
Role of �2 Adrenergic Receptors in Human Atherosclerotic
Coronary Arteries

Emanuele Barbato, MD; Federico Piscione, MD, PhD; Jozef Bartunek, MD, PhD;
Gennaro Galasso, MD; Plinio Cirillo, MD, PhD; Giuseppe De Luca, MD; Guido Iaccarino, MD, PhD;

Bernard De Bruyne, MD, PhD; Massimo Chiariello, MD, PhD; William Wijns, MD, PhD

Background—Adrenergic regulation of coronary vasomotion is balanced between �1-adrenergic–mediated (�1-AR)
constriction and �2-adrenergic–mediated (�2-AR) relaxation. This study aimed at assessing the role of �2-ARs in normal,
mildly atherosclerotic, and stenotic human coronary arteries.

Methods and Results—During intracoronary (IC) infusion of increasing doses of the �2-AR agonist salbutamol (0.15, 0.3,
and 0.6 �g/min) and the endothelial vasodilator acetylcholine (1, 3, and 10 �g/min), we measured (1) changes in lumen
diameter (LD) by quantitative coronary angiography in 34 normal, 55 mildly atherosclerotic, and 42 stenotic coronary
artery segments and (2) changes in average peak velocity (APV) and coronary blood flow (CBF) with the use of Doppler
flow wire in 11 normal, 10 mildly atherosclerotic, and 11 stenotic coronary arteries. In 6 of 11 stenotic coronary arteries,
the protocol was repeated after an IC bolus (12 �g/kg) of the �-adrenergic blocker phentolamine. In 6 of 11 normal
coronary arteries, the protocol was repeated after an IC infusion (60 �mol/min) of NG-monomethyl-L-arginine
(L-NMMA), a nitric oxide inhibitor. Neither salbutamol IC infusion nor acetylcholine significantly changed heart rate
or blood pressure, whereas L-NMMA slightly increased blood pressure. In normal coronary arteries, salbutamol
increased LD (LD max %: 11�2, P�0.05), APV (APV max %: 53�17, P�0.05), and CBF (CBF max %: 57�17,
P�0.05), whereas L-NMMA caused a blunted APV (APV max %: 27�6, P�0.05) and CBF (CBF max %: 29�6,
P�0.05) response to salbutamol. In mildly atherosclerotic coronary arteries, the salbutamol increase in LD (LD max %:
10�2, P�0.05), APV (APV max %: 33�12, P�0.05), and CBF (CBF max %: 37�12, P�0.05) was preserved. In
stenotic coronary arteries, salbutamol induced a paradoxical reduction in LD (LD max %: �6�2, P�0.05), APV (APV
max %: �15�9, P�0.05), and CBF (CBF max %: �15�6, P�0.05), which was no longer observed after phentolamine.
Acetylcholine increased LD (LD max %: 14�3, P�0.05), APV (APV max %: 61�20, P�0.05), and CBF (CBF max %:
67�19, P�0.05) in normal coronary arteries. In mildly atherosclerotic coronary arteries, acetylcholine induced a significant
reduction in LD (LD max %: �15�2, P�0.05) and no changes in APV (APV max %: �6�13, P�NS) and CBF (CBF max
%: �10�13, P�NS). In stenotic coronary arteries, acetylcholine significantly reduced LD (LD max %: �15�3, P�0.05),
APV (APV max %: �15�9, P�0.05), and CBF (CBF max %: �15�6, P�0.05).

Conclusions—In severely atherosclerotic coronary arteries, �2-adrenergic vasodilatation is impaired, and this might
contribute to alter the vasomotor balance, further precipitating myocardial ischemia during sympathetic activation.
(Circulation. 2005;111:288-294.)
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Adrenergic stimulation plays a key role in the regulation
of coronary vasomotor tone, and it is modulated by

atherosclerosis such that vasodilation is turned into vasocon-
striction. Cold pressor test and mental stress, 2 common
maneuvers causing adrenergic activation, induce vasodilation
in normal coronary arteries and vasoconstriction in stenotic
coronary arteries.1,2

It has been advocated that a combination of endothelial
dysfunction and increased �-adrenergic receptor responsive-

ness accounts for this phenomenon.3,4 Consistently, pretreat-
ment with �-adrenergic blockers is able to reverse this trend
and prevent myocardial ischemia.5,6 We have recently dem-
onstrated in humans that intravenous dobutamine, an �1-, �1-,
and �2-adrenergic receptor agonist, vasodilates angiographi-
cally normal coronary arteries, whereas a lack of vasomotion
to dobutamine was observed in stenotic coronary arteries. In
these vessels, pretreatment with phentolamine restored dobu-
tamine-induced vasomotion.7
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�2-Adrenergic receptors (�2-ARs) are expressed into cor-
onary vascular wall and are important mediators of the
adrenergic tone.8 –12 The present study aimed at assessing
the role of �2-ARs in normal coronary arteries and testing the
hypothesis that the shift of the vasomotor balance toward
constriction in atherosclerotic coronary arteries is a result of
not only an enhanced �-adrenergic tone but also an impair-
ment of the �2-AR responsiveness.

Methods
Patients and Catheterization Protocol
The study population consisted of 33 patients with stable angina
(Canadian Cardiovascular Society class II or III) and normal left
ventricular ejection fraction referred for coronary angiography be-
cause of a positive or nonconclusive stress test; among these, 11
patients had normal coronary arteries and 22 had single-vessel
disease. Cardiac medications, except for aspirin and statins, were
withheld in all patients for at least 36 hours before the protocol.

A 6F sheath was introduced into the femoral artery, and a 6F
guiding catheter was engaged into the coronary ostium. Five thou-
sand units of heparin was given to all patients. On average, the
duration of the protocol was 30 minutes, and no untoward effects or
complications occurred. Informed consent was obtained from all
patients before the diagnostic catheterization, in accordance with the
protocol approved by the local ethics committees.

Experimental Protocols
Figure 1 summarizes the study protocols. All patients underwent the
following protocol: after a baseline period of 5 minutes, an intra-
coronary (IC) administration of the selective �2-adrenergic receptor
agonist salbutamol was performed at 0.15, 0.3, and 0.6 �g/min at a
constant infusion rate of 1.25 mL/min for 3 minutes for each dose.
These doses of salbutamol were shown not to significantly affect
cardiac inotropism and chronotropism.13

Five minutes after salbutamol infusion, 5 patients with angio-
graphically normal coronary arteries and 10 patients with single-
vessel disease received an IC administration of the endothelial
vasodilator acetylcholine at 1, 3, and 10 �g/min at a constant
infusion rate of 1.25 mL/min for 3 minutes for each dose.14

In another group of 6 patients with single-vessel disease, an IC
bolus of the �-adrenergic blocker phentolamine (12 �g/kg) was

given 5 minutes after salbutamol infusion, and 3 minutes later, the
salbutamol protocol was repeated.15

In another group of 6 patients with angiographically normal
coronary arteries, the salbutamol protocol was repeated after an IC
infusion of the nitric oxide synthase inhibitor NG-monomethyl-L-
arginine (L-NMMA, 60 �mol/min, for 6 minutes).16 All patients
received an IC bolus of nitrates (300 �g) at the end of the protocols.

Data Acquisition
Data were recorded at every step of the protocols: at baseline, at the
end of each dose of salbutamol, at the end of each dose of
acetylcholine, at the end of L-NMMA infusion, and 3 minutes after
phentolamine and nitrates (Figure 1).

Hemodynamic Data
Heart rate and blood pressure were digitally recorded (Marquette
1000 Ex, Mac-Laboratory System) during the entire study protocols.

Angiographic Data
Vessel dimensions and vessel dimension changes along the protocols
were measured on angiograms, acquired according to the above
steps, by quantitative coronary angiography, as previously de-
scribed.7 In each patient, an average of 3.8 segments were selected in
one projection on the baseline angiogram. As shown in Table 1,
coronary artery segments were pooled and analyzed separately as
follows: (1) normal segments (n�34) from patients with angio-
graphically smooth coronary arteries; (2) mildly atherosclerotic
segments (n�55) from the adjacent coronary artery in patients with

Figure 1. Diagrams of the study proto-
cols. BL indicates baseline; REC, recov-
ery; PHE, phentolamine; ISDN, nitrates.
The arrows indicate the time points for
acquisition of angiograms for quantitative
coronary angiography measurements.

TABLE 1. Angiographic and Flow Data at Baseline

Normal
Vessels

Mildly Atherosclerotic
Vessels

Stenotic
Vessels

ALD, mm 2.7�0.3 2.4�0.2 2.5�0.3

MLD, mm NA NA 0.7�0.2

DS, % NA NA 72�4

APV, cm/s 19�1 17�2 17�2

CBF, mL/min 66�5 59�6 59�7

ALD indicates mean coronary artery diameter as measured at the reference
segments; MLD, minimal lumen diameter; and % DS, percent diameter
stenosis.
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single-vessel disease; and (3) stenotic segments (n�42) from the
stenotic coronary artery in patients with single-vessel disease.

The contrast medium used was the non-ionic, hypo-osmolar,
monomer ioversol (Optiray 350, Guerbet).

Coronary Blood Flow
A 0.014-in flexible Doppler angioplasty guidewire (FloWire, Vol-
cano Therapeutics Inc) was advanced in 11 normal coronary arteries
of 11 patients with angiographically normal vessels. In 10 patients
with single-vessel disease, the Doppler wire was positioned in the
adjacent mildly atherosclerotic coronary artery (ie, nonstenotic),
whereas in another 11 patients with single-vessel disease, the wire
was positioned in the stenotic coronary artery. In one case, coronary
blood flow (CBF) measurements could not be performed because of
poor quality of the Doppler signal. The Doppler guidewire was
connected to the 15-MHz pulsed Doppler velocimeter (ComboMap,
Volcano Therapeutics Inc). Doppler velocity spectra were analyzed
to measure average peak velocity (APV). CBF (mL/min) was
calculated according to the following formula: (� �
MLD2)/(APV/8).

Statistical Analysis
Data are expressed as mean�SEM. Statistical comparison was made
by ANOVA for repeated measurements to compare, within the
patients, the effects of different doses of the drugs being tested. Post
hoc analysis was performed with the Newman-Keuls test. Reproduc-
ibility among the measurements, calculated as previously de-
scribed,17 is as follows: (1) lumen diameter (LD), 5�3%; (2) APV at
baseline, 5�5%; (3) APV at hyperemia, 4�4%; CBF, 7�6%.
Statistical analysis was performed with Graph Pad Prism version 2.0.
Probability values of P�0.05 were considered statistically not
significant.

Results
Clinical and Hemodynamic Data
Clinical characteristics of the patients are shown in Table 2.
Salbutamol IC infusion did not induce any significant change
in heart rate (baseline heart rate: 73�3 bpm, to peak salbu-
tamol heart rate: 76�3 bpm, P�NS) or in mean blood
pressure (baseline mean blood pressure: 105�3 mm Hg, to
peak salbutamol mean blood pressure: 105�3 mm Hg,
P�NS). Salbutamol induced typical angina pectoris without
significant ECG changes in 2 patients.

Similarly, acetylcholine did not change heart rate (peak
acetylcholine heart rate: 74�4 bpm, P�NS) or mean blood
pressure (peak acetylcholine mean blood pressure:
105�5 mm Hg, P�NS), and the intracoronary infusion could
be completed in 5 patients with normal coronary arteries and
in 7 patients with single-vessel disease. Because of coronary
spasm and angina with ST-segment depression, acetylcholine

was stopped in 3 patients with single-vessel disease (at the
first dose in 1 patient, at the second dose in 2 patients).
Response at the maximal acetylcholine dose was considered
for statistical comparison.

L-NMMA slightly increased mean blood pressure (peak
mean blood pressure: 109�4 mm Hg, P�0.07 versus base-
line), whereas no significant changes were observed in heart
rate (peak heart rate: 78�4 bpm, P�NS).

Angiographic Data
As shown in Figure 2 (top), salbutamol IC infusion induced a
significant dose-response increase in LD in normal segments
(LD max %: 11�2, P�0.05 versus baseline). In mildly

TABLE 2. Clinical Characteristics of the Study Patients

Control Patients
(n�11)

CAD Patients
(n�22)

Male/female 7/4 17/5

Age, y 58�4 62�3

Smoking 4 (36) 11 (50)

Diabetes 0 (0) 6 (27)

Dyslipidemia 3 (27) 10 (45)

Hypertension 3 (27) 13 (59)

Control patients are patients with normal coronary arteries; CAD patients are
patients with single-vessel disease. Data are in absolute values; values in
parentheses are percentages.

Figure 2. Top shows LD changes to salbutamol. Center shows
APV changes to salbutamol. Bottom shows CBF changes to
salbutamol. White boxes indicate normal segments or coronary
arteries. White circles indicate mildly atherosclerotic segments
or coronary arteries. Black circles indicate stenotic segments or
coronary arteries. BL indicates baseline. *P�0.05 vs baseline.
†P�0.05 vs preceding dose.
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atherosclerotic segments, the increase in LD to salbutamol
was comparable (LD max %: 10�2, P�0.05 versus baseline)
to normal segments. In stenotic segments, a small constriction
was observed only at 0.3 �g/min of salbutamol (LD max %:
�6�2, P�0.05 versus baseline).

Acetylcholine IC infusion significantly increased LD in
normal segments (LD max %: 14�3, P�0.05 versus base-
line), whereas a significant reduction of LD was observed in
mildly atherosclerotic (LD max %: �15�2, P�0.05 versus
baseline) and stenotic segments (LD max %: �15�3,
P�0.05 versus baseline) (Figure 3, top).

Phentolamine IC bolus did not change LD (LD %: 2�3,
P�NS versus baseline). After phentolamine, salbutamol did
not significantly change LD in mildly atherosclerotic seg-
ments (LD max %: 9�4, P�0.05 versus baseline; P�NS

versus before phentolamine) or in stenotic segments (LD max
%: 6�3, P�NS versus baseline) (Figure 4, top).

IC infusion of L-NMMA was associated with a small
reduction in LD of normal segments (LD %: �5�3, P�0.05
versus baseline). After L-NMMA, the dose-dependent in-
crease in LD induced by salbutamol was unchanged (LD max
%: 9�2, P�NS versus baseline) (Figure 5, top).

IC nitrates significantly increased LD in normal segments
(LD %: 39�6, P�0.05 versus baseline) and to a minor extent
in mildly atherosclerotic (LD %: 26�3, P�0.05 versus
baseline) and in stenotic segments (LD %: 13�2, P�0.05
versus baseline).

CBF Data
In normal coronary arteries, salbutamol significantly in-
creased APV (APV max %: 53�17, P�0.05 versus baseline)

Figure 3. Changes in LD (top), APV (center), and CBF (bottom)
at maximal achieved dose of acetylcholine are shown in normal
segments or coronary arteries (white bars), in mildly atheroscle-
rotic segments or coronary arteries (gray bars), in stenotic seg-
ments or coronary arteries (black bars). *P�0.05 vs baseline.

Figure 4. Changes in LD (top), APV (center), and CBF (bottom)
to salbutamol (salb.) before (black circles) and after an IC bolus
of phentolamine (phento.) (gray circles), in stenotic segments or
coronary arteries. *P�0.05 vs baseline. †P�0.05 vs respective
dose of salbutamol before phentolamine.
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and CBF (CBF max %: 57�17, P�0.05 versus baseline). In
mildly atherosclerotic coronary arteries, the salbutamol-
induced increases in APV (APV max %: 33�12, P�0.05
versus baseline) and CBF (CBF max %: 37�12, P�0.05
versus baseline), even though less pronounced, were not
significantly different compared with normal coronary arter-
ies. In stenotic arteries, salbutamol infusion was associated
with a significant reduction in APV (APV max %: �15�9,
P�0.05 versus baseline) and CBF (CBF max %: �15�6,
P�0.05 versus baseline) (Figure 2, center and bottom).

Acetylcholine significantly increased APV (APV max %:
61�20, P�0.05 versus baseline) and CBF (CBF max %:
67�19, P�0.05 versus baseline) in normal coronary arteries.
In mildly atherosclerotic coronary arteries, no significant
changes in APV (APV max %: �6�13, P�NS) or in CBF
(CBF max %: �10�13, P�NS) were observed after acetyl-
choline. In stenotic coronary arteries, acetylcholine reduced

both APV (APV max %: �31�9, P�0.05 versus baseline)
and CBF (CBF max %: �33�9, P�0.05 versus baseline)
(Figure 3, center and bottom).

In stenotic coronary arteries, phentolamine IC did not
significantly change APV (APV max %: �14�8, P�NS) or
CBF (CBF max %: �16�9, P�NS). After phentolamine,
salbutamol did not significantly change APV (APV max %:
19�10, P�NS versus baseline) or CBF (CBF max %:
21�11, P�NS versus baseline) (Figure 4, center and
bottom).

In normal coronary arteries, IC infusion of L-NMMA
reduced the APV (APV %: �15�4, P�0.05 versus baseline)
and CBF (CBF %: �22�8, P�0.05 versus baseline). After
L-NMMA, salbutamol-induced increases in APV (APV max
%: 27�6, P�0.05 versus baseline) and CBF (CBF max %:
29�6, P�0.05 versus baseline) were blunted but remained
significant (Figure 5, center and bottom).

IC nitrates significantly increased APV and CBF in normal
(APV %: 26�5% and CBF %: 34�6%, P�0.05 versus
baseline) and mildly atherosclerotic coronary arteries (APV
%: 23�6 and CBF %: 29�6, P�0.05 versus baseline). In
stenotic coronary arteries, nitrates did not change APV (APV
%: 2�8, P�NS) or CBF (CBF %: 5�8, P�NS).

Discussion
The present study evaluated �2-adrenergic receptor response
at the macrocirculatory (lumen dimension changes) and at the
microcirculatory level (APV and calculated CBF changes). In
normal coronary arteries, a significant vasodilation to �2-
adrenergic receptor stimulation was observed at both levels
that appears to be partially endothelium-mediated. In mildly
atherosclerotic coronary arteries, this vasodilation is reduced
but preserved. In stenotic coronary arteries, salbutamol IC
infusion induced a paradoxical vasoconstriction that is no
longer observed after phentolamine.

�-Adrenergic Receptors in Normal
Coronary Arteries
The coronary vasomotor balance is such that �1- and �2-
adrenergic receptors contribute to the vasodilatory drive,
opposing the vasoconstrictive forces represented primarily by
�1-adrenergic receptor hyperresponsiveness and endothelial
dysfunction. Both �1- and �2-adrenergic receptors are ex-
pressed on coronary endothelial and vascular smooth muscle
cells,8–10 even though �-adrenergic receptors expressed on
these latter cells have been reported to play a prevalent
role.12,18 Furthermore, the distribution of �-adrenergic recep-
tors in the coronary circulation is heterogeneous, �2-
adrenergic receptors being more important for the regulation
of the coronary resistance vessels.11,12,18,19 Consistently, our
data in normal coronary arteries showed a significant increase
in LD of the epicardial vessel and even more in APV, with a
net increase in CBF of �50%. In these coronary arteries,
acetylcholine induced a significant vasodilation, suggesting a
preserved endothelial function. Inhibition of nitric oxide
synthase with L-NMMA did not affect salbutamol vasodila-
tion at the epicardial level, but the microcirculatory response
was attenuated, suggesting that there is an endothelium-

Figure 5. Changes in LD (top), APV (center), and CBF (bottom)
to salbutamol before (white boxes) and after an IC infusion with
L-NMMA (gray boxes), in normal segments or coronary arteries.
*P�0.05 vs baseline. †P�0.05 vs respective dose of salbutamol
before L-NMMA.
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dependent component to �2-adrenergic–mediated vasodila-
tion in this compartment.

�-Adrenergic Receptors in Atherosclerotic
Coronary Arteries
In atherosclerotic coronary arteries, adrenergic stimulation by
cold pressor test and mental stress is known to induce
paradoxical vasoconstriction.1,2 In addition, we have recently
demonstrated that intravenous dobutamine, an �1-, �1-, and
�2-adrenergic receptor agonist, is associated with blunted
vasodilation in mildly atherosclerotic coronary arteries and
lack of vasomotion in stenotic coronary arteries.7 The present
data have been obtained with local (IC) infusion of doses of
salbutamol that did not change heart rate or blood pressure.

In this setting, we found that in (1) mildly atherosclerotic
coronary arteries, �2-adrenergic receptor vasodilation is re-
duced but preserved, in accordance with previous data sup-
porting a prevalent role of �2-adrenergic receptors of vascular
smooth muscle cells.12,20 In these coronary arteries, acetyl-
choline induced a paradoxical vasoconstriction, suggesting
the presence of some degree of endothelial dysfunction
already at this stage of atherosclerosis. Conversely, IC ni-
trates induced a significant vasodilation, corroborating the
finding of a preserved function of the vascular tunica media.
In (2) stenotic coronary arteries, salbutamol, unexpectedly,
induced a reduction of both LD and APV, with a consequent
decrease in CBF; yet during salbutamol IC infusion, 2
patients of 16 with stenotic coronary arteries had clinical
symptoms of angina. This apparent paradox could be ex-
plained by a salbutamol �-adrenergic–mediated effect. In
fact, salbutamol may have stimulated presynaptic �2-
adrenergic receptors, with subsequent norepinephrine re-
lease.13,21 Consistently, after pretreatment with phentolamine,
an �1-/�2-adrenergic receptor blocker, vasoconstriction to
salbutamol is no longer observed. Not surprisingly, acetyl-
choline induces a paradoxical vasoconstriction in these coronary
arteries, demonstrating endothelial dysfunction. The IC bolus of
nitrates induced a significant vasodilation of the stenotic epicar-
dial vessel, demonstrating that vasodilatory response to direct
smooth muscle cell stimulation is preserved.

Clinical Implications
Previous data from Kern et al22,23 have suggested that
�-blockers (intravenous propranolol) could potentiate coro-
nary vasoconstriction in patients with coronary artery disease
undergoing a cold pressor test because of an unopposed
�-adrenergic vasomotor tone. On the contrary, Gaglione et
al24 showed a significant vasodilation of stenotic coronary
arteries after intracoronary propranolol in patients undergoing
supine bicycle stress testing. Finally, Bortone et al25 have
shown that propranolol administered intravenously is able to
significantly decrease coronary luminal area of both normal
and stenotic coronary arteries at rest but conversely can
induce coronary vasodilation during exercise. They con-
cluded that the reduction in myocardial oxygen consumption
and the prevention of exercise-induced stenosis vasoconstric-
tion might explain the beneficial effect of �-blocker treatment
in most patients with coronary artery disease. Our data further
extend these observations by supporting an impairment of

coronary �2-adrenergic receptors in stenotic coronary arteries.
In this condition, a direct influence of �-blockers on the
coronary vasomotor tone is less effective, and most of the
beneficial effect might be consequent to the reduced myocar-
dial oxygen consumption.

Some early reports showed that a therapy with nebulized
salbutamol in asthmatic patients could induce myocardial
ischemia and unmask coronary artery disease.26,27 This find-
ing was explained primarily by an increase in myocardial O2

consumption secondary to an increase in heart rate induced
by salbutamol. Our data propose a novel mechanism poten-
tially explaining salbutamol-provoked ischemia. In fact, at
doses not able to increase heart rate or blood pressure,
salbutamol induces a paradoxical vasoconstriction in stenotic
coronary arteries, which in 2 patients led to clinical symptoms
of angina.

Limitations
The paradoxical constriction of the microcirculation to sal-
butamol could alternatively be explained by a fall of the CBF
downstream from the stenosis, secondary to the vasoconstric-
tion of the epicardial vessel. Despite this limitation, the lack
of a significant vasomotion to salbutamol after �-blockade
does still support the notion that �2-adrenergic receptors are
impaired at microcirculatory level.

The attenuation of salbutamol-induced vasodilation after
L-NMMA could be a result of the inhibition of the endothe-
lial �2-adrenergic receptor component or, less specifically, of
the inhibition of a flow-mediated component. Our data do not
allow us to distinguish between these 2 components, even
though Sun et al18 have reported, in isolated human coronary
arterioles, a preserved vasodilation to norepinephrine after
nitric oxide synthase inhibition and mechanical removal of
the endothelium.

Conclusions
The present study confirms that in normal coronary arteries,
there is an important role for �2-adrenergic receptor–medi-
ated coronary vasomotion that is partially mediated by the
endothelium, especially at the microcirculatory level. In the
presence of mild atherosclerosis, �2-adrenergic receptor va-
sodilation is preserved. In stenotic coronary arteries, an
impairment of �2-adrenergic receptor response is associated
with a paradoxical vasoconstriction to salbutamol that is
�-adrenergic–mediated. The present findings suggest that an
impairment of coronary �2-adrenergic receptor response also
contributes to alter the vasomotor balance in the setting of
coronary atherosclerosis, further precipitating myocardial
ischemia during sympathetic activation.
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