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On varieties with higher osculating defect

Pietro De Poi, Roberta Di Gennaro and Giovanna Ilardi

Abstract. In this paper, using the method of moving frames, we ge-
neralise some of Terracini’s results on varieties with tangent defect. In
particular, we characterise varieties with higher order osculating defect in
terms of Jacobians of higher fundamental forms and moreover we char-
acterise varieties with “small” higher fundamental forms as contained in
scrolls.

Introduction

The starting point of this paper is given by the classical papers [20], [21], [22]
and [23] of Terracini on the description of the k-dimensional varieties V of PV (C),
(N > 2Ek), such that the embedded tangent variety Tan(V') is defective, i.e. it has
dimension less than 2k (2k — £ with ¢ > 0). In [21], Terracini links this problem to
the determination of the linear systems of quadrics for which the Jacobian matrix
has rank k —£. After Terracini, there have been many papers on this subject: here
we cite as examples only (2], [16], [17] and [18].

Terracini proved results bounding the tangent defect of V' and on the structure
of the varieties satisfying a certain number of Laplace equations. Given a local
parametrisation x(¢1,...,t) = (x1(t1,...,tg), ..., xn(t1, ..., tx)) and denoting by
o — O x(tr.t)

oyt ..otk
equations of order s if there hold the following partial differential equations:

the partial derivatives of x, we will say that V' satisfies s Laplace

S EMxI =0, h=1,...4,
0<[I]<s
where at least a E}h) # 0 with || = s and these equations are linearly independent.
In this paper, we apply the method of moving frames, developed by Darboux,
Cartan and others, to understand the relationship between the algebraic geometry
of subvarieties of projective space and their local projective differential geometry.
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scrolls.
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This was a project of classical geometers, revived by Akivis and Goldberg (see [1]
and references therein) and Griffiths and Harris (see [6]) and more recently by
Landsberg (see for example [12], [13], and with other authors, [11] and [14]).

We generalise Terracini’s Theorem to varieties with defect of higher order by
studying linear systems of hypersurfaces (the fundamental forms) instead of the
Laplace equations of every order satisfied by the variety. We prove the following.

Theorem. Let V C PV be a k-dimensional irreducible variety whose t-th funda-
mental form has dimension k — € — 1, with £ > 0; then V has (t — 1)-osculating
defect > £ and moreover there hold:

1) V is contained in a d-dimensional scroll S(Ef}) in P", with 0 < h<k—1/
and k—h <.

2) The tangent P4’s to S(X1) at the smooth points of a generic P™ of S(X") are
contained in a linear space of dimension dy —h = dy—1 +k — € — h, where d;
is the dimension of the t-th osculating space to V' at its general point. In
particular, r < d <dy_1 +k—{€— h.

See Theorem 2.4.

Moreover, we have obtained classifications for the extremal cases of the preced-
ing theorem; for example, we show that, if / =k — 1 and ¢t = 2, then V is either a
hypersurface or a developable P*~!-bundle.

Later, in [21], Terracini studied again varieties with tangent defect, but satis-
fying a number of Laplace equations less than (g) + L.

We also generalise this result as follows, in terms of fundamental forms:

Theorem. Let V C PN be a k-dimensional irreducible variety. V has t-th oscu-
lating defect oy = € > 0 and the (t+ 1)-st fundamental form has dimension at least
k — £ if and only if the Jacobian matriz of the (t 4+ 1)-st fundamental form of V
has rank k — £.

See Theorem 2.8.
Rational varieties satisfying one Laplace equation are studied also in [5], [9]
and [10] or, more recently, in [3] and [15].

The article is structured as follows. In Section 1 we give the basic notations
and preliminaries, and we show some results that we need. Many of them either
are natural generalisations of known results (mainly from [6]) or are not very sur-
prising; nevertheless, we think that including them is useful because of the lack
of adequate references. More precisely, after fixing some notation and recalling
basic definitions, such as Laplace equations, Darboux frames, the second funda-
mental form and apolarity, we prove the relation between the dimension of the
second fundamental form and the number of Laplace equations of order two for a
k-dimensional projective variety V' C PV. More precisely, if V satisfies d, Laplace
equations, then the second fundamental form has dimension (’“2"1) —1—4,.

Then, after recalling the definition of osculating spaces of higher orders, we
link them to the higher fundamental forms, proving in particular that the Jacobian
system of the ¢-th fundamental form is contained in the (t—1)-st fundamental form.
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We also prove the equivalence between the dimension of the ¢-th fundamental form
and the number of Laplace equations of order ¢, extending the above result for the
second fundamental form.

We recall the definition of the ¢-th Gauss map and we show that its differen-
tial can be interpreted as the t-th fundamental form. Finally, we introduce the
definition of the ¢-th dual variety of V and we prove some lemmas about it.

In Section 2 we state and prove the main theorems of the article, i.e., Theo-
rems 2.4 and 2.8. In order to do so, we also prove a lemma on the tangent space
of the higher osculating variety of V.

1. Notation and preliminaries

We use notation as in [6] and [8]. Let V' C PV be a projective variety of dimension
k over C, that will be always irreducible. For any point P € V' we use the following
notation: Tp(V) C PV is the embedded tangent projective space to V in P and
Tp(V) is the Zariski tangent space.

As in [6], we abuse notation by identifying the embedded tangent space in PV
with the affine cone over it in CN*1. With this convention, Tp(V) = Tp(V)/C.
We denote by G(N,t) the Grassmannian of ¢-planes of PV.

We define Tan(V) := Upcy, Tp(V) where Vy C V is the smooth locus of V.
Tan(V') has expected dimension 2k, and the case in which Tan(V') is less than
expected has been studied by many algebraic geometers: classically Terracini [21]
linked the dimension 2k — ¢ of Tan(V') with the number of Laplace equations that
the variety V satisfies, and more recently Griffiths and Harris [6] analysed the same
dimension in terms of second fundamental form /1.

Actually, for studying Laplace equations, it is standard to consider a parametric
representation of V; in [6] and [11] the authors instead use the language of Darboux
frames. So, our first step is to understand in this language what it means that V'
satisfies a Laplace equation.

We begin by defining the Laplace equations. Let V' C PY and let x =
x(t1,...,tx) = x(t) be a local affine parametrisation of V centred at the smooth
point P = [pg : p1 : --- : pn], with, for example, py # 0 and x(0) = P. Let
I = (i1,...,4%) be a multi-index, that is a k-tuple of nonnegative integers. We
shall denote by |I| the sum of the components of I, i.e., |I| = iy + -+ + i If
X(t1, .oy ty) = (w1(t1y .o ti)s .-y xn(t1, ..., t1)) is the above vector-valued func-
tion, we shall denote by x’ the partial derivatives of x:

XI _ au‘x(tlv cee 7tk)
ot ..otk
Definition 1.1. By saying that V satisfies ds Laplace equations of order s we

mean that, with the above local parametrisation x of V', x satisfies the following
system of partial differential equations:

1.1 EMWxl =0, EMec, h=1,...,0,
I I
0<|I|<s
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where there is at least one E}h) with |I| = s that does not vanish, and that these
equations are linearly independent. Equivalently, we say that V' represents the
system of differential equations (1.1) or that V is an integral variety for it.

It is not restrictive to suppose that P =[1:0: ---: 0], and therefore we have
x(0) =P =0¢ AV and
ie., Trpy1 = --- = xy defines TP(V) c PN. With these hypotheses, the equa-
tions (1.1) become
(1.3) S EMxI =0, h=1,...4.
2<|I[<s

In what follows, we will make these assumptions.
At the same time, to study the behaviour of V' in P, following [6] (and references
[2], [6], [7] and [10] therein) and [12], we consider the manifold F(V') of frames in V.
An element of F (V') is a Darboux frame centred in P. This means an (N +1)-tuple
{Ao;Al,...,Ak;...,AN}

which is a basis of C¥*! such that, if 7: CN*1\ {0} — PV is the canonical pro-
jection,

m(Ag) =P and 7(Ap),m(A1),...,m(Ax) span Tp(V).

Let this frame move in F(V); then we have the following structure equations (in
terms of the restrictions to V of the Maurer—Cartan 1-forms w;, w; ; on F(PV))
for the exterior derivatives of this moving frame:

w, =0 Yu >k
k
dA() = Zwi Ai,
=0

N
dAi:ZWi,jAj Z':L...,N,
3=0

k
dwj:th/\wh,j 7=0,...,k,
h=0

N
dw; ; :Zwi,h/\whd i=1,...,N, 7=0,...,N.
h=0

Remark 1.2. Geometrically, the frame {4;} defines a coordinate simplex in PV.
The 1-forms w;,w; ; give the rotation matrix when the coordinate simplex is in-
finitesimally displaced; in particular, modulo Ag, as dAg € T5(PY) (the cotangent
space), the 1-forms w1, ..., ws give a basis for the cotangent space T5(V'), the cor-
responding 7m(A;) = v; € Tp(V) give a basis for Tp(V') such that v; is tangent to
the line AgA;, and wy11 = -+ = wx = 0 on Tp(V).
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Using this notation, we can define the second fundamental form locally:

Definition 1.3. The second fundamental form of V in P is the linear system ||
in the projective space P(Tp(V)) = P*~! of the quadrics defined by the equations:

k
Zqi,j’#wiwj:O, u:k—l—l,,N,
i,j=1
where the coefficients ¢; ; , are defined by the relations
k

(1.5) %#:E(M#%7qwu:%w
=1

obtained from dw, = 0, Yu > k, via the Cartan lemma (see (1.17) in [6]).

We may write the second fundamental form symbolically (as in (1.20) of [6]) as

(16) d2A0 = Z i, j,u Wi Wj A# mod T(V),

0<i,j<k
E+1<u<N

or more intrinsically, as the (global) map
(1.7) I1: Sym@P (V) — N(V),
where N (V) is the normal bundle (Np(V) := CN*1/Tp(V) as in [6]) which in

coordinates is
ff(E %JUHU>: > i i A
0]

0<i,j<k
k+I<u<N

To relate the second fundamental form to the Laplace equations (1.1), for ease
of exposition, we consider the case s = 2 . If there are d5 independent relations of
the form

k

k
Z ‘%('3) x() 4 Zbga) x4+ cd®x=0, a=1,...,0,
i=1

1,j=1

that, with our assumptions on the coordinates can be rewritten as

k
(1.8) S o x =0, a=1,...,6,

1,j=1

we can consider the linear system of quadrics of P(T»(V)*) of dimension d2 — 1,
generated by the quadrics of equations

k
(1.9) Za%)vivjza a=1,...,09.

i,5=1

This defines the linear system of quadrics associated to the system of Laplace
equations.
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We recall now some notions of apolarity. Since our definitions are base depen-
dent, for ease of exposition, we say that two forms f =3, arx! € Clag,...,oN]|
and g = > ;bry’ € Clyo,...,yn] = Clzo,...,zn]* of the same degree n, are

apolar if
Z a[b[ =0.

Since f and g define hypersurfaces F' := V(f) C PV = Proj(Clxo,...,zn]) and
G :=V(g) C PY* = Proj(Clyo, . . ., yn]), we will say also that F and G are apolar
if f and g are apolar.

Given a system h of hypersurfaces in PV, we say that the linear system K
in PV* given by the hypersurfaces which are apolar to all hypersurfaces in H is
the apolar system of H.

The following result is classical:

Proposition 1.4. |II| is the apolar system to the system of quadrics (1.9); so,
if V' satisfies 6o independent Laplace equations, then dim |[I1] = (k'gl) —1—145.

Proof. Since we can identify the parametrisation x around P with 7(A4y), by (1.6),
k
d2A0( Z agz-)vivj) = Z qi7j7ual(-3), a=1,...,02, p=k+1,...,N;
3,j=1 1<i,j<k
for our choice of the coordinates. On the other hand,

~ @ Zk (o) A Zk (a)
2 o ) — « 0o « (ij o
d AO( Z ai’j vi vj) - 1ai7j d'Ui dU_] - i,j=1 ai»j X J)7 &= 17 t '752'

ij=1 ij=

|

The second fundamental form can be related also with the second osculating
space that we define as follows

Definition 1.5. Let P € V. The second osculating space to V' at P is the subspace
TI(DQ)(V) C PV spanned by Ag and by all the derivatives dAg/dv, = A, and
dAy/dvg = dAg/dv, for 1 < a, 8 < k.

From now on we can consider the Darboux frame
{AO;Alv . '7Ak;Ak+17 .- '7Ak+T;Ak+T+17 s 7AN}

so that Ag; Ay, ..., Ak; Akq1, ..., Agyr in P span Té,z)(V). It is straightforward to
see, for example from the proof of Proposition 1.4, that

dim|II|=7r—1 < dmTP (V) =k+r

Generalising Definition 1.3, we can define the ¢-th fundamental form and the
t-th osculating space at P € V, for ¢ > 3, and relate them with (1.1).
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Definition 1.6. Let P € V, let ¢ > 3 be an integer and let I = (i1, ..., 4x) be such
that |I| < t. The t—th osculating space to V at P is the subspace Tl(gt)(V) c PN

spanned by Ao and by all the derivatives d/l Ag/dvi! ---dvi*, where v,... vg
span Tp (V). We will put

dy == dim (T3 (V)),

e; := expdim (Tl(f)(V)) = min (N, di_1 + (k B 2 + t))

Remark 1.7. If V satisfies §; Laplace equations of order ¢, we have d; = e; — d4.

Moreover, since a Laplace equation of order ¢ contains at least one of the (k_:'”)

partial derivatives of order ¢, we have §; < (k_th).

Put k; := (*1*) — 1. Obviously, d; < min(k;, N). If N < ky, then V C PV

represents at least k; — N Laplace equations of order ¢. These Laplace equations
are called trivial.

Definition 1.8. Let ¢ > 2 and let Vj C V be the quasi projective variety of points
where T}j )(V) has maximal dimension. The variety

Tan' (V) = | J T9(V)
PeVy
is called the variety of osculating t-spaces to V. Its expected dimension is
expdim Tan’ (V) := min(k + d;, N)
The t-th osculating defect of V' is the integer
0; := expdim Tan® (V) — dim Tan* (V).
If t = 1, we call 01 the tangent defect.

Remark 1.9. Obviously we have

k—1+t o kti—1
dtSdtfl‘i‘( . )SS;( ; )Zkt-

We will study the osculating defects related to the fundamental forms. Follow-
ing [6] and recalling (1.6) we give:

Definition 1.10. The ¢-th fundamental form of V in P is the linear system |I|
in the projective space P(Tp(V)) = P¥~1 of hypersurfaces of degree t defined

symbolically by the equations:
d"Ag = 0.

More intrinsically, we write I as the map

It Sym® T(V) — NYV)
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where N*(V') is the bundle defined locally by Nb(V) := CN+1/TY "D (V) and the
map I* is defined locally at each v € Tp(V) by

d'A -t
vl dvto mod T}(,t 1)(V).

Choose a Darboux frame

(110) {A0§A17-"7Ak§Ak+17'--7Ad2§Ad2+17'--7Ads§--'7Adt§'--7AN}

such that Ag, Ai1,..., A4, span TI(DS)(V) for all s =1,...,t, with d; := k. By the
definition of TI(DS)(V), we have that

(1.11) dAs, =0 mod TS'(V), sy =dso+1,....ds 1, s=2,...,t—1,
where we put dy = 0, and from (1.4) we have
(1.12)  way 1. =0, o1 =ds—o+1,...,ds—1, ps>ds, s=2,...t—1,

from which we infer, after some computation,

t4 = (t-1)
(1.13) d'Ap = E Wa,War,an *** Was,ausr = Way_y,a0Aa,  mod T (V).
ds—1+1<as<ds
s=1,..., t—1

di—1+1<a; <N

Alternatively, using the Cartan lemma,

tA
d AO = E Giq,..., g0 Wip @0 Wiy Aat
1<iy, . i<k

di—1+1<a <N

(1.14) = (-1
= E qr,a, W1 Aat mod TP (V),
[T]=t

di—1+1<a: <N

with the natural symmetries for the indices 41,...,%: of ¢, .. 4, ,q, Which can be

expressed as

dt_lAi _ dt—lAj

(1.15) e -~ mod TEDW), ij=1,... k.
J K2
From (1.12),
ds
0= dwasflwﬂs = Z Warg_1,hs N\ Whi,ps
hs=ds_1+1

Qs—1 =ds—o+1,...,ds_1, ps>ds, s=2,...t—1.
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Now, wa, ,,n, and wy, ,, are horizontal for the fibration Tl(f_l)(V) — V, and
therefore, by induction on s, since the case s = 2 is proved on page 374 of [6], they

are a linear combination of wy,...,wg. Then, we have
B} b ow o
0= dwa, ( ) - Z ( o s — Wa, 1,k 76%3’“5)
s—15Ms a a syts s—1,lts a
w w. )
77 he=da_141 v v

Q51 :ds—2+17"'7ds—17 s >dsa
y=1,...,k, s=2,...t—1.

which means

ds ds
= Owy h - ow
s—1,/ts _ h s
(116) (Twhs,us> - § ( 8(.; was—hhs)
hs=ds_1+1 K hs=ds—1+1 K

g1 :d572+1,...,d571, Hs >ds,
y=1,...,k, s=2,...t—1.

Since by relation (1.13) the linear system |I*| is generated by the degree ¢ polyno-
mials

Vo, 1= E Way Wan,az = Wag,aerr * Wap_,aes dt—1+1 <o <N
ds—1+1<a;<ds
s=1,...,t—1
we can prove Theorem 1.12. In order to do so, we recall:

Definition 1.11. Let ¥ be the linear system of dimension d of hypersurfaces of
degree n > 1 in PV (N > 1), generated by the d + 1 hypersurfaces fo = 0,...,
fa = 0. The Jacobian matrix of the forms fo, ..., f4,

J(X) = (5fi/afﬂj)izo,...,d;jzo,...,r

is called the Jacobian matriz of the system X.

The Jacobian system of ¥ is the linear system of the minors of maximum order
of J(X). Obviously, the Jacobian system depends not on the choice of fy, ..., fa,
but only on X.

Theorem 1.12. Given a k-dimensional projective variety V. C PN its t-th fun-
damental form |I| is a linear system of polynomials of degree t whose Jacobian
system is contained in the (t — 1)-st fundamental form |I'~*|.

Proof. With the notation as above, we start considering, with d;—1 +1 < ay < N,

oV,
t
W - § Wryap " Wagaagr * " Wag g0 T 000
7 deat1<as<ds
s=2,...,t—1

awas,a5+1 awat—l,at
_|_ g (wal"'i"'watq,at+"'+wa1"'wa5,as+1"'7 .

Oow Ow
ds—1+1<0, <d, v v
s=1,...,t—1
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Then, from (1.16), we deduce

OV
t § :
- Wy,ap " Wag,aspr ~ " Way 1,00
Ow.
ds—1+1<as<ds
s=2,...,t—1

Owey
t—1,0
+(t_1) § wal"'was>as+1“'T'
dsfl"!‘lgasgds v
s=1,..., t—1

Then, for example by (1.5),

k k k
72: 72: 72:8‘0&1@2
Wy, ap = Qv,a1,00Way = oy, y,00Way = Way

a;=1 a1=1 a;=1 aw’y

and again by (1.16),

avozt j : awat—lyat
aw =t wal'.'was,as+l"'T' O
T deoit1<a,<d, K
s=1,...,t—1

Actually, as for the second fundamental form, Proposition 1.13 holds with a
proof adapted from the one given for Proposition 1.4. In order to do so, we fix a
Darboux frame as in (1.10). Then, if we have a system of ¢; Laplace equations of
order ¢ as in (1.1), they can be expressed as

(1.17) ST EMX =0, h=1,...4.
|I|=t

Asin (1.9), we can define the linear systems of homogeneous polynomials of degree ¢
associated to (1.17) by

(118) ZE}h)V[:O, hzl,...,5t, where vy = H Uz.lj.
|I|=t i=1,..., k

Proposition 1.13. If V satisfies 0; Laplace equations of order t as in (1.1), the
t-th fundamental form is the apolar system to the system of the hypersurfaces
of degree t associated to the system of Laplace equations (i.e., the hypersurfaces
in (1.18)), and vice versa.

Proof. Tt is enough to repeat the proof of Proposition 1.4 with an adapted local
coordinate system. More precisely, we can choose a Darboux frame as in (1.10).
Since we can identify the parametrisation x around P with w(Ag), then, by our
hypothesis, the Laplace equations of order ¢ become

(1.19) ST EMx =0, h=1,...,6.
|I|=t
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By (1.14), we have

thO(ZEgh)VI):ZqI,ﬁE§h)7 hzl?"'v(stv 6:dt71+17~"7N7
|I|=t |I|=t
and, on the other hand,

dtA

tho( E Egh)W): E E§h)(d )01 = E E}h)xl7 h=1,...,6. O
A%

|I|=t =

From Proposition 1.13 we recover immediately the following:

Corollary 1.14. If V satisfies 6; Laplace equations of order t as in (1.1), the t-th
fundamental form has dimension (k7i+t) — 1 —0¢, and vice versa.

We will denote the dimension of the ¢-th fundamental form by Ag:
Ay = dim(|T°)).
Corollary 1.15. If N > k;, we have that
dy =dp—1 + Ay + 1,

and vice versa: if dy = dy—1 + A + 1, then the t-th fundamental form has dimen-
sion A.

From now on, we will suppose that our Darboux frame is as in (1.10).

In order to prove the results of the following section, we recall also the following
notation and definitions.

Let X' € G(N,t) be a subvariety of pure dimension h. Let Isn C ¥ x PN be

the incidence variety of the pairs (o, ¢) such that g € o and let p;: IE? — ¥ and
pa: IE? — P be the maps induced by restricting to IE? the canonical projections
of Xh x PV to its factors.

The morphism p;: Ign — Y7 is said to be a family of t-dimensional linear
subvarieties of PV. While X! is the parameter space of the family, for brevity we
will often refer to it as to the family itself. Obviously,

dim(Iyy) = ¢+ dim(f).

Let us suppose that X7 is irreducible. We will denote by S(X}) the image of Isn

under py. By definition, S(XF) is a scroll in P™ of PY. The previous notation will
be useful to study the osculating variety.

Definition 1.16. Let t > 1. The t-th projective Gauss map is the rational map
YV - G(PY, dy)
P THW).
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For the classification of surfaces with second Gauss map not birational on the
image see [4].
Remark 1.17. The t-th osculating variety is
Tan'(V) = | +/(P) C GV, k),
PecVy

where, as before, Vj denotes the open subset of the variety V' comprising the points
for which dim Tg) (V) = d; and then Tan’ (V') is the scroll S(Tan’(V)) of dimension

dim Tan’ (V) < dimIm~* + d; = k + d; — dim((y") " (11)),

where IT is a general element of Tan' (V).
We prove now:

Theorem 1.18. The first differential of v* at P is the (t+1)-st fundamental form
at P.

Proof. We have, by definition of 4, that

dyh: TpV —-» G(PY,dy),

TPV
and we recall that TT(t)VG(PN,dt) & Hom(TIg)V, NEFY (V). Moreover, if we
P

choose a Darboux frame as in (1.10), we have that d4, € TpV C Tl(f)V and

Vo
e =TV

and therefore dvt € Hom(TpV @ T}(,t)V, NEFHVY).
Now, we remark that, in our Darboux frame, we can interpret +* as

YH(P)=Ag A+ A Ag,,
and therefore by (1.4),

d’yfp = Z (—1)d“i+1wi,jAo A NA A A Ag, NA;  mod TS)V.

1<i<d,
de+1<j<N

.....

p=1,....dy
Dp(Aa®Ay) = > wuj(Aa)4; € NEH(V).
di+1<j<N
On the other hand, for the (¢ + 1)-st fundamental form we have
dA, _

dv,

S w44, mod TH (V). O
di+1<j<N
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We recall now the definition of higher order dual varieties (see [19]), which is
the natural extension of the definition of the dual variety.

Definition 1.19. Let V' C PN be a projective variety. By the t-th dual variety V)
of V' we mean

(1.20) v = | e,
PeVy

where, as before, Vj C V is the set of the points for which dim Tl(f)(V) = dy,
and C,(,t)(V) is
CYWy= (| K={HeP" |H>TY(V)} cPV"

KeTd (V)
This C,(,t)(V) is classically called the t-th characteristic space of V in P.

We now make an observation similar to the one in §3(a) of [6]: elements

of Cg)(V) can naturally be identified with hyperplanes in IP’(NIZH(V)) and there-
fore V() is just the image of the map

5t P(NTTH(V)*) — PNT,

analogous to the one in (3.1) of [6]. In terms of frames, a hyperplane ¢ of
P(Np(V)) can be given by choosing Ag,41,..., Ax—1 such that their projec-
tions in N (V) = (CN“/TIg)(V) span &. Therefore, in terms of coordinates, §*
can be expressed as

(St(P,f) =AgNAL N - NAN_1,

(see (3.2) in [6]) or, if we choose dual coordinates
Af = (—1)N7iA0 AN NA 1 A Ai+1 A---NApn,

7

§Y(P,&) = A} From the relations (1.4) we deduce

dA; = Z ( — wi,jAz‘ + wi,iA;f),

i#]
and in particular
N-1 N-1 N-1
dAy = Z (—winA] +wiiAy) = Z(—wz‘,NAZ‘) + (wo + Z Wi,i) N
i=0 i=1 i=1

By definition of V()| we have for its dimension

N—dy—1<dimV® =d,;, <N —d; —1+k.
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Choosing a Darboux frame as in (1.10), these formulas become, thanks to (1.12),

. ) o [j=de 41, dy fu=0,... -1,
dA»:E —w;jA; +wi A7),
g (—wasdi+ i) {j:dt_l—i-l,...,N if u = ¢,

z;fj—Q
where we put d_; := —1 when we vary j. In particular,
N—1 N—1 -1
Ay = 3 (—win Al +wiidy) = Y (~winAD + (wo+ D wii) Ak,
i=t—1 i=t—1 i=t—1

and therefore
N—1
(1.21) dAy = ) (~winA]) mod Ay,
i=t—1
Definition 1.20. We say that V() is degenerate if it has dimension less than
expected: dig < N —1—d; + k.

In relation (1.21) the last N —d; — 1 forms w; n, i = d¢ +1,..., N — 1, restrict
to a basis for the forms of the fibres P(N5)* = PN=1=d. in fact, they describe
the variation of & when P is held fixed. The first w; n, with ¢ < d; are horizontal
for the fibreing P(N**1(V)*) — V, and therefore V®) is degenerate if and only if

wil,N/\---/\w%N:O Vi, ...0p witht =1 <17 < -+ <ip < ds.

If we put dy,s := dim Ty (V®), if N —dys > dyo1 + 1, ie., dp < N —dypoy — 1

(otherwise Tés)(f/(t)) = PV¥*), we can choose a Darboux frame such that Té”(f/(t))
is generated by Ay and Ay_,..., Ay 4 -
Let us now define the characteristic varieties of a projective variety V c PV,

Definition 1.21. The variety of the s-th characteristic spaces of the t-th osculating
spaces of V' is the s-th dual of the ¢-th dual variety of V', that is

Carj(V):= ) (V) cpV,
EGVO(U

where Vo(t) is the open subset of V() comprising the points & such that £ O Tl(f) (V)
and dim TS) (V) = d;. In the following we will denote this s-th characteristic space
of V() in a general ¢ O T}(,t)(V) by Ct(f}),(V) = C’E(S)(V(t)). Then, using the above
notation, dim(Ct(f}),(V)) =N-—1—d.
Lemma 1.22. With notation as above, if P € V', we have:
= (t—1 1

a) Ty (V) c O (V)

b) P e Cp(V);

¢) if €€ CRIV), Te(VW) € G (V).
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Proof. a) Using the above notations, we have that, since T¢ (V")) is generated by

Ay and AN _4,...,Aj_, we can choose a frame such that we have that the first
dia, Ax_1,---s AN_g, , are basis of Te(V®). Then, C’él)(f/(t)) contains Ay and
A, AN—de -1, and since dy_; < dy —k < N — di1 — 1, we have the assertion.

b) Since Tés)(f/(t)) is generated, as usual, in an appropriate frame, by A}, and
AN 5., AN_g, > we have that Cés)(f/(t)) contains Ap.
¢) This is just a) in the dual space. O

Corollary 1.23. With the notation above, if P € V, £ € V®) and Q € C’t(:sI)D(V)
are general points, then Te(Cari(V)) C Ct(f};l)(V).
Proof. This is simply the dual of Lemma 1.22¢). O

2. Terracini’s theorems and generalisations

In this section we generalise the classical results of Terracini in terms of the os-
culating defect and higher fundamental forms instead of the Laplace equations, so
that we forget the parametrisation of V. First of all, by Corollary 1.14 we rewrite
the results of [20] and Section 3 of [21] as follows:

Theorem 2.1. Let V C PV be a k-dimensional irreducible variety whose second
fundamental form has dimension k—{—1, with £ > 0. Then V has tangent defect at
least £ and it is contained in a scroll S(X}') in P* such that Tp: (S(X})) C P2t
with 0 < h < k — £, where v € X} is a general point, and P! is the corresponding
fibre of the scroll.

Theorem 2.2. Let V C PV be a k-dimensional irreducible variety. Then V has
tangent defect o1 = € > 0 and the second fundamental form has dimension at least
k — 2 if and only if the Jacobian matriz of the second fundamental form of V' has
rank k — £.

We will prove Theorems 2.4 and 2.8. Theorems 2.1 and 2.2 are just corollaries
of them.

Lemma 2.3. Let V C PV be a k-dimensional irreducible variety, and let P € V.
Then, the tangent cone to Tan'"' (V) in P is contained in TS)(V), and therefore
Tp(Tan'" (V) c TS (V).

Proof. Let us take a frame in V as above, i.e., {Ag; A1, ..., Ak,; ..., Ax}, where the
first k-elements Ay, ..., Ay generate Tp(V), and so on, and therefore Ay, ..., Ag,
generate TI(})(V).

Let us take also a frame {By; By, ..., By;..., By} on Tan'"*(V), centred at P,
such that By represents P € Tan’" (V) and By,..., B, generate Tp(Tan' "' (V).

By definition, we have
ki1

&:@%+qu

=1
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Taking the exterior derivative,

ke—1
dBy = dCyAg + CodAg + Y (dC; A; + CidA;).
i=1
From this we infer that the tangent cone to Tan’~*(V) in P is contained in T}ﬁ (V).

Since the tangent cone spans the tangent space, we have Tp(Tan’~*(V)) C Tg) (V).
O

Theorem 2.4. Let V. C PN be a k-dimensional irreducible variety whose t-th
fundamental form has dimension k — € — 1, with £ > 0. Then:

a) V has (t — 1)-osculating defect o;_1 > £.

b) V is contained in a d-dimensional scroll S(XF), (d < h+7), in linear spaces
of dimension v, with0 < h<k—/{andk—h <r.

¢) Let P C S(3I) be a general r-dimensional space of the scroll S(XI'). Then
(Uaepr Ta(S(21))) is contained in a linear space of dimension

kE+t—1

di —h=d;_ k—(—h<
t t—1 l _< P

)—1+k—€—h.

In particular, r < d < dy_1+k—{0—h.

Proof. a) By hypothesis, Lemma 2.3 and Corollary 1.15 (and with the above no-
tations)

dim Tan'~! (V) < dim Tp(Tan'"(V))
< dim(TP(V)) = dy_y + Ay + 1 < expdim Tan'~ (V) — £.

b) As above, let v': V --» G(N, d;) be the t-th Gauss map. Let h := dim Im(+*),
so that k — h is the dimension of the general fibre of . Let ®j_p (II) := (y*)~1(II)

be a general fibre; this is just the set of points Q € V for which II = Tg)(V). Then
Dy (II) generates a linear space P", k — h < r < d;. Let us consider the scroll
S(xh) over Im(y*) =: X" of these spaces. By definition, V C S(Xh).

Let VO c PV™ be the t-th dual variety. We have

dim(V®) = h+ N — 1 — dim(TY (V).
Moreover, by Lemma 1.22a), T}j‘”(V)) C Ct(};(V), so that, by Corollary 1.15,
(21) di—1 SN—l—dtyl =d,—h=dy_1+6+1—h=dy_1+k—¢—h,

and therefore h < k — /.
¢) We have, by Lemma 1.22b), Q € C'L(V) if Q € @4, (I1), I = T (V).
Since Ct(;)D(V) is a linear space, we have that (®j_p(II)) = P C Ct(f}),(V), and
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therefore S(X!) C Carl(V). Finally, apply Corollary 1.23 to get that if R € P is
a general point, TrS(X") C Ct(’tgl)(V) and, moreover, since dim(V®) = N —1 —
d¢ + h, we have that

k+t—-1

mmd;DW)g@—h:mq+%—é—h§( L

)-1+k—t—h O
We give some applications of this theorem.

Example 2.5. Clearly, when h = 0, V is contained in a P%. For example, this is
the only possibility when k = 1, i.e, the case of curves. However, in this case we
can say even more: we have { =1 and k — ¢ = 0 = h, and from (2.1) we deduce
that the curve is contained in a P%-1. So, if the theorem holds for k = 1 and t = 2,
V =P! and for k=1 and t = 3, V is a plane curve, etc.

Example 2.6. More generally, if £ = k and h = 0 = k — ¢, thanks to (2.1), we
deduce that V is contained in a P%-1. In particular, if the theorem holds for ¢ = 2,
we deduce V = P*.

Example 2.7. Let us pass to the next case ¢ = k — 1; in this case h = 0,1. If
h =0 <1=k—/, thanks to (2.1), we infer that d; = d;_1 + 1. Hence V C Pd-1+1
by Example 2.5. For t = 2, we deduce that V is a hypersurface in a P**1.

If h=1=k—/{, again by (2.1), we infer that d; = d;_1 + 1. Since, k—1 <r <
dy — 1 for t = 2, we have that k — 1 < r < d < k, but we cannot have r = k, since
otherwise we would have that V = P" = S(X!) and then we would have h = 0.
Therefore, r = k — 1, ®;,_,(I1) = P*~! and V is a developable P*~!-bundle.

Our result generalising Theorem 2.2 is the following.

Theorem 2.8. Let V. C PN be a k-dimensional irreducible variety. Then V
has t-th osculating defect o, = € > 0 and the (t + 1)-st fundamental form has di-

mension at least k—¢ if and only if the Jacobian matriz of the (t+1)-st fundamental
form of V' has rank k — ¢.

Proof. Let us fix as usual a Darboux frame for V" as in (1.10). If P € V is a general
point, then, by Definition 1.6,

. ]
Th(V) = <(ﬁ>mg>’

with the convention that d°Ay = Ag. Therefore, we can fix a Darboux frame
{Bo;Bi,...,Ba; Bas1,..., By} (d := dim Tan® (V) = expdim Tan® (V) — ¢) for
Tan® (V) centred at Q € Th(V), where By, ..., By span To(Tan® (V)), and so

dlilA
= dvi' ... dv
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Saying dim Tan® (V) = expdim Tan® (V') — £ means that there are ¢ linearly inde-
pendent linear homogeneous relations between the (first) partial derivatives of By
with respect to the v;’s and the A\()’s:

k
0B, 0By
j:Zlana—’Uj—i_Zanm_O’ a—l,...l.

=t
Then, by (2.2),

k
. (¢ £0) — (t)
jg_laa,](;t)\ dvjdvf) 0, a=1,....4, modTp (V).

In other words, these relations are indeed relations between the partial derivatives
up to order t 4+ 1 of Ay, and we can think of them as a system of Laplace equations
of order ¢t + 1:

k
ZG’QJ( Z /\(I)X1+j) =0, a=1,...,¢,
j=1 =
and their associated polynomials
k
(2.3) (Zaa,jv‘j>(ZA(1)V[):0, a=1,...,¢
j=1 |I1|=t
are all reducible with t