda (2015).When g(x) =
f (x), we obtain interval entropy of X in (t1, t2) studied by Sunoj et al. (2009) and
Misagh and Yari (2011, 2012), among others. Recently, for doubly truncated random
variablesKhorashadizadeh et al. (2013) introduced the concepts of interval cumulative
residual entropy (ICRE) as

ε(X; t1, t2) = −
∫ t2

t1

F(x)

F(t1) − F(t2)
ln

F(x)

F(t1) − F(t2)
dx, (24)

and interval cumulative past entropy (ICPE) as

ε(X; t1, t2) = −
∫ t2

t1

F(x)

F(t2) − F(t1)
ln

F(x)

F(t2) − F(t1)
dx . (25)

They studied several properties of (24) and (25), extending the results for DCRE
and DCPE. Similarly, for (t1, t2) ∈ D we define the interval cumulative residual
inaccuracy (ICRI):

IC HX,Y (t1, t2) = −
∫ t2

t1

F(x)

F(t1) − F(t2)
ln

G(x)

G(t1) − G(t2)
dx (26)

and the interval cumulative past inaccuracy (ICPI):

IC HX,Y (t1, t2) = −
∫ t2

t1

F(x)

F(t2) − F(t1)
ln

G(x)

G(t2) − G(t1)
dx . (27)

Clearly,IC HX,Y (t1,∞) is the DCRI andIC HX,Y (0, t2) is the DCPI as defined in
(18) and (21), respectively. We remark that the ICRI can alternatively be written as

IC HX,Y (t1, t2) = − 1

F(t1) − F(t2)

∫ t2

t1
F(x) lnG(x)dx

+ ln{G(t1) − G(t2)}
[
mX (t1, t2) + t2F(t2) − t1F(t1)

F(t1) − F(t2)

]
,
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where mX (t1, t2) = E[X |t1 � X � t2] is the general conditional mean (GCM) of X .
Note that the above integral in the right-hand-side has the following nice probabilistic
meaning:

− 1

F(t1) − F(t2)

∫ t2

t1
F(x) lnG(x)dx

= − 1

F(t1) − F(t2)

∫ t2

t1
f (u)

[∫ u

t1
lnG(x)dx

]
du

− 1

F(t1) − F(t2)

∫ ∞

t2
f (u)

[∫ t2

t1
lnG(x)dx

]
du

= F(t2)

F(t1) − F(t2)
�

(2)
Y (t1, t2) + E

[
�

(2)
Y (t1, X)|t1 � X � t2

]
,

where we have set, for 0 ≤ a < b,

Λ
(2)
Y (a, b) := −

∫ b

a
lnG(x)dx =

∫ b

a
dx

∫ x

0
λG(u)du.

Similarly, the ICPI can also alternatively be written as

IC HX,Y (t1, t2) = − 1

F(t2) − F(t1)

∫ t2

t1
F(x) lnG(x)dx

+ ln{G(t2) − G(t1)}
[
mX (t1, t2) + t2F(t2) − t1F(t1)

F(t2) − F(t1)

]

= F(t1)

F(t2) − F(t1)
T (2)
Y (t1, t2) + E

[
T (2)
Y (X, t2)|t1 � X � t2

]

+ ln{G(t2) − G(t1)}
[
mX (t1, t2) + t2F(t2) − t1F(t1)

F(t2) − F(t1)

]
,

where

T (2)
Y (a, b) := −

∫ b

a
lnG(x)dx =

∫ b

a
dx

∫ ∞

x
φG(u)du.

Now we study some properties of ICRI and ICPI including monotonicity and
bounds. Some of the results presented here are similar, but more general, to corre-
sponding results of Khorashadizadeh et al. (2013). We first give definition of general
failure rate (GFR). For more details on GCM and GFR we refer to Navarro and Ruiz
(1996) and Sunoj et al. (2009).

Definition 4.1 The GFR functions of a doubly truncated random variable [X |t1 <

X < t2] are given by hX
1 (t1, t2) = f (t1)

F(t2)−F(t1)
and hX

2 (t1, t2) = f (t2)
F(t2)−F(t1)

. For the

random variable [Y |t1 < Y < t2] the GFRs hY1 (t1, t2) and hY2 (t1, t2) are defined
similarly.
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On differentiating (26) with respect to t1, we get

∂

∂t1
IC HX,Y (t1, t2)

= hX
1 (t1, t2)

⎡
⎣IC HX,Y (t1, t2) − hY1 (t1, t2)

hX
1 (t1, t2)

(
mX (t1, t2) + t2F(t2) − t1F(t1)

F(t1) − F(t2)

)

+ ln

(
G(t1

G(t1) − G(t2)

) 1
λF (t1)

⎤
⎦ . (28)

The following theorem shows that there exist no nonnegative random variables for
which ICRI is increasing over the domain D. We omit the proof, being similar to that
of Theorem 2.2 of Khorashadizadeh et al. (2013).

Theorem 4.1 If X and Y are nonnegative non-degenerate random variables then the
ICRI cannot be increasing with respect to t1, for fixed t2, where (t1, t2) ∈ D.

It should be noted that in special case IC HX,Y (t1,∞) = C HX,Y (t1) may be an
increasing and a decreasing function of t1.

In the following theorem we obtain lower and upper bounds for ICRI.

Theorem 4.2 Let X and Y be absolutely continuous nonnegative random variables,
and let (t1, t2) ∈ D. Then, (i)

IC HX,Y (t1, t2) � (t1 − t2)
hX
1 (t1, t2)

λF (t1)
ln

(
hY1 (t1, t2)

λG(t1)

)
;

(ii) if ICRI is decreasing in t1, for fixed t2, then

IC HX,Y (t1, t2) � hY1 (t1, t2)

hX
1 (t1, t2)

(
mX (t1, t2) + t2F(t2) − t1F(t1)

F(t1) − F(t2)

)

− ln

(
hY1 (t1, t2)

λG(t1)

) 1
λF (t1)

;

(iii) if X and Y have increasing (decreasing) hazard rates, then

IC HX,Y (t1, t2) � (�)
1

λF (t1)

(
HX,Y (t1, t2) + ln λG(t1)

)
,

where HX,Y (t1, t2) is the interval inaccuracy measure defined in (23).

In the following theorem, the relationship between ICRI and ICRE is presented.
The proof follows on using the inequality a ln a

b � a − b, ∀a, b > 0.
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Theorem 4.3 Let X and Y be two absolutely continuous nonnegative random vari-
ables and (t1, t2) ∈ D, then

IC HX,Y (t1, t2) � ε(X; t1, t2) + mX (t1, t2) − mY (t1, t2)

+ t2F(t2) − t1F(t1)

F(t1) − F(t2)
− t2G(t2) − t1G(t1)

G(t1) − G(t2)
.

The following properties and bounds for ICPI are similar to Theorems 4.1–4.3.

Remark 4.1 For two absolutely continuous nonnegative random variables X and Y
and (t1, t2) ∈ D, we have

• IC HX,Y (t1, t2) cannot be a decreasing function of t2, for any fixed t1;

• IC HX,Y (t1, t2) � (t1 − t2)
hX2 (t1,t2)
φF (t2)

ln
( hY2 (t1,t2)

φG (t2)

);
• IC HX,Y (t1, t2) is increasing in t2, for fixed t1, if and only if

IC HX,Y (t1, t2) � hY2 (t1, t2)

hX
2 (t1, t2)

(
t2F(t2) − t1F(t1)

F(t2) − F(t1)
− mX (t1, t2)

)

− ln

(
hY2 (t1, t2)

φG(t2)

) 1
φF (t2)

;

• IC HX,Y (t1, t2) � 1
φF (t2)

(
HX,Y (t1, t2) + ln φG(t2)

)
, if φF , φG are decreasing

functions;
• IC HX,Y (t1, t2) � ε(X; t1, t2) + mY (t1, t2) − mX (t1, t2) + t2F(t2)−t1F(t1)

F(t2)−F(t1)
−

t2G(t2)−t1G(t1)
G(t2)−G(t1)

.

Now we discuss the effect of monotonic transformation on ICRI.

Theorem 4.4 Let X and Y be absolutely continuous nonnegative random variables,
and let ϕ(·) be an increasing function on [0,∞). If a � ϕ′ � b, a, b > 0, where ϕ′
is the derivative of ϕ, then

b · IC HX,Y (ϕ−1(t1), ϕ
−1(t2)) � IC Hϕ(X),ϕ(Y )(t1, t2)

� a · IC HX,Y (ϕ−1(t1), ϕ
−1(t2)),

andIC HbX,bY (t1, t2) = b·IC HX,Y (t1/b, t2/b). Ifϕ is decreasing with a � −ϕ′ �
b, a, b > 0, then

b · IC HX,Y (ϕ−1(t2), ϕ
−1(t1)) � IC Hϕ(X),ϕ(Y )(t1, t2)

� a · IC HX,Y (ϕ−1(t2), ϕ
−1(t1)).
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Proof From (26), if ϕ is an increasing function we have

IC Hϕ(X),ϕ(Y )(t1, t2)

= −
∫ ϕ−1(t2)

ϕ−1(t1)
ϕ′(y) F(y)

F(ϕ−1(t1)) − F(ϕ−1(t2))
ln

G(y)

G(ϕ−1(t1)) − G(ϕ−1(t2))
dy.

Therefore the result follows on using a � ϕ′ � b, and later on taking ϕ(x) = bx , in
particular. When ϕ is a decreasing function the proof proceeds similarly. The rest of
the proof follows from (27) on using a � −ϕ′ � b. ��
Remark 4.2 Let X and Y be absolutely continuous nonnegative random variables, and
let ϕ(·) be an increasing function on [0,∞). If a � ϕ′ � b, a, b > 0, then

b · IC HX,Y (ϕ−1(t1), ϕ
−1(t2)) � IC Hϕ(X),ϕ(Y )(t1, t2)

� a · IC HX,Y (ϕ−1(t1), ϕ
−1(t2)).

If ϕ is decreasing with a � −ϕ′ � b, a, b > 0, then

b · IC HX,Y (ϕ−1(t2), ϕ
−1(t1)) � IC Hϕ(X),ϕ(Y )(t1, t2)

� a · IC HX,Y (ϕ−1(t2), ϕ
−1(t1)).

Moreover, Theorem 4.4 and Remark 4.2 also allow to obtain analogous results for
DCRI and DCPI with the additional assumption that ϕ(∞) = ∞ and ϕ(0) = 0,
respectively.

5 Conclusions

In recent years, there has been a great interest in the study of information measures
based on distribution functions, namely cumulative residual entropy (CRE) and cumu-
lative past entropy (CPE). The basic idea is to replace the density function by survival
or distribution function in Shannon’s entropy. These measures possess more general
properties than the Shannon entropy. Another important generalization of Shannon
entropy is the Kerridge inaccuracy measure, which plays an important role in statisti-
cal inference, estimation and coding theory. The concept of cumulative residual and
past inaccuracy (CRI and CPI) measure has been introduced in this paper in order to
extend CRE and CPE, respectively. We studied some properties of CRI and CPI, and
their dynamic versions. Some bounds and inequalities have been obtained. We also
considered CRI and CPI for doubly truncated random variables. Several properties,
including monotonicity, and bounds have been obtained.

The proposed measures may help information theorists and reliability analysts to
study the various characteristics of a system when it fails between two time instants.
The results presented here generalize the related existing results in context with CRE
and CPE for left, right and two-sided truncated random variables. This article is just a
first step in the study of these measures; new properties are still under investigation.
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