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Abstract We study the Hartshorne-Rao modules MC of minimal curves C in P
N ,

with N ≥ 4, lying in the same liaison class of curves on a smooth rational scroll
surface. We get a free minimal resolution of MC for some of such curves and an upper
bound for Betti numbers of MC , for any C .
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0 Introduction

In recent years, the cohomology of a projective curve C has been an useful tool to
investigate the corresponding Hilbert scheme. Here a curve C will be a locally Cohen-
Macaulay and equidimensional subscheme of dimension 1 in P

N , the projective space
of dimension N on an algebraically closed field k. In particular, if C is not arith-
metically Cohen-Macaulay (briefly aCM ) the deficiency module MC = H1∗ (IC ) =∑

j∈Z
H1(IC ( j)) of C , that is the so-called Hartshorne-Rao module of C , is non

trivial and has finite length and it plays an important role in the study of the geome-
try of C . The importance of MC is highlighted in liaison theory (cf. [13]) and in the
classification theory (cf. [12]).
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250 R. Di Gennaro

In order to give a description (up to isomorphism and shift) of the Hartshorne-Rao
modules of a curve, it suffices to consider minimal curves in their even liaison clas-
ses. A curve is called minimal in its even liaison class if its Hartshorne-Rao module
MC realizes the minimal shift, i.e., there is no other curve in the same liaison class
who deficiency module is shifted on the left with respect MC . For curves in P

3, sev-
eral results on the Hartshorne-Rao module are known (cf. e.g., [10,12,14]); moreover
the Lazarsfeld-Rao property holds and any curve can be obtained from a minimal
curve in its even liaison class by a sequence of basic double links and, possibly, a flat
deformation.1

In codimension greater than 2 the Lazarsfeld-Rao property is still an open ques-
tion and very few information on minimal curves and their Hartshorne-Rao modules
are known (cf. [2,4,5,15]). Here, we give some new information on the structure
of Hartshorne-Rao modules for a particular class of minimal curves of codimension
greater than 2.

We will denote by Se,n (e ≥ 0, n ≥ 1) a smooth rational normal scroll surface
of degree e + 2n embedded via the very ample divisor C0 + (e + n)f as an aCM
surface of minimal degree in P

e+2n+1, where C0 is a rational normal curve of degree
n (the so-called directrix) and f is a line (the so-called fiber); the self-intersections
are, respectively, C2

0 = −e and f2 = 0, meanwhile C0 and f meet in a point, i.e.,
C0 · f = 1. The Picard group of Se,n is generated by C0 and f, so any curve is linearly
equivalent to a divisor aC0 + bf, with a, b ≥ 0, not both 0. By using the simple rules
of intersection and the adjunction formula, we get that if C ∼ aC0 + bf, then the
degree of C is an + b and the arithmetic genus is g = 1 + ab − a − b − 1

2 ea(a − 1).
Our starting point is the knowledge of minimal curves in their even liaison class on

Se,n (cf. [6]). These curves should appear a “small family” of curves in P
N , but actually

they are interesting for two reasons: first, the scrolls Se,n are all surfaces of minimal
degree different from the plane in P

2 and the Veronese surface in P
5 [1,3]. Notice

that we consider just smooth rational normal scroll surfaces since the Hartshorne-Rao
module of a curve on a singular surface of minimal degree is trivial (cf. [9, Example
5.2]); secondly, the curves we consider (minimal on Se,n) are minimal in their even
liaison class in the whole space P

N (as it is proved in [7]).
Our curves are arranged in two families: the union of fibers (as on the quadric in

P
3), i.e., curves in |bf|, and the curves in |aC0 + r f| with 0 ≤ r ≤ e. Liaison theory

says that each curve in the first family is related with only one curve in the second
family, in the sense that their Hartshorne-Rao modules are isomorphic up to k-dual
and shift ([6, Corollary 1.9]).

In this paper, we fix our attention on the case n = 1, i.e., C0 is a line, too, and
we denote by Se the scroll Se,1. In particular, since for e = 0 we get the well-known
smooth quadric in P

3, here we examine the cases e ≥ 1.
We present MaC0+rf as a quotient of M(a+1)C0+rf, by proving the following result.

Denoted by R = k[x0, . . . , xN ] the graded ring of polynomials in the N + 1 variables
x0, . . . , xN with coefficient in k and by d j := ( j−1)e−r ≥ 0, t j = ( j−1)(e+1)−r =
d j + j − 1 and I j := (

(x0, x1)
t j , x2, . . . , xN

) ⊂ R, we have

1 The deformation can be avoided if we replace basic double links by ascending elementary biliaisons [16].
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Theorem 1 Let C ∼ aC0 + r f be a curve on S, with a ≥ 1 and 0 ≤ r ≤ e; the
following short sequence is exact:

0 → R

I a+1 (da+1) → MC+C0 → MC → 0. (1)

In the particular case a = 1, Theorem 1 allows us to construct a free minimal resolution
of the Hartshorne-Rao module of curves 2C0 + r f.

Corollary 2 Let C ∼ 2C0+r f be a curve on Se, with 0 ≤ r ≤ e. Then the Hartshorne-
Rao module of C has the free minimal resolution

0 → FN+1 → · · · → F0 → M2C0+rf → 0

where the free R-modules are

Fj = R(−( j − d2))
α j ⊕ R(− j)β j

and the Betti numbers are

α j =
(

N − 1

j

)

and β j = t2

(
N − 1

j − 2

)

+ (t2 + 1)

(
N − 1

j − 1

)

,

when these numerical expressions have sense, otherwise these are 0.

By duality, from this result, we get also free minimal resolution for the unions of at
most e + 2 fibers.

In the general case, C ∼ aC0 + r f with a ≥ 3 (or C ∼ bf with b ≥ e + 2), we get
an upper bound for Betti numbers of MC .

Theorem 3 Let C ∼ aC0+r f be a curve on Se, with 0 ≤ r ≤ e. Then the Hartshorne-
Rao module of C has the free resolution

0 → FN+1 → · · · → F0 → MaC0+rf → 0

where for j = 0, . . . , N

Fj =
a⊕

i=2

R(−( j − di ))
α j ⊕

a⊕

i=2

R(−( j + i − 2))β
i
j ,

α j =
(

N − 1

j

)

and for i = 2, . . . , a

β i
j = ti

(
N − 1

j − 2

)

+ (ti + 1)

(
N − 1

j − 1

)

.
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252 R. Di Gennaro

Finally, we improve this bound for Betti numbers and we get some information for
the ideal Jb such that the sequence

0 → R

Jb
→ M(b+1)f → Mbf → 0

is exact.

1 Preliminary results

We follow standard notation and definitions as in [8] and [11]: if X ⊂ P
N is a closed

subscheme, OX denotes the sheaf of regular functions on X , IX the ideal sheaf of X ; if
F is a sheaf of modules over X , Hi∗(X,F ) = ⊕

j∈Z
Hi (X,F ( j)), with the natural

structure of graded R-module. Finally, by 	·
 and �·� we will denote, respectively, the
largest integer less or equal and the smallest integer greater or equal to the number in
the bracket.

Here, we rewrite the statements of [6] in our case n = 1 and for minimal curves in
a form that will be useful below. The symbol ∨ means the k-dual of the module.

First of all, we give the characterization of aCM curves on a rational normal scroll
surface.

Corollary 4 (cf. [5, Proposition 2.1]) A curve C ∼ aC0 + bf on S is aCM if and only
if (a − 1)(e + 1) ≤ b ≤ a(e + 1)+ 1.

From now on we will consider non-aCM curves and we recall the structure of
minimal curves and the relation between their Hartshorne-Rao modules.

Proposition 5 Let C ∼ aC0 + bf be a non-aCM curve on S; C is a minimal curve if
and only if a = 0 and b ≥ 2 or a ≥ 2 and 0 ≤ b ≤ e.

Theorem 6 ([6, Corollary 1.9]) Let C be a minimal curve on S.

1. If C ∼ bf with b ≥ 2, let q and r be respectively the quotient and the remainder
of the division between b − 2 and e + 1, then

M[q(e+1)+r+2]f ∼= M(q+2)C0+(e−r)f(−q)∨

2. If C ∼ aC0 + r f, with a ≥ 2 and 0 ≤ r ≤ e, then

MaC0+rf
∼= M[a(e+1)−e−r ]f(−a + 2))∨.

We will use often the explicit values of the Rao function of a curve on S, so it is useful
to rewrite them in this contest ([5, Theorem 1]).

Proposition 7 The Rao function of C ∼ aC0 + r f with a ≥ 2 and 0 ≤ r ≤ e is the
following
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(i) h1(IC ( j)) = 0 for any j ≤ r − ae + e − 1 and j ≥ a − 1;

(ii) If r − ae + e ≤ j ≤ −2 and α : =
⌊

r−2− j
e

⌋
,

h1(IC ( j)) = (a − α − 1)
[ e

2
(a + α)− r + j + 1

]
;

(iii) If −1 ≤ j ≤ a − 2,

h1(IC ( j)) = j (a + r)− g + 1 − 1

2
( j + 1)[ j (e + 2)+ 2];

The Rao function of C ∼ bf with b ≥ 2 is the following

(i) h1(IC ( j)) = 0 for any j < 0 and j ≥ b − 1;

(ii) If 0 ≤ j ≤
⌈

b
e+1

⌉
− 1,

h1(IC ( j)) = ( j + 1)

(

b + 1 − 1

2
j (e + 2)

)

;

(iii) If
⌈

b
e+1

⌉
≤ j ≤ b − 2 and α : =

⌊
j−b

e

⌋
,

h1(IC ( j)) = α
[

j − b + 1 − e

2
(α + 1)

]

Now, we can state the result about the generators of the Hartshorne - Rao modules
of minimal curves.

Theorem 8 The Hartshorne-Rao module of C ∼ bf with b ≥ 2 has b − 1 minimal
generators of degree 0.

The Hartshorne-Rao module of C ∼ aC0 + r f with 0 ≤ r ≤ e has a − 1 minimal
generators, each one of degree r − je, for each 1 ≤ j ≤ a − 1.

2 Proofs of the results and some applications

We begin by considering the families of minimal curves of type C ∼ aC0 + r f with
0 ≤ r ≤ e. Following the idea of the proof of the result on minimal generators of MC

in [6], we start from the sequence

0 → OS(−C0) → OS → OC0 → 0 (2)

tensored byOS(−aC0 − r f) to get the cohomology sequence

· · · → H0∗
(
OC0(ae − r)

) ϕ−→ MC+C0

ψ−→ MC → H1∗
(
OC0(ae − r)

) → · · · .
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254 R. Di Gennaro

As C0 ∼= P
1, the graded components of the last module are non trivial when j ≤

r −ae−2. In these degrees the Hartshorne-Rao module MC has trivial components (by
Proposition 7), so the graded homomorphism ψ is surjective and we get

· · · → H0∗
(
OC0(ae − r)

) ϕ−→ MC+C0

ψ−→ MC → 0. (3)

As C0 is a line in P
N , with N = e +3, we may assume (up to a change of coordinates)

that C0 has the equations x2 = · · · = xN = 0. So, if we denote by t0 and t1 the restric-
tions to C0 of x0 and x1, respectively, we get H0∗ (OC0)

∼= k[t0, t1], the k-module of
the homogeneous polynomials in two variables, so

H0∗ (OC0(d)) ∼= R

(x2, . . . , xN )
(d). (4)

By (4), shifting the sequence by r − ae degrees, we have

0 → ker ϕ′ → R
ϕ′
−→ MC+C0(r − ae)

ψ ′
−→ MC (r − ae) → 0. (5)

Remark 2.1 Geometrically, R/ ker ϕ′ is the Hilbert function of the submodule of
MC+C0 generated by the generator of minimal degree r − ae.

Now, the proof of Theorem 1 comes immediately from the following

Lemma 9 According to the notation above,

ker ϕ′ ∼= I a+1 ⊂ R,

where

I a+1 =
(
(x0, x1)

a(e+1)−r , x2, . . . , xN

)
.

Proof By previous arguments, it is obvious that x2, . . . , xN are in ker ϕ.
On the other hand, it is clear that any polynomial of degree d = diam(C + C0) =

a(e + 1)− r is in ker ϕ′. So, I ⊆ ker ϕ′.
Moreover, in order to avoid boring calculations with polynomial in R =

k[x0, . . . , xN ], it is useful rewrite the sequence (5) in two variables:

0 → ker ϕ′′ → k [t0, t1]
ϕ′′
−→ MC+C0(r − ae)

ψ ′
−→ MC (r − ae) → 0. (6)

Considering any sequence obtained by (6) at a fixed degree j , we can compute the
dimension of ker ϕ′′ in the degree j . We get:

dim ker ϕ′′
j = dim k [t0, t1] j − h1(IC+C0( j + r − ae))+ h1(IC ( j + r − ae)).
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Applying Proposition 7, with straightforward calculations, we get

h1(IC+C0(h))− h1(IC (h)) = h + 1 + ae − r,

for any h ≤ a − 1; so, in our case, h = j + r − ae and

ker ϕ′′
j = 0 for any j ≤ a(e + 1)− r − 1.

For h ≥ a, then h1(IC+C0(h)) = h1(IC (h)) = 0 so that

ker ϕ′′
j = k [t0, t1] j

for any j ≥ a(e + 1)− r . This means that

ker ϕ′′ = (t0, t1)
a(e+1)−r .

By lifting this result to the polynomial ring R, we get the thesis.

Remark 2.2 In particular, if C ∼ C0+r f, then C is aCM and so we get that M2C0+rf is
a module on the polynomial ring in two variables; geometrically, it is a module on the
homogeneous coordinate ring of C0. Lifting this property, we get the unusual property
that the Hartshorne-Rao module of a curve with a “few”fibers on S is a module on the
homogeneous coordinate ring of C0.

Now, to obtain a free resolution of MC , the idea is to solve any quotient R
I j and then

argue by induction on a, as the sequence in Theorem 1 suggests. It is easy to solve this
ideal of polynomial, as it is a monomial ideal. More in general, we get a free minimal
resolution of any ideal

(
(x0, x1)

t , x2, . . . , xN
) ⊂ R, with t ≥ 0.

Proposition 10 Let I := (
(x0, x1)

t , x2, . . . , xN
) ⊂ R, then the minimal free resolu-

tion of R/I is

0 → G N → · · · → G0 → R → R

I
→ 0 (7)

where the free R-modules are

Gk = R(−(k + 1))αk ⊕ R(−(k + t))βk (8a)

and the Betti numbers are

αk =
(

N − 1

k + 1

)

(8b)

and

βk = t

(
N − 1

k − 1

)

+ (t + 1)

(
N − 1

k

)

, (8c)

when these numerical expressions have sense, otherwise these are 0.
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256 R. Di Gennaro

Remark 2.3 We can note that the Betti numbers αk begin in degree 0 and α0 = N −1,
that is the number of the generators x2, . . . , xN , and they finish in degree N − 2 with
αN−2 = 1.

Instead the numbers βk begin in degree 0, but in this case the first addend is trivial
and β0 = t + 1, that is the number of the generators in x0, x1; they end in degree N ,
but in this case the second addend is trivial and βN = t .

Notice that the generators of ideal I consist of two subsets:
{

xt
0, xt−1

0 x1, . . . , xt
1

}
whose elements are not a regular sequence;

{x2, . . . , xN } whose elements form a regular sequence.

Intuitively, the second subset gives the “part” of the resolution seeming a Koszul res-
olution, that is the part of free modules R(−(k + 1))αk ; the first subset gives the more
complicated Betti numbers βk . Any βk consists of two addend. The first one “comes”
from the relations among the elements in x0, x1, the second one “comes” from the
relations between the two subsets of generators of I , as we will see during the proof.

This intuitive argument will be useful to clarify the proof of Proposition 10.

Proof We fix the following ordering among the t + N generators of I :

(x t
0 , x t−1

0 x1, . . . , x0x t−1
1 , xt

1, x2, . . . , xN ).

So, we have the matrix �0 of the homomorphism G0 → R.
Applying [8, Lemma 15.1 bis], we get that the first syzygies are generated by

divided Koszul relations, that are, in some sense, the expected “trivial”relations.

We obtain the matrix

�1 ∈ Mt+N ,t+(t+1)(N−1)+(N−1
2 )

of G1 → G0:

�1 :=
[

A B0 B1 · · · Bt 0 0 · · · 0
0 C0 C1 · · · Ct DN−2 DN−3 · · · D1

]

,

where

A =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

x1 0
−x0 x1

0 −x0
. . .

0 0
. . .

. . . 0

0
. . . x1

... −x0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

∈ Mt+1,t
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(coming from the relations between the first t + 1 generators); for each i = 0, . . . , t ,

Bi =
i+1−−→

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 · · · · · · · · · 0
...

...

x2 · · · · · · · · · xN
...

...
...

...
...

...

0 · · · · · · · · · 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

∈ Mt+1,N−1,

Ci =

⎡

⎢
⎢
⎢
⎢
⎣

xt−i
0 xi

1
. . . 0

0
. . .

xt−i
0 xi

1

⎤

⎥
⎥
⎥
⎥
⎦

∈ MN−1,N−1

(coming from the relations between each generator xt−i
0 xi

1 and each x j ( j =
2, . . . , N )) and for each j = 2, . . . , N − 1,

DN− j =

j−1−−→

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0
...

...
...

x j+1 x j+2 · · · xN

−x j 0 0
−x j

0
. . . 0

−x j

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

∈ MN−1,N− j

(coming from the relations between any two generators xi , x j with i < j).
In order to complete the resolution, we have just to iterate the previous argument,

by considering as generators the columns of�1 and repeating the same construction;
and so on. By Taylor complex defined in [8, Exercise 17.11], we get that at step h (with
h ≥ 1), to get the h-th syzygies we must involve h + 1 columns of the matrix �h−1
associated to the homomorphism Gh−1 → Gh . So, any column of�h has h + 1 non-
trivial entries. By construction, we will get that these non-trivial entries have degree
≥1. This assures that the resolution (7) is minimal.

The Betti numbers in the resolution are calculated by using the inductive formulas

∑

i=1,...,k

i = k(k + 1)

2
=

(
k + 1

2

)

, (9a)

∑

i=1,...,k

i2 = k(k − 1)(2k + 1)

6
, (9b)
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258 R. Di Gennaro

and

∑

i=k,...,n

i(i − 1) · · · (i − k + 1) = (n + 1)n(n − 1) · · · (n − k + 1)

k + 1
. (9c)

Actually, we have to prove that the complex we constructed is exact. To do this it is
enoguh the Buchsbaum-Eisenbud criterion (cf. [8]). The ideal generated by the minors
of maximal order of the matrix� j has depth greater or equal than j since in the matri-
ces � j there are at least j diagonal minors of maximal order whose diagonal entries
are some powers of different variables. This complete the proof.

Now, it is immediate to prove Corollary 2.

Proof (of Corollary 2) It is enough to consider the resolution in Proposition 10 shifted
by t2 = d2 + 1 and to rename Fj := G j−1(d2) and F0 := R(d2).

By Theorem 6, know the modules M2C0+rf is enough to solve the modules
M(e−r+2)f with 0 ≤ r ≤ e (dualizing without any shift), that is the Hartshorne-Rao
modules of the “small” unions of fibers 2f, 3f, . . . , (e + 2)f.

Corollary 11 Let C ∼ bf be a curve on Se, with 2 ≤ b ≤ e+2. Then the Hartshorne-
Rao module of C has the free minimal resolution

0 → F ′
N+1 → · · · → F ′

0 → Mbf → 0

where the free R-modules are

F ′
j = R(N + 1 − ( j − d2))

α′
j ⊕ R(N + 1 − j)β

′
j

and the Betti numbers are

α′
j =

(
N − 1

N + 1 − j

)

and β ′
j = (b − 1)

(
N − 1

N − 1 − j

)

+ b

(
N − 1

N − j

)

when these numerical expressions have sense, otherwise these are 0.

Proof By Theorem 6, as q = 0, it is enough to dualize the resolution of M2C0+rf
where r = e − b + 2. So F ′

j = FN+1− j , α′
j = αN+1− j and β ′

j = βN+1− j .

To argue on a general minimal curve of one of the two families, to prove Theorem 3,
we can now use the sequence in Theorem 1.

Proof (of Theorem 3) Of course, we argue by induction on a. If a = 1, Corollary 2
holds.

Let a ≥ 2. It is enough to apply Horseshoe Lemma to the sequence

0 → R

I a+1 (da+1) → M(a+1)C0+rf → MaC0+rf → 0.
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First we apply Proposition 10 to R/I a+1, then we shift it by da+1 degrees and we
renumber G ′

j := G j−1(da). We get

0 → G ′
N → · · · → G ′

1 → G ′
0 → R

I a+1 (da+1) → 0,

where

G ′
j = R(−( j − da+1))

α j ⊕ R(−( j + a − 2))β j

and

α j =
(

N − 1

j

)

and βk = ta+1

(
N − 1

j − 2

)

+ (ta+1 + 1)

(
N − 1

j − 1

)

.

By induction, applying Horseshoe Lemma, it is enough to “add” the modules and use
the formula

(h
k

) + ( h
k+1

) = (h+1
k

)
for any h, k.

Unfortunately, the proof of Horseshoe Lemma involves some lifted homomor-
phisms and so, in general, we do not know if the new resolution is minimal. In our
case, the duality between the two families of modules allows us to prove that the
resolution we get for curves aC0 + r f with a > 2 is not minimal.

Proposition 12 Let C ∼ aC0 + r f with a ≥ 3. The resolution in Theorem 3 is not
minimal. The last Betti number of MC is ta, that is the last Betti number of R/I a.

Proof The last module in the free minimal resolution of MC has to be R(−N − 1 +
a − 2)a(e+1)−r ; in fact, its dual has to correspond (up to a shift of 2 − a degrees) to
the minimal generators of the linked curve bf with b = (a + 1)(e + 1) − r − e, i.e.,
it corresponds to b − 1 = a(e + 1) − r elements of degree 0. The number b − 1
is exactly the last Betti number of R/I a ; moreover the last degree in the resolution
of R/I a(da) is −N − ta + da = −N − a + 1 that, dualized and shifted, gives
−N − a + 1 + N + 1 + a − 2 = 0.

Actually, we proved that each time we use the Horseshoe Lemma, the last term of
the resolution of MC on the right (and so also the last but one on the resolution on
the left) has to be deleted. Instead, the first terms of both resolutions involved in the
Horseshoe Lemma cannot be deleted, in fact they correspond exactly in number and
degree to the minimal generators of MC+C0 .

Finally, we get some information on the sequence we expect for the modules Mbf

in analogy with the sequence in Theorem 1. Actually, we wrote Theorem 6 in terms

of the quotient q =
⌊

b−2
e+1

⌋
in order to simplify calculations made in the following

arguments. We remarked that the unions of at most e + 2 fibers are linked to curves
of the form 2C0 + r f. For these unions of fibers we get a complete description of the
wanted sequence, as q = 0. Actually we prove the following.
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Proposition 13 Let bf be a curve on S with b = q(e+1)+r +2 ≥ 2 and 0 ≤ r ≤ e.
Then there is a short exact sequence:

0 → R

Jb+1
→ M(b+1)f → Mbf → 0

where Jb+1 has the following properties (up to a change of coordinates):

(i) Jb+1 contains x2, . . . , xN ,
(ii) Jb+1 contains the ideal (x0, x1)

b and it does not contain other powers (x0, x1)
i

for any i ≤ b − 1,
(iii) if r �= e, then Jb+1 contains exactly one generator of degree q + 1 in x0, x1 and

no polynomial in x0 and x1 of degree less or equal than q,
(iv) if r = e, then Jb+1 contains exactly two generators of degree q + 2 in x0, x1

and no polynomial in x0 and x1 of degree less or equal than q + 1.

Proof Arguing as in the proof of Theorem 1, from the sequence

0 → OS(−f) → OS → Of → 0

tensored by OS(−bf), we can construct the cohomology sequence

· · · → ⊕ j≥0 H0(Of( j)) → M(b+1)f → Mbf → ⊕ j≤2 H1(Of( j)) → · · · .

Again by degree reason and since f is a line, this cohomology sequence can be rewritten
as:

0 → ker ϕ → R → M(b+1)f → Mbf → 0. (10)

To calculate the ideal Jb+1 = ker ϕ ⊂ R, we can use the same technique: as f is a
line, we can reduce our polynomials just in two variables t0, t1; denoted by ϕ′ the map
ϕ reduced in two variables, to get dim kerϕ′ it is enough to calculate the difference
h1(I(b+1)f( j))− h1(Ibf( j)). In this case we do not have simple calculations in any
degrees, but, just using Proposition 7 and making arithmetics, we can notice that:

– h1(I(b+1)f( j))− h1(Ibf( j)) = j + 1 for any j ≤ q, so ker ϕ′ has no elements in
degree less or equal than q.

– If r �= e the first degree such that dim ker ϕ′
j �= 0 is q + 1 and in this degree

dim ker ϕ′
q+1 = 1. So the first non trivial element in ker ϕ′ has degree q + 1 and it

contains exactly one element of such degree.
– If r = e the first non trivial element in ker ϕ′ has degree q + 2 and it contains

exactly two generators of such degree.
– For any q, r , in degree greater or equal than b both modules Mbf and M(b+1)f are

trivial, so, for any j ≥ b ker ϕ′
j = k[t0, t1] j and (x0, x1)

b has to be contained in
ker ϕ′; but for smaller degrees ker ϕ′

j has dimension less than k[t0, t1] j ; so there is
at least one monomial in t0, t1 of degree less than b that is not in ker ϕ′.
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Corollary 14 In the notation above, if 2 ≤ b ≤ e − 1, then Jb+1 = (xb
0 , x1, x2, . . . ,

xN );

Proof It is enough to note that in this hypothesis q = 0 and r �= e. So we can choose
x1 as generator of degree q + 1 = 1.

Remark 25 Even if the previous proofs are based on calculations, we can give a geo-
metric interpretation for the case r = e. This case corresponds to the situation in
which the dual curve of bf is (q + 2)C0 + (e − r)f, meanwhile the dual of (b + 1)f is
(q + 3)C0 + ef. So, we “change” the dual curve: in the study of curves aC0 + r f, the
number r infers just on the degree of the syzygies, not on the Betti numbers, so two
curves with the same number a have similar resolutions, but this does not happen if
we change a; this difference appears also in the resolutions of the dual curves.

For completeness, we prove the following simple extension of the previous results.

Proposition 15 In the notation above, J2 = (x0, x1, . . . , xN ).

Proof It is enough to note that the sequence (10) can be written also for b = 1. In this
case Mf = 0 as f is aCM and we know that M2f

∼= k as it has only one generator of
degree zero.

Note that the last result is in agreement with Proposition 13.
We conclude noting that a complete description of Jb could allow us to construct

a free resolution of Mbf. We could dualize and shift this resolution to get another free
resolution of MaC0+rf and then, comparing the two known resolutions of the same
module, we could hope for improve our research towards a free minimal resolution.
Unfortunately, the only case in which Jb is known corresponds to the curves 2C0 + r f
and for them we already have a minimal resolution.
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