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We prove that the general fibre of the i-th Gauss map has dimension m if and only 
if at the general point the (i +1)-th fundamental form consists of cones with vertex 
a fixed Pm−1, extending a known theorem for the usual Gauss map. We prove this 
via a recursive formula for expressing higher fundamental forms. We also show some 
consequences of these results.
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1. Introduction

Let V ⊂ P
N be a projective embedded algebraic variety and P ∈ V a point of it; with P it associates

the i-th osculating space T̃ (i)
P (V ) ⊂ P

N generated by the (i + 1)-th infinitesimal neighbourhood (see e.g.
[9, Example II.3.2.5]); let di be its dimension. We recall that the i-th Gauss map γi: V ��� G(di, N) is the 
rational map which associates to the general point P its i-th osculating space T̃ (i)

P (V ). For i = 1 this reduces 
to the usual Gauss map.

The study of the Gauss map has been rather intense, both in classical (see for example [5,2,13]) and 
modern algebraic geometry (see for example [8,1]). Instead, the study of higher order Gauss map has been 
much more scarce; as far as we know, we can only cite the classical paper of M. Castellani [3], reviewed in 
modern form in [7,11] and the very recent paper [6]. Closely related results have been obtained by R. Piene 
on higher dual varieties, see for example [12]. We note moreover that a different notion of higher Gauss map 
has been given by F. Zak: see for example [15].
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The main basic difference between the first and higher Gauss maps is—as shown in [3,7,12]—that the 
fibres of the Gauss map are (Zariski open subsets of) linear spaces, while for higher Gauss maps this is not 
true in general.

In this paper, the study of higher Gauss maps is taken up further: in particular, we analyse the infinites-
imal behaviours of these maps. Surprisingly enough, it turns out, see Theorem 3.6, that the general fibre 
of the i-th Gauss map has dimension m if and only if at the general point the (i + 1)-th fundamental form 
consists of cones with vertex a fixed Pm−1, as it happens for the usual Gauss map: see [8, (2.6)]. This result 
is obtained by virtue of a recursive formula for expressing the (i + 1)-th fundamental form in terms of the 
i-th fundamental one: see Lemma 3.1. This last result is interesting in its own right: for example, we can 
prove immediately as a corollary the (well-known) fact that Jacobian system of the (i + 1)-th fundamental 
form is contained in the i-th fundamental form. Finally, we show some results that follow from the main 
result of the paper: in particular, as an example of the consequences of the theorem, we study the varieties 
whose image of a higher Gauss map has as image a curve, describing completely their varieties of higher 
osculating spaces.

2. Notation and preliminaries

We use notation as in [8,9], and most of the preliminaries are taken from [4]. Let V ⊂ P
N be a projective 

variety of dimension k over C that will be always irreducible. For any point P ∈ V we use the following 
notation: T̃P (V ) ⊂ P

N is the embedded tangent projective space to V in P and TP (V ) is the Zariski tangent 
space.

As in [8], we abuse notation by identifying the embedded tangent space in PN with the affine cone over 
it in CN+1. With this convention TP (V ) ∼= T̃P (V )

C
. We denote by G(t, N) the Grassmannian of t-planes of 

P
N .
To study the behaviour of V in P , following [8] (and references [2,6,7,10] therein), we consider the manifold 

F(V ) of frames in V . An element of F(V ) is a Darboux frame centred in P . This means an (N + 1)-tuple

{A0;A1, . . . , Ak; . . . , AN}

which is a basis of CN+1 such that, if π : CN+1 \ {0} → P
N is the canonical projection,

π(A0) = P, and π(A0), π(A1), . . . , π(Ak) span T̃P (V ).

Let this frame move in F(V ); then we have the following structure equations (in terms of the restrictions 
to V of the Maurer–Cartan 1-forms ωi, ωi,j on F(PN )) for the exterior derivatives of this moving frame

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ωμ = 0 ∀μ > k

dA0 =
∑k

i=0 ωiAi

dAi =
∑N

j=0 ωi,jAj i = 1, . . . , N

dωj =
∑k

h=0 ωh ∧ ωh,j j = 0, . . . , k
dωi,j =

∑N
h=0 ωi,h ∧ ωh,j i = 1, . . . , N, j = 0, . . . , N.

(2.1)

Remark 2.1. Geometrically, the frame {Ai} defines a coordinate simplex in PN . The 1-forms ωi, ωi,j give 
the rotation matrix when the coordinate simplex is infinitesimally displaced; in particular, modulo A0, as 
dA0 ∈ T ∗

P (PN ) (the cotangent space), the 1-forms ω1, . . . , ωk give a basis for the cotangent space T ∗
P (V ), 

the corresponding π(Ai) = vi ∈ TP (V ) give a basis for TP (V ) such that vi is tangent to the line A0Ai, and 
ωk+1 = · · · = ωN = 0 on TP (V ).
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We can define now the t-th fundamental form and the t-th osculating space at P ∈ V , for t ≥ 2, see [8, 
§1.(b) and (d)] and [4, §1]:

Definition 2.2. Let P ∈ V , let t ≥ 2 be an integer and let I = (i1, . . . , ik) be such that |I| ≤ t. The 
t-th osculating space to V at P is the subspace T̃ (t)

P (V ) ⊂ P
N spanned by A0 and by all the derivatives 

d|I|A0

dvi11 · · · dvikk
, where v1, . . . , vk span TP (V ).

If the point P ∈ V is general, we will put

dt := dim(T̃ (t)
P (V )).

Remark 2.3. Obviously, the “expected” dimension of the t-th osculating space at a general point P for our 
k-dimensional variety V ∈ P

N is the minimum among N and kt :=
(
k+t
k

)
− 1; indeed, for the “general” 

variety, dt has this expected dimension, but, as the next example shows, there are exceptions.

Example 2.4. Let us consider the so-called Togliatti surface S ⊂ P
5, which is a particular projection of the 

del Pezzo sextic surface embedded in P6, see [14] and [10]; it is the closure of the image of the rational map

ψ:P2 ��� P
5

(x : y : z) 
→ (x2y : xy2 : x2z : xz2 : y2z : yz2).

For the Togliatti surface we have d2 = 4: this can be easily seen from the fact that the parametrisation of S
given above, restricted to the open affine set x �= 0, satisfies the following second order partial differential 
equation (classically called Laplace equation):

u2 ∂
2x

∂u2 + uv
∂2x
∂u∂v

+ v2 ∂
2x

∂v2 − 2u∂x
∂u

− 2v ∂x
∂v

+ 2x = 0,

where u = y
x , v = z

x , are the affine coordinates, etc.

Example 2.5. It is immediate to see that for the Veronese surface V2 ⊂ P
5 we have dim T̃

(2)
P (V2) = 5 for 

every point P ∈ V2: there is not a hyperplane section of V2 with a triple point.

Definition 2.6. Let t ≥ 2 and V0 ⊆ V be the quasi projective variety of points where T̃ (t)
P (V ) has maximal 

dimension. The variety

Tant(V ) :=
⋃

P∈V0

T̃
(t)
P (V )

is called the variety of osculating t-spaces to V .

Remark 2.7. Obviously we have

dt ≤ dt−1 +
(
k − 1 + t

t

)
≤ · · · ≤

t∑(
k + i− 1

i

)
= kt.
i=1
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Following [8] we give

Definition 2.8. The t-th fundamental form of V in P is the linear system |It| in the projective space 
P(TP (V )) ∼= P

k−1 of hypersurfaces of degree t defined symbolically by the equations:

dtA0 = 0.

More intrinsically, we write It as the map

It: Sym(t) T (V ) → N t(V )

where N t(V ) is the bundle defined locally as N t
P (V ) := C

N+1

T̃
(t−1)
P (V )

and the map It is defined locally on 

each v ∈ TP (V ) as

vt 
→ dtA0

dvt
mod T̃

(t−1)
P (V ).

Example 2.9. With an explicit calculation (or from Example 2.11) we can show that the third fundamental 
form at the general point P of the Togliatti surface S ⊂ P

5 is given by a single cubic in P(TP (V )) ∼= P
1, 

while for a “general” surface (i.e. if d2 = 5) of P5 the third fundamental form is the empty set; this is 
obviously true for the Veronese surface V2 ⊂ P

5.

We will denote the dimension of the t-th fundamental form by Δt:

Δt := dim(|It|),

i.e. |It| ∼= P
Δt .

We recall that (see [4, Corollary 1.15])

Proposition 2.10. We have that

dt = dt−1 + Δt + 1,

and vice versa: if dt = dt−1 + Δ + 1, then the t-th fundamental form has dimension Δ.

Example 2.11. For the Togliatti surface S ⊂ P
5 we have that d3 = 5 and d2 = 4, and therefore Δ3 = 0.

Analogously, for a “general” surface of P5, d3 = d2 = 5, and Δ3 = −1, i.e. |III | = ∅; this is true for 
example for the Veronese surface V2 ⊂ P

5.

From now on, we will suppose that our Darboux frame

{A0;A1, . . . , Ak;Ak+1, . . . , Ad2 ;Ad2+1, . . . , Ads
; . . . , Adt

; . . . , AN} (2.2)

is such that A0, A1, . . . , Ads
span T̃ (s)

P (V ) for all s = 1, . . . , t, with d1 := k.

Definition 2.12. Let t ≥ 1. The t-th (projective) Gauss map is the rational map

γt: V ��� G(dt,PN )

P 
→ T̃
(t)
P (V ).
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We recall that (see for example [4, Theorem 1.18])

Theorem 2.13. The first differential of γt at P is the (t + 1)-th fundamental form at P .

The idea of the proof is the following: we have, by the definition of γt, that

dγt
P :TPV ��� T

T̃
(t)
P V

G(dt,PN ),

and we recall that T
T̃

(t)
P V

G(dt, PN ) ∼= Hom(T̃ (t)
P V, N t+1

P (V )); moreover if we choose a Darboux frame as in 

(2.2), we have that dA0 ∈ T̃PV ⊂ T̃
(t)
P V and

T̃
(t)
P V

CA0
= T

(t)
P V

and therefore dγt
P ∈ Hom(TPV ⊗ T

(t)
P V, N t+1

P (V )).
Now, we remark that, in our Darboux frame, we can interpret γt as

γt(P ) = A0 ∧ · · · ∧Adt
,

and therefore by (2.1),

dγt
P ≡

∑
1≤i≤dt

dt+1≤j≤N

(−1)dt−i+1ωi,jA0 ∧ · · · ∧ Âi ∧ · · · ∧Adt
∧Aj , mod T̃

(t)
P V ;

now, a basis for TPV ⊗ T
(t)
P V can be expressed by (Aα ⊗Aμ) α=1,...,k

μ=1,...,dt

, and

dγt
P (Aα ⊗Aμ) =

∑
dt+1≤j≤N

ωμ,j(Aα)Aj ∈ N t+1
P (V );

on the other hand, for the (t + 1)-th fundamental form we have

dAμ

dvα
≡

∑
dt+1≤j≤N

ωμ,j(Aα)Aj mod T̃
(t)
P (V ).

3. Fibres of higher Gauss maps

We start by writing higher fundamental forms explicitly: choose a Darboux frame

{A0;A1, . . . , Ak;Ak+1, . . . , Ad2 ;Ad2+1, . . . , Ads
; . . . , Adt

; . . . , AN}

such that A0, A1, . . . , Ads
span T̃ (s)

P (V ) for all s = 1, . . . , t, with d1 := k, T̃ (1)
P (V ) = T̃P (V ) (and d0 := 0). 

We use indices 1 ≤ i(1), i(1)1 , . . . , i(1)h ≤ k = d1, ds−1 + 1 ≤ i(s) ≤ ds for s = 2, . . . t and dt + 1 ≤ i(t+1) ≤ N .
With these notations, the second fundamental form is given by the quadrics

V
(2)
i(�)

=
∑

i
(1)
1 ,i

(1)
2

q
i
(1)
1 ,i

(1)
2 ;i(�)ωi

(1)
1
ω
i
(1)
2
, (3.1)

with � > k, where q (1) (1) (�)(= q (1) (1) (�)) are defined by

i1 ,i2 ;i i2 ,i1 ;i
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ω
i
(1)
1 ,i(�)

=
∑
i
(1)
2

q
i
(1)
1 ,i

(1)
2 ;i(�)ωi

(1)
2
, (3.2)

which are obtained via the Cartan lemma from

0 = dωi(�) =
∑
i
(1)
1

ω
i
(1)
1

∧ ω
i
(1)
1 ,i(�)

,

since ωi(�) = 0 on T̃P (V ).
The higher fundamental forms can be expressed as in the following

Lemma 3.1. The (s + 1)-th fundamental form is given by the polynomials

V
(s+1)
i(�)

=
k∑

i
(1)
1 ,...,i

(1)
s+1=1

q
i
(1)
1 ,...,i

(1)
s+1;i(�)

ω
i
(1)
1

· · ·ω
i
(1)
s+1

, (3.3)

with � ≥ s + 1, which inductively satisfy the relations

ds∑
i(s)=ds−1+1

q
i
(1)
1 ,...,i

(1)
s ;i(s)ωi(s),i(�) =

k∑
i
(1)
s+1=1

q
i
(1)
1 ,...,i

(1)
s+1;i(�)

ω
i
(1)
s+1

, (3.4)

where q
i
(1)
1 ,...,i

(1)
s ;i(s) are the coefficients of the s-th fundamental form (and with the natural symmetries of 

the indices: q
...,i

(1)
j ,...,i

(1)
k ...;i(�) = q

...,i
(1)
k ,...,i

(1)
j ,...;i(�)), and the basis of the induction is the second fundamental 

form (i.e. s = 1) for which relations (3.3) and (3.4) are to be read as, respectively, (3.1) and (3.2).

Proof. By the definition of T̃ (s)
P (V ), where s ∈ {1, . . . , t − 1}, we have that

dAi(s−1) ≡ 0 mod T̃
(s)
P (V ) (3.5)

and from (2.1) we can write

dAi(s−1) =
N∑

j=ds−1+1

ωi(s−1),jAj

from which we deduce, by (3.5)

ωi(s−1),i(s+1) = ωi(s−1),i(s+2) = · · · = ωi(s−1),i(t) = ωi(s−1),i(t+1) = 0. (3.6)

These equations imply that

0 = dωi(s−1),i(�) =
∑
i(s)

ωi(s−1),i(s) ∧ ωi(s),i(�) � ≥ s + 1;

now, by the inductive hypothesis, we have

∑
(s−1)

q
i
(1)
1 ,...,i

(1)
s−1;i(s−1)ωi(s−1),i(�) =

∑
(1)

q
i
(1)
1 ,...,i

(1)
s ;i(�)ωi

(1)
s

(3.7)

i is
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where q
i
(1)
1 ,...,i

(1)
s−1;i(s−1) are the coefficients of the (s − 1)-th fundamental form and q

i
(1)
1 ,...,i

(1)
s ;i(�) are those of 

the s-th fundamental form (with the convention that q
i
(1)
1 ,...,i

(1)
s ;i(�) = 1 if s ≤ 1, and if s = 2, (3.7) is just 

(3.2) i.e. the Cartan lemma used to obtain the second fundamental form (3.1)) and then, applying relations 
(3.7) to (a linear combination of) (3.6), we deduce

∑
i(s−1),i(s)

q
i
(1)
1 ,...,i

(1)
s−1;i(s−1)ωi(s−1),i(s) ∧ ωi(s),i(�) =

∑
i
(1)
s ,i(s)

q
i
(1)
1 ,...,i

(1)
s ;i(s)ωi

(1)
s

∧ ωi(s),i(�)

then, by the Cartan lemma
∑
i(s)

q
i
(1)
1 ,...,i

(1)
s ;i(s)ωi(s),i(�) =

∑
i
(1)
s+1

q
i
(1)
1 ,...,i

(1)
s+1;i(�)

ω
i
(1)
s+1

;

and the (s + 1)-th fundamental form is

V
(s+1)
i(�)

=
∑

i
(1)
1 ,...,i

(1)
s+1

q
i
(1)
1 ,...,i

(1)
s+1;i(�)

ω
i
(1)
1

· · ·ω
i
(1)
s+1

. �

Remark 3.2. Alternatively, we can write—for example writing back relations (3.4) in (3.3) or by a direct 
computation

V
(s+1)
i(�)

=
∑

i(1),...,i(s)

ωi(1)ωi(1),i(2)ωi(1),i(3) · · ·ωi(s−1),i(s)ωi(s),i(�) ,

with � ≥ s + 1 and the sum varies, as above, for 1 ≤ i(1) ≤ k = d1, . . . , ds−1 + 1 ≤ i(s) ≤ ds.

We recall

Definition 3.3. Let Σ be the linear system of dimension d of hypersurfaces of degree n > 1 in PN (N > 1), 
generated by the d +1 hypersurfaces f0 = 0, . . . , fd = 0. The Jacobian system J(Σ) of Σ is the linear system 
defined by the partial derivatives of the forms f0, . . . , fd:

J(Σ) := (∂fi/∂xj) i = 0, . . . , d; j = 0, . . . , r.

Remark 3.4. Obviously, the Jacobian system J(Σ) does not depend on the choice of f0, . . . , fd, but only 
on Σ.

Corollary 3.5. The (s + 1)-th fundamental form is a linear system of polynomials of degree s + 1 whose 
Jacobian system is contained in the s-th fundamental form.

Proof. We have, by Lemma 3.1

∂V
(s+1)
i(�)

∂ω
i
(1)
j

=
∑

i
(1)
1 ,...,i

(1)
s ,i(s)

q
i
(1)
1 ,...,i

(1)
s ;i(�)ωi

(1)
1

· · ·ω
i
(1)
s

∂ωi(s),i(�)

∂ω
i
(1)
j

. � (3.8)

We are now able to prove the following fact (see [8, (2.6)])

Theorem 3.6. The s-th Gauss map γs (s ≥ 1) has fibres of dimension m if and only if at a general point 
P ∈ V the forms of degree s +1 of the (s +1)-th fundamental form |Is+1| are cones over a Pm−1 ⊂ PTP (V ).
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Proof. We choose a Darboux frame as above, i.e.

{A0;A1, . . . , Ak;Ak+1, . . . , Ad2 ;Ad2+1, . . . , Ads
; . . . , Adt

; . . . , Adt+1 ; . . . , AN}

such that A0, A1, . . . , Ads
span T̃ (s)

P (V ) and indices ds−1 +1 ≤ i(s) ≤ ds for all s = 1, . . . , t +1, with d1 := k, 
etc.

In coordinates, the s-th Gauss map γs is

γs(P ) = A0 ∧ · · · ∧Ads
,

and therefore by (2.1), its differential, which is the (s + 1)-th fundamental form, is given by

dγs
P ≡

∑
1≤i≤ds

ds+1≤j≤N

(−1)ds−i+1ωi,jA0 ∧ · · · ∧ Âi ∧ · · · ∧Ads
∧Aj , mod T̃

(s)
P V ;

therefore, since γs has fibres of dimension m if and only if dγs
P has rank k −m (recall that P is a general 

point) γs has fibres of dimension m if and only if the space

U∗ := 〈ωi,j〉 1≤i≤ds
ds+1≤j≤N

⊂ T ∗
P (V )

has dimension k − m. Dually, this space defines a subspace U ⊂ TP (V ) of dimension m, defined by the 
equations

ωi(h),i(�) = 0, h = 1, . . . , s; � ≥ s + 1.

Now, we prove that V (s+1)
i(�)

are cones with vertex P(U): let us suppose to choose a frame such that 
ωm+1, . . . , ωk form a basis for U∗, that is

〈ωi,j〉 1≤i≤ds
ds+1≤j≤N

= 〈ωm+1, . . . , ωk〉. (3.9)

Moreover, we choose indices 1 ≤ j
(1)
1 , . . . , j(1)

h ≤ m, and m + 1 ≤ k
(1)
1 , . . . , k(1)

h ≤ k.
From (3.4), the points of U satisfy also

0 =
∑
i(h)

q
i
(1)
1 ,...,i

(1)
h ;i(h)ωi(h),i(�) =

∑
i
(1)
h+1

q
i
(1)
1 ,...,i

(1)
h+1;i(�)

ω
i
(1)
h+1

, (3.10)

which implies, for every choice of the indices as above, that

q
i
(1)
1 ,...,j

(1)
h+1;i(�)

= 0.

From this we infer, from (3.3), that

V
(s+1)
i(�)

=
∑

k
(1)
1 ,...,k

(1)
s+1

q
k
(1)
1 ,...,k

(1)
s+1;i(�)

ω
k
(1)
1

· · ·ω
k
(1)
s+1

, (3.11)

that is, V (s+1)
(�) is a cone with vertex Pm−1 = P(U).

i
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Vice versa, let us suppose that the polynomials V (s+1)
i(�)

are singular along a Pm−1 = P(U); by choosing 
our frame, we can suppose that U is defined by

ωj = 0, j = m + 1, . . . , k,

or that (3.9) holds. Then, we have

0 = dωi(h),i(�) =
ds∑
i=1

ωi(h),i ∧ ωi,i(�) +
N∑

j=ds+1

ωi(h),j ∧ ωj,i(�) (3.12)

and ωi,i(�) , ωi(h),j ∈ U∗ and therefore the Frobenius integrability conditions for ωm+1, . . . , ωk are satisfied; 
then, from

dAi(s) =
N∑

j=ds+1

ωi(s),jAj

we conclude that the s-th osculating space remains constant along the leaves of the foliation defined by 
ωm+1, . . . , ωk. �
Remark 3.7. As we recalled in the introduction, one can deduce, from Theorem 3.6, that, for s = 1 (i.e. the 
usual Gauss map), the fibres of γ1 are (Zariski open subsets of) linear spaces: see [8, (2.10)]. Moreover, in 
[8, §3] they give a general description of these varieties; we will pursue further this kind of description for 
higher s in Subsection 3.1.

Example 3.8. The first nontrivial example of application of the preceding theorem with s ≥ 2 is given by 
surfaces whose second Gauss map γ2 has as image a curve; this case has been studied in [3] and in [7]: they 
proved that the curves which are fibres of γ2 are indeed contained in 3-dimensional projective spaces; by 
Theorem 3.6, we deduce that the third fundamental form at the general point is given by a perfect cube.

Let us see the following consequence of the preceding result.

Corollary 3.9. If the s-th Gauss map γs (s ≥ 1) for a k-dimensional variety V has fibres of dimension m, 
then

ds+1 ≤ ds +
(
k −m + s

s + 1

)
, (3.13)

and the equality is reached if and only if the (s +1)-th fundamental form |Is+1| is given by the linear system 
of all the cones over a Pm−1 ⊂ PTP (V ).

Proof. By Proposition 2.10 we have to estimate the dimension Δs+1 of the linear system given by the 
(s + 1)-th fundamental form, but this, by Theorem 3.6, is formed by degree (s + 1) hypersurfaces which 
are cones over a Pm−1 in a Pk−1(= P(TP (V ))). Since the linear systems of these cones has (projective) 
dimension 

(
k−m+s
s+1

)
−1 (is equal to the complete linear system of degree (s +1) hypersurfaces in a Pk−m−2), 

we have the assertion. �
Example 3.10. Clearly, if m = k, then γs is constant, |Is+1| = ∅ and the variety is contained in a Pds .
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3.1. Varieties with a curve as the image of the s-th Gauss map

Let us start with the following

Lemma 3.11. If ds+1 = ds + 1, then ds+2 ≤ ds + 2. Moreover, if ds+2 = ds + 2, then |Is+1| and |Is+2| are 
generated by powers of the same linear form, and if ds+1 = ds+2, then our variety V is contained in Pds+2.

Proof. We apply Proposition 2.10 to deduce that the (s + 1)-th fundamental form |Is+1| is generated by 
only one form. Call this form f ; by Corollary 3.5, if g is a form in |Is+2|, then all its partial derivatives are 
in |Is+1|; therefore, by Euler’s formula

g = 1
s + 2

k∑
i=1

ωi
∂g

∂ωi
= 1

s + 2

k∑
i=1

ωiaif

ai ∈ C, i = 1, . . . , k, and we deduce that either g is zero or g = f�, where � is a linear form. If g = f�, by a 
change of coordinates we can suppose that � = ω1; then, we have

∂g

∂ω1
= f + ω1

∂f

∂ω1
∈ |Is+1| = (f)

∂g

∂ωj
= ω1

∂f

∂ωj
∈ |Is+1| = (f) j = 2, . . . , k

which imply that either f does not depend on ω1, but then g is the zero form, or f is reducible of the form 
f = ω1h. We can now proceed by induction to prove that f = ωs+1

1 : if f = ω�
1φ, then

∂g

∂ω1
= (� + 1)ω�φ + ω�+1

1
∂φ

∂ω1
= nω�

1φ

∂g

∂ωj
= ω�+1

1
∂φ

∂ωj
= njω

�
1φ j = 2, . . . , k

n, nj ∈ C, j = 1, . . . , k, and, as above, either φ does not depend on ω1, but then g is the zero form, or φ is 
reducible of the form φ = ω1φ

′.
If g = 0, then we can conclude from Theorem 3.6 (or, better, from Example 3.10). �

Corollary 3.12. If ds+2 = ds+1 +1 = ds+2, then the s-th and (s +1)-th Gauss maps have fibres of dimension 
k − 1.

Proof. By Lemma 3.11 we have that the |Is+1| and |Is+2| are cones over a Pk−2, therefore, by Theorem 3.6, 
the thesis follows. �

The case we are interested in now is the one with m = k−1 (i.e. the next after Example 3.10), therefore, 
by (3.13), (ds ≤)ds+1 ≤ ds +1; if ds+1 < ds +1, then ds+1 = ds, but in this case we would have no elements 
in |Is+1|, and therefore we would be in Example 3.10. We deduce that ds+1 = ds + 1, and we are in the 
case of Lemma 3.11, and by Theorem 3.6 the image of the s-th Gauss map has dimension 1; the complete 
description of such cases will follow from [8, (2.4)]. To use this result, we need some notations and result: 
we start by recalling the notation introduced in [8, §2(a)]; let B be an r-dimensional variety and let

f :B → G(d,N)
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be a morphism; let y ∈ B be a general point, and let Sy ⊂ V (where PN = P(V )) be the (d +1)-dimensional 
vector space which corresponds to f(y). Then, the differential of f in y can be thought of

dyf :TyB → Hom(Sy, Ny),

where Ny := V
Sy

. More explicitly, if y1, . . . , yr are local coordinates of B near y, and if e0(y), . . . ed(y) is a 
basis for the (d + 1)-dimensional vector spaces near Sy, we have

dyf

(
∂

∂yi

)
(ej(y)) ≡

∂(ej(y))
∂yi

mod Sy

for i = 1, . . . , r and j = 0, . . . , d. Then, fixed w ∈ TyB, one can define the “infinitely near” space

Sy

dw
:= Im dyf(w) ⊂ Ny,

and if we denote by [v] the class of v ∈ V in Ny, we consider the following subspaces of V :

Sy + Sy

dw
:=

{
v ∈ V | v = s + t, s ∈ Sy, [t] ∈

Sy

dw

}

Sy ∩
Sy

dw
:=

{
s ∈ Sy | ([0] =)[s] ∈ Sy

dw

}
= ker(dyf(w)).

Obviously, we have

rk(dyf) = ρ ⇐⇒ dim(Sy + Sy

dw
) = d + 1 + ρ ⇐⇒ dim(Sy ∩

Sy

dw
) = d + 1 − ρ.

We also denote the projective subspaces of PN associated to the vector spaces just defined by

P
d
y +

P
d
y

dw
:= P(Sy + Sy

dw
)

P
d
y ∩

P
d
y

dw
:= P(Sy ∩

Sy

dw
).

The case of r = 1 is completely solved in [8]; as in the cited article, with abuse of notation we denote by 
y the local coordinate of B near our general point y:

Proposition 3.13. (See [8, (2.4)].) With notations as above, if r = 1 and dim(Pd
y ∩

P
d
y

dw ) = d − ρ, then there 
exist ρ curves in PN , C1, . . . , Cρ parametrised by y, a1, . . . , aρ ∈ N, and a fixed (d −

∑ρ
i=1 ai)-dimensional 

subspace H ⊂ P
N such that Pd

y is the span of H together with the (ai − 1)-osculating (ai − 1)-planes 
T̃

(ai−1)
P (Ci) ⊂ P

N , that is

P
d
y = 〈T̃ (a1−1)

P (C1), . . . , T̃
(aρ−1)
P (Cρ), H〉.

Let us now use this result in our case: we take B as the image of the s-th Gauss map:

γs:V → Im(γs) =: B i
↪→ G(ds, N),

dimB = 1 and Sy denotes just the ds-dimensional vector subspace T̃ (s)
P (V ) ⊂ C

N+1, where y = γs(P ), 
defined by—with notations as in the proof of Theorem 3.6—Sy := 〈A0, . . . , Ads

〉. Moreover, by (3.12), we 
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have that B defines also a ruled variety, which is indeed the variety of osculating s-spaces to V : Tans(V ) :=
∪y∈BP

ds
y of dimension ds +1. By Corollary 3.12, if T̃ (s)

P (V ) �= T̃
(s+1)
P (V ), the same happens with T̃ (s+1)

P (V ): 
we have, on B, the S′

y’s, which are the ds+1-dimensional vector subspaces T̃ (s+1)
P (V ) ⊂ C

N+1, they define 

the (ruled) variety of osculating (s +1)-spaces to V Tans+1(V ) := ∪y∈BP
ds+1
y of dimension ds +2 such that 

V ⊂ Tans(V ) ⊂ Tans+1(V ).
Since, by definition of the (s + 1) osculating space, we have that, for y ∈ B,

P
ds
y +

P
ds
y

dy
⊂ P

ds+1
y ,

which implies

dim(Pds
y ∩

P
ds
y

dy
) = ds − 1.

Then, by Proposition 3.13

Proposition 3.14. If the s-th Gauss map has dimension one, then there exists a curve C ⊂ P
N having 

(a − 1)-osculating (a − 1) planes Pa−1
y := T̃

(a−1)
y (C) and a fixed PN−a−1 such that

P
ds
y = P

a−1
y + P

N−a−1.

In other words, Tans(V ), is the cone over PN−a−1 of Tana−1(C) (and the same holds true for higher Gauss 
maps).

Clearly, one can deduce more general results on the varieties of osculating s-spaces in the same vein as 
at the end of [8, §3].
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