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ABSTRACT. The evolutionary trend in the automotive industry has produced over time numerous performance and 

aesthetic innovations, however, the exponential development related to transportation technologies also introduced new 

requirements concerning the environmental impact [1]. The awareness of ecological issues has led to a reorganization of 

the evaluations and the vehicle design, currently aimed at reducing the problems that have emerged in empirical 

investigations and the parallel increase in environmental solutions. The vehicle renewal process involves targeted 

technical mutations both to observance of ecology as to the safety and comfort of the driver. New recyclable materials 

and more resistant have been developed in order to minimize the environmental impact of the vehicle even at the end of 

the operating life of its components, as well as solutions relating to the reduction of noise pollution generated as a response 

to the requirements of comfort. Modern research programs on a global scale have set themselves the objective of 

exploiting the potentiality of innovative technologies in the optimization of vehicles efficiency, the noise reduction and 

in the consequent reduction of fuel burn. One of the crucial topics in the greening of the new generation automotive sector 

is therefore the use and development of high vibro-acoustic performance materials. The goal of this research is properly 

focused on the analysis of viscoelastic materials appointed to increase the damping of the vibrations generated in a vehicle. 

The use of a viscoelastic material in this context is due to its high property to convert vibrational energy into heat, 

providing a significant dissipation of the vibrations. Trade-off analyses are performed in order define the stiffness and 

damping capacity of several viscoelastic foams with different thickness and density. 

 

Introduction. The purpose of the present work is the 

experimental investigation of new materials and 

technologies to reduce the noise and vibrations 

produced inside motor vehicles. It is known, that there 

are several noise causes of the vehicles, both in the 

cockpit and in the environment: those of great impact 

are related to the engine and to the tyre/road 

interaction processes, that induce noise into the 

cockpit both through a structure-borne path 

contribution (mainly the vibration of the car floor 

induced by the mechanical forcing of the car body 

floor) and an air-borne path contribution. In Figure 1 

these noise sources are evident for a moving car. 

The new low-consumption engines also provide a design, which causes a higher specific noise than 

the previous ones: new soundproofing solutions are therefore necessary. In this research contest, 

innovative materials, targeted at the reduction of the car-body floor, will be analysed and compared 

to “standard one”; in the specific, viscoelastic foams will be investigated as a valid alternative to 

conventional add-on damping element as generally used in these applications [2]. The investigation 

of this class of viscoelastic material in this context is due to the high ability to convert vibration 

energy into thermal energy, providing a significant increase of vibration damping, hence this aspect 

will be study in terms of both static and dynamic stiffness and damping factor [3-6].  
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Fig. 1. Vibration distribution color map  

 

 

Fig. 2. Technological application 

 

Standard foams are already used as a part of the car-body carpet element, but their role is mainly the 

decoupling of the carpet from the floor; basic idea of the research is to force this element to strongly 

contribute to the vibrational energy dissipation.  

Within the paper, viscoelastic foams with different physical properties (density, thickness, structure) 

will be compared. The first experimental step concerns static stiffness measurements of the several 

viscoelastic foams. 

In the second phase, damping characteristics of each foam have been carried out by the use of modal 

testing. Furthermore, in some cases, the dynamic stiffness has been measured for comparison with 

the static one.  

Experimental measures. The experimental measurements performed in this research have allowed 

estimating the properties of stiffness and damping of innovative viscoelastic foams with different 

densities and thicknesses. 
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Static stiffness. In this section, the results of laboratory tests in order to measure the stiffness 

coefficient (1) will be explained. 

  

 𝑘 =
𝐹

𝑤
=

[𝑁]

[𝑚𝑚]
. (1) 

 

The experimental investigation concerns the comparison of original foam (intended as the standard 

foam already used in most of the automotive applications) 65-30 and two other viscoelastic foams 

65-30, 75-30 where these two digit represent respectively density (Kg/𝑚3) and thickness (mm). 

The static stiffness of each viscoelastic foam was evaluated in correspondence of different 

compression load settings by means of a test facility, shown in Fig. 3. 

 

 

Fig. 3. Static test facility 

 

In Figure 4 the trends of load versus static displacement have been plotted with reference to each case 

of investigation. 

 

 

Fig. 4. Load-Displacement Curve 
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Table 1. Static stiffness measure 

ID Foam 
Slope 

(Kg/mm) 

Static stiffness, k 

(N/mm) 

Original 65-30 3 29.43 

 Visco 65-30 0.7 6.867 

Visco 75-30 9 88.29 

 

Dynamic stiffness. The dynamic stiffness is defined as the ratio between the dynamic force and the 

dynamic displacement: it is the quantity that expresses the elastic capacity of a material subjected to 

a harmonic stress. An excitation source, an accelerometric transducer, a test material (viscoelastic 

foam), and a rigid support plate are necessary to perform a dynamic test. The dynamic stiffness is 

comparable with the static value as a result of spectral analysis, as can be seen in Figure 5 for the 

Visco 75-30 foam. 

 

 

Fig. 5. Dynamic stiffness, Viscoelastic Foams 75-30 

 

For the characteristic curve, 1024 points were chosen in a 0-100 Hz frequency range. It is clear that 

the stiffness of the foam 75-30 in correspondence of 50 Hz (first mode of vibration of the structure), 

is about 93500 N/m, next to the respective static stiffness value. 

Modal Analysis. For the purposes of the frequency response measurement an LMS TestLab system 

has been used; 9 acquisition points have been defined for the mode shape reconstruction by the use 

of the rowing hammer technique. The goal of the spectral test is to compare the structure without 

material (Baseline) with the coated structure (viscoelastic foam) so as to discriminate the dynamic 

response of each foam. In Figure 6 the setup made for the dynamic test, is shown. 
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Fig. 6. Riding plate in free-free conditions 

 

In Figure 7 the first elastic mode shape of the metal plate, which the resonance frequency is, about 

48 Hz is represented. 

 

Fig. 7. Baseline configuration first mode shape, f = 47.8 Hz 

 

The following figures show the most significant frequency responses (FRF) of the tested materials. 

 

 

Fig. 8. Frequency Response Function (FRF) 
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Fig. 9. Zoom about the first resonance frequency bandwidth 

 

The results processing leads to observe a significant reduction of the resonance peak mainly due to 

the 65-30 and 75-30 viscoelastic foams. The added mass is perceived as a shift of the transfer function 

curve in virtue of (2): 

 

 

𝑓 =
1

2𝜋
√
𝑘

𝑚
 (2) 

 

Half-Power bandwidth method. The system response close to the resonance region is strictly 

dependent on the damping. To estimate damping factor from frequency domain, the half-power 

bandwidth method is usable. In this method, two point corresponding to 3 dB down from the 

resonance peak are considered. 

The damping factor ζ, is so defined as: 

 

 
𝜁 =

𝑓2 − 𝑓1
𝑓𝑛

 (3) 

 

Where f1 and f2 represent the cut-off frequencies at the two points with an amplitude of 3 dB under 

the resonance value, fn is the value of the natural frequency. In Table 2 the damping coefficients 

obtained by that method for some of the foams are reported. 

 

Table 2. Trade-Off damping coefficients, Half-Power Bandwidth 

 Baseline Original Foam Visco Foam 

65-30 

Visco Foam 

75-30 

Frequency (Hz) 47.8 47.3 44.7 44.5 

Max Amplitude (g/N)  55.4 43.1 15.7 14.5 

Damping Ratio, ζ 0.11 0.19 0.56 0.60 
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Logarithmic decrement method. To estimate the value of damping factor in time domain through 

logarithmic decrement method it is necessary to know peak amplitude in two consecutive points, Y1 

and Y2.  

 

δ = ln|
𝑌1

𝑌2
|. (4) 

ζ ≈
𝛿

2𝜋
. (5) 

 

Fig. 10. Time History, Baseline 

 

Fig. 11. Time History, Original Foam 

 

Fig. 12.  Time History, 65-30 
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Fig. 13. Time History, 75-30 

 

Table 3. Trade-Off damping coefficients, Logarithmic Decrement 

 Baseline Original Foam Foam 65-30 Foam 75-30 

Logarithmic decrement, 

δ 

0.77 0.96 3.01 3.52 

Damping Ratio, ζ 0.12 0.15 0.48 0.56 

 

Summary. Acoustic and vibrational aspects are becoming central in many engineering field as those 

including automotive application and many transportation systems where the research of light- 

weighting construction solutions is a demanding aspect. Along the presented research, some visco-

elastic foams have been studied as a possible mean to reduce the vibration induced noise inside a 

vehicle; the use of these foams could lead to the overall weight reduction because of the elimination 

of extra treatment nowadays used for this specific target.  

It has been assessed that the use of viscoelastic materials brought significant benefits in terms of 

vibration’s damping that has been approximately measured four times than the standard commercial 

solution. As regard the weight aspects, these viscoelastic foams are porous by nature, they have low 

density, and therefore they are particularly suitable for light-weighting application.  

For the next developments, a numerical FE model will be developed to be correlated with the 

experimental one. Also direct acoustic measurements (to directly evaluate the radiated power from 

the panel) will be performed through a piezo-electric as an input source and a microphone as a 

transducer for the acquisition.  
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