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Airway hyperreactivity is characterized by increased responsiveness to bronchoconstrictor stimuli and it

is hallmark of asthma. Adenosine is an ubiquitous signaling nucleoside resulting from ATP catabolism,

whose extracellular levels increase following cellular damage or stress. Adenosine plays a role in asthma;

asthmatics, but not normal subjects, present bronchoconstriction following inhalation of adenosine or of

its precursor, adenosine-50-monophosphate, most likely via adenosine A2B receptor on mast cells.

However, the mechanism underling the increased airway smooth muscle sensitivity to adenosine in

asthmatics remains to be elucidated. Early experimental studies suggested the involvement of A1

receptor; this hypothesis has been confirmed by more recent studies on guinea pigs and is corroborated

by the finding of an increased adenosine A1 expression on asthmatic bronchial tissues. Brown Norway

rats, the strain usually used to assess asthma models, develop hyperresponsiveness to adenosine 3 h

following allergen challenge, but not 24 h thereafter, without involvement of A1 receptor. Here, we

investigated the role of adenosine A1 receptor in sensitized Wistar rats showing airway hyperrespon-

siveness 24 h following allergen challenge. We found that on bronchi of sensitized Wistar rats challenged

with allergen there is an increased adenosine A1 receptor expression on smooth muscle that is

responsible for hyperresponsiveness to adenosine and ovalbumin.

& 2012 Elsevier B.V. All rights reserved.
1. Introduction

Airway hyperreactivity, an important feature of bronchial
asthma, is characterized by increased responsiveness to a number
of bronchoconstrictor stimuli (Hargreave and Nair, 2009).
Although a wide variety of mediators and inflammatory cells
contribute to the airway inflammatory process and tissue remo-
deling, mechanisms and signaling molecules that govern the
chronic nature of inflammation in asthma and bronchial hyper-
reactivity are still unknown (Barnes, 2008; Sterk and Bel, 1989).

Adenosine is a ubiquitous signaling nucleoside resulting from
ATP catabolism, whose extracellular levels strongly increase follow-
ing cellular damage or stress (Fredholm, 2007). Adenosine plays a
role in bronchial asthma; asthmatics present elevated adenosine
levels in bronchoalveolar lavage fluids (Caruso et al., 2006; Driver
et al., 1993) and bronchoconstriction following inhalation of adeno-
sine or of its precursor, adenosine-50-monophosphate (Cushley et al.,
ll rights reserved.
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1983). Interestingly, in humans, bronchial sensitivity to adenosine
reflects allergic asthma and bronchial inflammation better than the
sensitivity to other agents, such as methacholine or histamine (De
Meer et al., 2002; Manso et al., 2011).

Despite evidence suggesting adenosine as an important med-
iator in the airways, molecular mechanisms at the basis of its
effect as well as receptor subtypes(s) involved are still uncertain.
Firstly, it was supposed that bronchial response to adenosine in
humans was only due to an indirect mechanism involving A2B

receptor activation on mast cells (Forsythe and Ennis, 1999);
however, to explain the specific increased sensitivity to adenosine
of asthmatic airways, the involvement of a direct mechanism was
also investigated. Thereby, early studies demonstrated adenosine
A1 receptor involvement in hyperresponsiveness to adenosine in
immunized rabbits (Ali et al., 1994; el-Hashim et al., 1996).
Successively, Obiefuna et al. (2005) showed that the selective A1

receptor antagonist, L-97-1, inhibited bronchial hyperresponsive-
ness to histamine and adenosine in the model of allergic rabbits.

The role of A1 receptor in bronchial hyperreactivity remains
to be clarified. Interestingly, more recently, increased adenosine
A1 receptor expression has been found on asthmatic bronchial
tissues (Brown et al., 2008a). Furthermore, in a model of
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sensitized guinea pigs, Smith and Broadley (2010) have demon-
strated that adenosine A2B and A3 receptors are involved in cell
influx and A1 in the late asthmatic response to allergen.

Brown Norway rats, the strain usually used to assess asthma
models, develop hyperresponsiveness to adenosine 3 h following
allergen challenge, but not 24 h thereafter. The effect has been
suggested to be mediated by adenosine A2B receptor on mast
cells, ruling out the involvement of other receptors, such as A2A,
A1 and A3 (Fozard and Hannon, 2000; Hannon et al., 2001, 2002).

There is evidence that Wistar rats develop bronchial hyper-
reactivity following sensitization and allergen challenge; hyper-
responsiveness to acetylcholine is evident 24 h following allergen
challenge, in contrast to what is observed in sensitized Brown
Norway rats (Chiba and Misawa, 1993).

On these bases, in the present study we have utilized
ovalbumin-sensitized Wistar rats in which bronchial responsive-
ness to adenosine was evaluated 24 h following allergen or saline
challenge. Furthermore, we have analyzed the involvement of
adenosine A1 receptor in bronchial hyperreactivity elicited 24 h
following allergen exposure.
2. Material and methods

2.1. Animals

All experiments were performed on male Wistar rats (200–
250 g; Harlan Nossan, Italy). Animals were housed in a controlled
environment and provided with standard rodent chow and water.
All experiments complied with the Italian D.L. n. 116 of 27
January 1992 and associate guidelines in the European Commu-
nity Council Directive of 24 November 1986 (86/609/).

2.2. Sensitization procedure and allergen challenge

Animals were briefly anaesthetized with 4% isofluran (Abbott,
Italy) in an anesthetic chamber and injected subcutaneously and
Fig. 1. Formalin-fixed, paraffin-embedded and H&E-stained rat lung sections from cont

control rats are free of inflammation and edema (A). In lungs from sensitized ovalbumin

edema can be seen (B and C). Pictures shown are representative of three separate expe

scale bar¼100 mm.
intraperitoneally with egg chicken albumin (ovalbumin; Sigma,
Italy) 100 mg/kg mixed with aluminum hydroxide gel (13 mg/ml;
Sigma, Italy); control rats were injected with only the vehicle.
Twenty-one days after sensitization procedure, rats were placed
in a restrainer, connected to a nebulizer through a mask and
challenged with an aerosol of ovalbumin (5 mg/ml; 2 ml per
animal) or saline, at a rate of 0.2 ml/min, under sodium pento-
barbital anesthesia (60 mg/kg ip); 24 h thereafter, rats were used
for the functional study.

2.3. Morphological analysis of lungs

For morphological analysis of lungs, rats were treated as
described above and sacrificed 24 h after challenge with aero-
solized ovalbumin or saline. The thorax was opened, and the
lungs were perfused with phosphate-buffered saline (PBS), pH
7.4, via the pulmonary artery to remove blood. The lungs were
distended by instilling 5 ml of 10% buffered formalin, pH 7.4, via
the tracheotomy. The trachea was tied closed and the inflated
lung was carefully removed to avoid puncturing and placed in
10% formalin for 24 h. Transverse portions, 0.5 cm thick, were cut
from the mid- and lower zones of fixed lungs, paraffin-embedded,
sectioned at 5 mm and stained with haematoxylin and eosin.
Images were taken by a Leica DFC320 video-camera (Leica, Milan,
Italy) connected to a Leica DM RB microscope using the Leica
Application Suite software V2.4.0.

2.4. Functional study

Functional experiments were performed on sensitized rats
challenged with aerosolized ovalbumin or with saline, as
described above, and on control rats. Animals were anaesthetized
with urethane (10 ml/ kg ip.; sol. 10% w/v; Sigma, Italy); the
jugular vein and the carotid artery were cannulated respectively
for drug administration and for a continuous blood pressure
monitoring. Rats were artificially ventilated (60 breaths/min;
1 ml/100 g tidal volume) via a tracheal cannula and connected
rol rats (A) and sensitized ovalbumin-challenged rats (B and C). Lung sections from

-challenged rats, peribronchial and perivascular inflammatory cell infiltration and

riments performed. Magnification: A and B �100; scale bar¼25 mm and C �400;



Fig. 2. Bronchoconstriction in response to (A) ovalbumin (1 mg/kg iv.); (B)

adenosine (3 mg/kg iv.) and (C) carbachol (10 mg/kg iv.) evaluated in sensitized

rats challenged with aerosolized saline or with aerosolized ovalbumin and in

control rats. Values are mean7S.E.M. (n¼9–24); nPo0.05; nnPo0.01 and
nnnPo0.001 vs. control.
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to a bronchospasm transducer (Ugo Basile, Italy) to monitor
change in airway resistance. All data were acquired by a compu-
terized system (BIOPAC Systems, TCI 102). After a stabilization
period of 15 min, ovalbumin (1 mg/kg) was intravenously admi-
nistered and the bronchial response was monitored during the
following 1 h; afterward, adenosine (3 mg/kg i.v.; Sigma, Italy)
was administered and the bronchial response was monitored for
30 min; in the end, bronchial response to carbachol (10 mg/kg i.v.;
Sigma, Italy) was evaluated.

2.5. Western blot analysis

In subsets of experiments, adenosine A1 receptor expression
on main bronchi obtained from different animal groups was
evaluated. For this purpose, rats were sacrificed and lungs were
removed. Main bronchi were carefully isolated from the
remaining part of the lung, were dissected free of parenchyma
and immediately frozen in liquid nitrogen before being stored
at �80 1C. On the day of analysis, tissues were crushed into
powder and resuspended in 300 ml of lysis buffer (aprotinin,
3.07 mM; EDTA, 100 mM, leupeptin, 2.2 mM; Na-deoxycholate,
10%; NaCl, 150 mM; NaF, 5 mM; NP-40, 10%; ortovanadate,
50 mM; PMSF, 100 mM; Tris–HCl, 65 mM). Protein concentration
was determined by the Bio-Rad protein assay kit (Bio-Rad,
Italy). Protein samples (35 mg) were electrophoresed in an 8%
discontinuous polyacrylamide gel and then transferred onto
nitrocellulose membranes. The membranes were saturated by
incubation with 5% non-fat dry milk in PBS supplemented with
0.1% Tween-20 (PBS-T) for 1 h at room temperature and then
incubated with anti-A1 receptor goat antibody (1:200; Santa
Cruz Biotechnology, Italy) for 12 h at 4 1C. Successively, mem-
branes were washed and then incubated for 2 h at room
temperature with the secondary antibody conjugated with
horseradish peroxidase, anti-goat IgG–HRP (1:3000; Dako, Den-
mark). Immunereactive proteins were visualized by enhanced
chemiluminescence using Image Quant 400 GE Healthcare
software (GE Healthcare, Italy). Successively, to confirm the
equal protein loading, membranes were stripped and incubated
with anti b-actin monoclonal antibody (1:3000; Sigma-Aldrich,
Italy) and subsequently with anti-mouse IgG–HRP (1:5000;
Dako, Denmark), both for 60 min at room temperature. Protein
levels were quantified by densitometry of detected bands.

2.6. Immunohistochemical analysis

From different groups of animals, the main bronchi were
removed as described above, snap-frozen in liquid nitrogen in
embedding medium (OCT compound, Sakura Finetek, Europe).
Ten cross sections (8 mm) were cut from the approximate middle
portion of the bronchi. For staining, sections were fixed in acetone
for 5 min, air dried, re-hydrated with PBS, incubated with 0.3%
H2O2 in methanol for 10 min before the incubation in serum-free
Protein Block (DakoCytomation, Milan, Italy) for 30 min. After
avidin–biotin blocking, sections were incubated for 1 h with
adenosine A1 receptor goat polyclonal antibody (1:75 in 1% BSA;
Santa Cruz Biotechnology, Italy) or with isotype-matched anti-
body as negative control. Subsequently, sections were incubated
for 15 min in biotinylated anti-goat secondary antibody (1:200;
Dako, Denmark), washed and incubated for 5 min with
streptavidin–HRP (1:200; Sigma-Aldrich, Milan, Italy). Positivity
was detected with 3,30-diaminobenzidine substrate (DAB) and the
nuclei counterstained with haematoxylin and eosin (H&E). The
slides were then dehydrated and mounted in Entellans medium.
Images were acquired with Leica DFC320 video camera (Leica,
Italy) connected to the microscope (Leica, DMRB) using the Leica
Application Suite software V2.4.0.
2.7. Rat treatment with A1 adenosine receptor antagonist

To evaluate the role of adenosine A1 receptor in the bronchial
response to spasmogens used, different groups of sensitized
ovalbumin-challenged animals were pre-treated with A1 adeno-
sine receptor antagonist, 1,3-dipropyl-8-cyclopentylxanthine
(DPCPX, 100 mg/kg iv.; Sigma, Italy), 5 min before administrating
ovalbumin; control animals received the vehicle (DMSO/ distilled
water 1:1; 1 ml/kg iv.).

2.8. Statistical analysis

All data are expressed as mean7S.E.M. of at least five experi-
ments and analyzed with a computerized statistical package (Graph-
Pad Prism v. 4.01). Bronchoconstriction is expressed as percentage of
bronchoconstriction relative to the maximum percentage (100%)
simulated by clamping air piping upstream the tracheal cannula,
thereby diverting all pumped air to the transducer. Results are
analyzed with one way analysis of variance (ANOVA), followed by
Bonferroni’s test for multiple comparisons, or with Student’s t-test
when appropriate. A value of Po0.05 was considered significant.
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3. Results

3.1. Morphological characterization of lungs from sensitized

rats challenged with ovalbumin shows tissue edema and cell

infiltration

Following histological analysis with haematoxylin and eosin
staining, peribronchial and perivascular edema and inflammatory
cell infiltration was evident in sensitized rats challenged with
aerosolized ovalbumin but not in control rats, whose lung
Fig. 4. Immunohistochemical localization of adenosine A1 receptor on bronchi control r

(A) is a negative control. (Original magnification: �400; scale bar¼50 mm).

Fig. 3. Representative results of Western blot analysis of adenosine A1 receptor

expression on bronchial tissue from sensitized rats challenged with ovalbumin or

with saline and from control rats. Graph bar represents optical density (O.D.)

relative to b actin. nnPo 0.01 vs. control (repeated measures ANOVA, followed by

Dunnett’s test).
sections were free of inflammation and edema (Fig. 1). A similar
profile without tissue damage was observed on lung sections
from ovalbumin-sensitized rats challenged with aerosolized sal-
ine (data not shown).
3.2. Increased bronchial response to spasmogens in sensitized rats

challenged with ovalbumin

In sensitized rats challenged with saline 24 h before the functional
study, bronchoconstriction in response to intravenously injected
ovalbumin (1 mg/kg), adenosine (3 mg/kg) or carbachol (10 mg/kg)
was of 18.5375.37% (n¼9); 16.3374.43% (n¼9) or 15.33%73.88
(n¼9) respectively (Fig. 2). These responses were not significantly
different from those obtained in control rats (ovalbumin, 15.937
3.49%; adenosine, 11.1373.27%; carbachol, 23.0075.00%, n¼15;
Fig. 2). On the contrary, in sensitized rats challenged with aerosolized
ovalbumin 24 h before measurements, bronchoconstriction in
response to all spasmogens significantly increased (ovalbumin,
44.2574.61%, Po0.001; adenosine, 30.6875.00%, Po0.01; carba-
chol, 43.9575.26%, Po0.05; n¼19–24) compared to response
obtained in control rats (Fig. 2).
3.3. Adenosine A1 receptor is highly expressed on bronchial tissues

from sensitized rats challenged with ovalbumin

Western blotting on bronchial tissues from sensitized rats
challenged with ovalbumin showed that the adenosine A1 recep-
tor expression was increased compared to the expression eval-
uated on bronchial tissues from sensitized rats challenged with
saline and from control rats (Fig. 3).

Results obtained by Western blot analysis were confirmed by
immunohistochemical analysis with bronchial tissues from sen-
sitized rats challenged with ovalbumin showing a positive immu-
noreactivity for adenosine A1 receptor, predominantly localized
on the bronchial smooth muscle, stronger than tissues obtained
ats (B), and from sensitized rats challenged with saline (C) or with ovalbumin (D);



Fig. 5. Effect of adenosine A1 receptor antagonist, DPCPX (100 mg/kg iv) on

bronchoconstriction induced by (A) ovalbumin (1 mg/kg iv); (B) adenosine

(3 mg/kg iv.); and (C) carbachol (10 mg/kg iv.) in sensitized rats challenged with

aerosolized ovalbumin. The effect of vehicle (DMSO) is also shown. Values are

mean7S.E.M. (n¼4–6). nnPo0.01.

A. Alfieri et al. / European Journal of Pharmacology 695 (2012) 120–125124
from sensitized rats challenged with saline and from control
animals (Fig. 4).

3.4. Adenosine A1 receptor antagonism reduces bronchial response

to ovalbumin and adenosine

Rat treatment with A1 adenosine receptor antagonist, DPCPX
(100 mg/kg iv.), injected 5 min prior to the administration of
spasmogen agents, reduced the bronchial response to ovalbumin
and to adenosine (Po0.01), but did not affect the bronchial
response to carbachol (Fig. 5).
4. Discussion

In this study we show that adenosine A1 receptor mediates
increased bronchoconstriction in response to allergen and adeno-
sine observed in sensitized Wistar rats 24 h following challenge
with aerosolized ovalbumin. Morphological analysis showed
feature of tissue damage and inflammatory cell infiltration in
airways from sensitized rats challenged with aerosolized allergen.
Results obtained from the functional studies showed that chal-
lenge of actively sensitized rats with aerosolized ovalbumin
induced bronchial hyperreactivity, evidenced by an increased
bronchoconstriction in response to all spasmogens used, that
was not observed when sensitized rats were challenged with
aerosolized saline. This finding is in accordance with previous
experimental works performed on Brown Norway rats (Hannon
et al., 2001) and on allergic mice (Fan and Mustafa, 2002) and
demonstrates that, in Wistar rats, sensitization per s�e does not
cause bronchial hyperreactivity but allergen challenge is required
to establish bronchial hyperreactivity, an important feature of
allergic asthma. It is worth noting that this finding is also
consistent with clinical observations about asthma; in fact, it
must be considered that asthmatics undergo regular exposure to
allergen.

Although intriguing findings have suggested the involvement
of adenosine A1 receptor in asthma, up to now its role in bronchial
hyperreactivity is still unclear (Brown et al., 2008b).

Here, we show that the increased bronchial response to
spasmogens, in our experimental model, was paralleled by an
increased adenosine A1 receptor expression on bronchi from
sensitized rats exposed to aerosolized ovalbumin; on the con-
trary, sensitized rats exposed to aerosolized saline did not show
bronchial hyperreactivity nor increased A1 expression on airways.
Adenosine A1 receptor overexpression on airways of sensitized
rats challenged with ovalbumin was also confirmed by histologi-
cal studies; indeed, there was a strong immunopositivity for
adenosine A1 receptor on bronchial smooth muscle cells only of
sensitized rats challenged with ovalbumin. This finding confirms
that adenosine A1 receptor up-regulation is consequent to the
exposure to allergen.

A1 receptor was firstly demonstrated to be involved in
bronchoconstriction in response to adenosine in a model of
allergic rabbits; authors demonstrated specific adenosine A1

receptor binding sites in lung and suggested the possibility of
an inducible A1 receptor (Ali et al., 1994). Successively, it was
shown that, in the same model, an antisense oligonucleotide
targeting A1 receptor mRNA reduced bronchoconstriction induced
by either adenosine or allergen (el-Hashim et al., 1996; Nyce and
Metzger, 1997). More recently, elevated expression of adenosine
A1 receptor has been found localized on epithelium and smooth
muscle in bronchial tissue from asthmatic subjects; in contrast, A1

receptors are scarcely expressed on tissues from healthy subjects
(Brown et al., 2008a). Interestingly, this is the only adenosine
receptor subtype found to be differently expressed on human
tissues from asthmatic and normal people.

To evaluate whether the increased adenosine A1 receptor
expression also reflected receptor functionality and its involve-
ment in bronchial hyperreactivity, we performed functional
experiments also in groups of sensitized rats treated with A1

receptor antagonist, DPCPX, at the dose described in literature
(Tigani et al., 2002). We found that DPCPX treatment of sensitized
rats challenged with aerosolized ovalbumin reduced not only the
increased bronchial response to adenosine, but also the increased
response to ovalbumin, while sparing response to carbachol. This
finding demonstrates that adenosine A1 receptor is involved in
the bronchial response to adenosine and to allergen observed 24 h
following challenge in sensitized Wistar rats. Furthermore, evi-
dence that DPCPX does not inhibit the increased response to
carbachol indicates no unspecific effect in reducing smooth
muscle contractility. Likely, following allergen administration
released adenosine contributes to bronchoconstriction through
A1 receptor activation, as also suggested by performing experi-
ments in sensitized guinea pigs (Smith and Broadley, 2010).
Interestingly enough in this study, authors observed that, in
sensitized guinea pigs, A1 antagonist was only able to inhibit
the late asthmatic response characterized by bronchial hyper-
reactivity, 24 h following allergen challenge, consistent with an
increased expression of A1 receptor.
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In conclusion, our data show that challenge of sensitized
Wistar rats with allergen causes bronchial hyperreactivity paral-
leled by up-regulation of adenosine A1 receptor on airway smooth
muscle. In our model, adenosine A1 receptor is involved in
bronchial response to adenosine and to allergen, 24 h following
allergen challenge, in contrast to what was previously demon-
strated in Brown Norway rats, in which hyperresponsiveness to
adenosine was observed only 3 h following allergen challenge and
did not involve A1 but A2B receptor, consistent with the involve-
ment of mast cells, thus with an indirect adenosine effect (Fozard
and Hannon, 2000; Hannon et al., 2001). Thus, it appears that
adenosine A2B receptor is involved in an early asthmatic response,
while A1 receptor is involved when an increased airway reactivity
to adenosine is observed in a late phase.

It is known that to define the mechanism at the basis of airway
hyperreactivity to adenosine is made complicated by the fact that
the sensitivity to adenosine and receptor(s) involved vary among
animal species and rat strains used in asthma models (Fozard and
Hannon, 2000). These results represent a further contribution
pointing at an important role for the adenosine A1 receptor up-
regulation in bronchial hyperreactivity elicited by allergen chal-
lenge and also provide a useful rat model to better investigate on
the molecular basis of bronchial hyperresponsiveness to adenosine.
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