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ABSTRACT

Extracellular adenosine formation from ATP is controlled by ecto-nucleoside triphosphate diphosphohy-
drolase (E-NTPDase/CD39) and ecto-5'-nucleotidase (e-5NT/CD73); the latter converts AMP to adenosine
and inorganic phosphate, representing the rate limiting step controlling the ratio between extracellular
ATP and adenosine. Evidence that cellular expression and activity of CD39 and CD73 may be subject to
changes under pathophysiological conditions has identified this pathway as an endogenous modulator
in several diseases and was shown to be involved in the molecular mechanism of drugs, such as
methotrexate, salicylates , interferon-f. We evaluated whether CD73/adenosine/A,, signalling pathway
is involved in nimesulide anti-inflammatory effect, in vivo and in vitro. We found that the adenosine
Aya agonist, 4-[2-[[6-amino-9-(N-ethyl-B-p-ribofuranuronamidosyl)-9H-purin-2-ylJamino]ethyl]benze
nepropanoic acid hydrochloride (CGS21680, 2 mg/kg ip.), inhibited carrageenan-induced rat paw oedema
and the effect was reversed by co-administration of the A2A antagonist -(2-[7-amino-2-[2-furyl][1,2,4]
triazolo[2,3-a][1,3,5]triazin-5-yl-amino]ethyl)phenol (ZM241385; 3 mg/kg i.p.). Nimesulide (5 mg/kg
i.p.) anti-inflammatory effect was inhibited by pre-treatment with ZM241385 (3 mg/kg i.p.) and by local
administration of the CD73 inhibitor, adenosine 5'-(a,B-methylene)diphosphate (APCP; 400 pg/paw).
Furthermore, we found increased activity of 5-nucleotidase/CD73 in paws and plasma of nimesulide
treated rats, 4 h following oedema induction. In vitro, the inhibitory effect of nimesulide on nitrite and
prostaglandin E; production by lipopolysaccharide-activated J774 cell line was reversed by ZM241385
and APCP. Furthermore, nimesulide increased CD73 activity in J774 macrophages while it did not inhibit
nitrite accumulation by lipopolysaccharide-activated SiRNA CD73 silenced J774 macrophages. Our data
demonstrate that the anti-inflammatory effect of nimesulide in part is mediated by CD73-derived adeno-
sine acting on A, receptors.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

(e-5'NT/CD73); the latter converting AMP to adenosine and inor-
ganic phosphate (Pi) and represents the rate limiting step reaction

Adenosine is the final product of ATP degradation, and is
released into the extracellular space following metabolic distur-
bances. Elevated levels of extracellular adenosine have been found
in inflamed tissues, ischaemic tissues and under hypoxia, where
ATP is released from damaged cells [1]. Levels of extracellular ade-
nosine from ATP are controlled by ecto-nucleoside triphosphate
diphosphohydrolase (E-NTPDase/CD39) and ecto-5-nucleotidase
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controlling the ratio between extracellular pro-inflammatory ATP
and anti-inflammatory adenosine [2]. Evidence that cellular
expression and activity of CD39 and CD73 may be subject to
changes under pathophysiological conditions has led to identify
this pathway as an endogenous modulator in several diseases [3].
In particular, CD73 was shown to play an important role in regulat-
ing vascular permeability and leucocyte trafficking in inflamma-
tory diseases, as evidenced also by studies in CD73 deficient mice
[4,5]. Its function would be to regulate the accumulation of adeno-
sine into the extra cellular milieu that, in turn, would limit tissue
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damage through A, receptor activation [6]. Nonetheless, CD73 has
been shown to play a crucial role in the regulation of immune/
inflammatory cell function [3,7,8] and several well known anti-
inflammatory drugs seem to act through adenosine signalling.
Indeed, there is evidence that CD73 is required for the anti-
inflammatory effect of methotrexate [9]; furthermore, the benefi-
cial effect of interferon (IFN)-B in patients affected by multiple
sclerosis has been associated to CD73 upregulation at the
blood-brain barrier [10]; it has been demonstrated that the anti-
inflammatory effect of aspirin involves also adenosine accumula-
tion, independently from cyclooxygenase (COX) inhibition [11].
Very recently, it has been shown that in mice the anti-arthritic
effect of exogenously administered fructose 1,6-biphosphate, an
endogenous intermediate of glycolysis, involves CD39/CD73/
adenosine signalling pathway [12].

Nimesulide (N-(4-nitro-2-phenoxyphenyl)-methanesulfona
mide) is a selective cyclooxygenase 2 (COX-2) inhibitor with a
unique chemical structure, belonging to the sulfonanilide class.
Nimesulide has been the primary treatment choice for a rapid
anti-inflammatory and analgesic effect [13,14]. In addition, nime-
sulide has been shown to inhibit cancer cell proliferation [15,16],
to protect from cerebral ischaemia [17] and from non steroidal
anti-inflammatory drug-induced ulcers [18]. Nimesulide effects
are unique and not shared with all selective COX-2 inhibitors. On
the inflammatory process, nimesulide shows a wide spectrum of
actions, with a biochemical mechanism that has not been eluci-
dated at all, but it goes beyond COX-2-dependent prostaglandin
synthesis inhibition and implies inhibition of cytokine production
and of cell activation, but also reactive oxygen species (ROS) scav-
enging activity [13,14]. In an early in vitro study, it was suggested
that nimesulide inhibited neutrophil function through a direct
interaction with adenosine receptors [19]. More recently, nime-
sulide has been demonstrated to improve the antirheumatic profile
of methotrexate in a murine model of collagen-induced arthritis,
with a mechanism that might involve adenosine [20]. Although
nimesulide usage has been limited since its toxicity, nevertheless,
compared to other COX-2 selective inhibitors, it presents the
advantage of no cardiotoxicity [14]. To unravel the mechanism of
action of nimesulide may help to find target(s) for an anti-
inflammatory therapy devoid of gastrolesivity and cardiotoxicity;
nonetheless in this context nimesulide, being a peculiar COX-2
inhibitor, can be a useful tool to explore molecular mechanisms
involved in the control of inflammation.

In the present study we investigated the possible involvement
of the CD73/adenosine pathway on the anti-inflammatory effect
of nimesulide.

2. Materials and methods
2.1. Carrageenan-induced paw oedema

All in vivo experiments were performed on male Wistar rats
(Harlan Nossan, 200-250 g; 7-8 weeks old). Rats, slightly anaes-
thetised with enflurane, received in the left hind paw 100 p of car-
rageenan (Sigma-Aldrich S.r.l., Milan, Italy) suspension (1% w/v).
Paw volume was measured at the time zero and each hour for
6 h by a hydropletismometer (Ugo Basile, Comerio, VA, Italy).

2.2. Drug treatments

Rats were assigned to groups of 5 and treated intraperitoneally
(i.p.), just before oedema induction, with the A,, agonist,
CGS21680 (2 mg/kg; Tocris Bioscience, Bristol, U.K.), or with the
A,a antagonist, ZM241385 (3 mg/kg; Tocris Bioscience, Bristol,
U.K.), given alone or in combination. In another series of experi-

ments, animals were treated with nimesulide (5 mg/kg i.p.;
Sigma-Aldrich S.r.l, Milan, Italy) given alone or co-administered
with ZM241385 (3 mg/kg i.p.), just before carrageenan injection.
Control groups received the vehicle, DMSO (0.5 ml/kg; Sigma-
Aldrich S.r.l, Milan, Italy). The effect of CD73 inhibitor, adenosine
5'-(o,p-methylene) diphosphate (APCP; Tocris Bioscience, Bristol,
UK), injected into the rat paw (400 pg/paw) 1h following car-
rageenan injection, was also evaluated in both controls and nime-
sulide treated animals. In some experiments, blood was withdrawn
4 h following oedema induction by cardiac puncture and anticoag-
ulated with trisodium citrate (3.8% w/v; Carlo Erba Reagents S.r.l.,
Cornaredo, Milan, Italy). Plasma was then obtained by centrifuga-
tion at 3000 rpm for 15 min. Animals were then sacrificed and
inflamed tissues were excised and immediately frozen in liquid
nitrogen and stored until further analysis. All procedures were per-
formed according to the Italian and European regulations (DL
26/2014) on the protection of animals used for experimental and
other scientific purposes and were approved by Italian Ministry
of Health.

2.3. Cell culture

The murine monocyte/macrophage cell line ]J774A.1, (American
Type Culture Collection, Rockville, MD) was grown at 37 °C, in
humidified 5% C0O,/95% air in Dulbecco’s modified Eagle’s medium
(DMEM, Gibco; Thermo Fisher Scientific, Waltham, MA,USA) sup-
plemented with 10% foetal bovine serum (FBS; Thermo Fisher Sci-
entific,c, Waltham, MA, USA), 25 mM HEPES, 100 U/ml penicillin,
100 mg/ml streptomycin and 1% sodium pyruvate (Thermo Fisher
Scientific, Waltham, MA,USA). The cells were maintained in
10 cm? dishes and for experiments were plated in 24 or 96 culture
wells at a density of 2.5 x 10° cells/ml/well for 18 h. Non-adherent
cells were removed by washing with sterile PBS (Gibco; Thermo
Fisher Scientific, Waltham, MA,USA) and, immediately before the
experiments, the culture medium was replaced by fresh medium.
Cells were pre-incubated with the following compounds: the A4
agonist, CGS21680 (1 uM) alone or in combination with the
ZM241385 (10 uM); nimesulide (100 nM) alone or in combination
with the A, antagonist, ZM241385 (10 uM), or with the CD73
inhibitor, APCP (5 uM), celecoxib (10 uM; Sigma-Aldrich S.r.L,
Milan, Itlay) alone or in combination with APCP (5 uM) or with
ZM241385 (10 uM). Drug concentrations to be used throughout
the whole study were established following preliminary experi-
ments. All incubations were performed 1 h before cell activation
with lipopolysaccharide (LPS) from Escherichia Coli (serotype 011:
B4; 1 pg/ml, Sigma-Aldrich S.r.l, Milan, Italy) except for
ZM241385 that in some experiments was added 6 h following cell
incubation with nimesulide or with celecoxib. Controls were per-
formed by cell incubation with DMSO (final concentration 0.05%)
that was the vehicle for all compounds, apart from APCP that
was dissolved in the cell medium. Following LPS activation, cells
were then maintained for 24 h in a humidified incubator at 37 °C
under 5% CO, atmosphere.

Cell viability (>95%) was determined with the 3-(4,5-dimethyl
thiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay (Sigma-
Aldrich S.r.l., Milan, Italy) [21].

2.4. Nitrite assay

J774 were cultured and treated as described above. Nitrite pro-
duction, expressed as nitrite (M) accumulated in the culture med-
ium 24 h following challenge with LPS, was measured by a
spectrophotometric assay, based on Griess reaction, as previously
described [22].
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2.5. Prostaglandin E, assay

Levels of prostaglandin E, (PGE;) were assayed in plasma
obtained from inflamed rats and in the cell culture medium by
an Enzymatic Immune Assay (EIA; Cayman Chemical, Michigan,
USA) according to the manufacturer’s instructions, and expressed
as pg/ml.

2.6. Enzymatic assay in rat inflamed tissues and plasma

AMP hydrolysis was evaluated in samples of inflamed tissues
and of plasma collected from rats 4 h following oedema induction,
as a measure of ecto-5NT and soluble-5NT activity, by colorimetric
measurement of the inorganic phosphate (Pi) released following
incubation with the substrate, as described by Nedeljkovic et al.
[23]. Briefly, on the day of analysis, inflamed tissues were homoge-
nised using liquid nitrogen in the following lysis buffer: Tris-HCI
(50 mM) pH 7.5; NaCl (150 mM); sodium orthovanadate (1 mM);
B-glycerophosphate (20 mM); EDTA (2 mM); phenylmethanesul-
fonyl fluoride (PMSF, 1 mM); leupeptin (5 pg/ml;); aprotinin
(5 pg/ml); pepstatin (5 pg/ml). Protein concentration was deter-
mined by the Bio-Rad protein assay kit (Bio-Rad Laboratories S.r.
1., Segrate, Milan, Italy). To initiate the enzymatic reaction, samples
of tissue homogenates or plasma (50 pg of proteins) were incu-
bated with 200 pl of medium containing MgCl, (10 Mm; Carlo Erba
Reagents S.r.l, Cornaredo, Milan, Italy), NaCl (120 mM), KCl
(5mM), glucose (60 mM), Tris-HCl (50 mM), pH 7.4. After
10 min, AMP (2 mM) was added as substrate and samples kept at
37 °C for 40 min. The reaction was then stopped by the addition
of trichloroacetic acid (TCA, final concentration 5% w/v). Following
sample centrifugation at 3000 rpm for 10 min, at 37 °C, Pi released
was quantified using malachite green as a colorimetric reagent and
KH,PO, as standard (SensoLyte® MG Phosphate Assay Kit; Ana-
Spec, Inc., Fremont, CA, USA) [24]. To have the net value of Pi pro-
duced following enzymatic reaction, aspecific Pi released in
absence of AMP in each sample was evaluated and the value
obtained was subtracted from the value obtained following incu-
bation with AMP. All samples were run in triplicate; results were
expressed as Pi released (pmol/min/pg protein). All reagents, as
not indicated otherwise, were from Sigma-Aldrich S.r.l. (Milan,
Italy).

2.7. Enzymatic assay in J774

AMPase activity was also evaluated in 24 well plates containing
J774 macrophage cell line (2.5 x 10> cells/well) plated for 18 h,
treated as described above and incubated with or without LPS for
24 h. Afterwards, cells were washed three times with incubation
medium without AMP. The enzymatic reaction was then started
by the addition of 200 pl of incubation medium as described above,
without Tris—HCl, and with some differences: MgCl, (2 mM); glu-
cose (10 mM) and HEPES (20 mM), pH 7.4. After 10 min of incuba-
tion, the reaction was stopped by collecting an aliquot of the
incubation medium and transferring it into eppendorf tubes con-
taining TCA (final concentration, 5% wj/v), previously placed on
ice. Controls to determine non enzymatic Pi release were per-
formed by incubating the cells in the absence of the substrate, or
the substrate in the absence of the cells. To determine specificity,
experiments were also performed in cells in the presence of the
CD73 inhibitor, APCP. All samples were run in triplicate. The
release of Pi was measured by the malachite green method, using
KH,PO, as a Pi standard, as described above. To have the net value
of Pi produced following enzymatic reaction, Pi released by AMP
into the assay medium without cells was subtracted from the total
Pi released by cells during incubation with AMP, and expressed as
pmol/min.

2.8. Ultra-Performance Liquid Chromatography

In another series of experiments, CD73 activity on J774 macro-
phage cell line treated as described above was also assessed by
quantifying the conversion of 1,N®-etheno-adenosine-5-O-
monophosphate (e-AMP, a bioactive, fluorescent analogue of
AMP; BIOLOG, Bremen, Germany) to 1,N°-etheno-adenosine (&-
adenosine) [25], using Ultra-Performance Liquid Chromatography
(UPLC). Briefly, cells were washed three times with Hank’s
Balanced Salt Solution (HBSS; Gibco™, Thermo Fisher Scientific,
Waltham, MA, USA) without &-AMP. Afterwards the cells were
incubated with &-AMP (50 uM) in HBSS for 10 min at 37 °C. To
determine specificity, a similar analysis was performed in cells
untreated in the presence of the CD73 inhibitor, APCP (50 uM).
To stop the reaction an aliquot of 60 pl of the incubation medium
was transferred into an eppendorf tube on ice and centrifuged at
4 °C for 2.5 min at 550xg. Aliquots of 40 pl were applied to an
ACQUITY UPLC® H-Class Bio (WATERS Corp. Milford, MA, USA)
and e-adenosine was separated by running a linear gradient of buf-
fer A (150 mM KCl/150 mM KH,PO,4 at pH 6) and buffer B (15% (v/
v) solution of acetonitrile in buffer A) with a flow profile of
0,294 ml/min (0-0.54 min. 100% A; 0.54-1.24 min. 97% A and 3%
B; 1.24-4.17 min. 91% A and 9% B; 4.17-7.45 min. 50% A and 50%
B; 7.45-8.37 min. 50% A and 50% B; 8.37-8.45 min. 100% A) using
a high pressure gradient mixing device. The performance was done
on an Acquity UPLC™ BEH Cig column (2.1 x 150 mm, 1.7 pum;
WATERS Corp. Milford, MA, USA). The analyte €-adenosine was
detected at 254 nm and its concentration was calculated with ref-
erence to standards of known concentration (¢-adenosine; BIOLOG,
Bremen, Germany) and expressed as pmol/min. The EMPOWER 3
software (WATERS Corp. Milford, MA, USA) was used for data
analysis.

2.9. Transfection of J774 and real time PCR

For silencing of CD73 mRNA by small interfering RNA (siRNA),
murine ]J774 cells were double shot transfected using HiPerfect
(Qiagen, Germany) according to manufacturer’s instructions, with
a combination of two siRNAs (Sigma-Aldrich, Milan, Italy) specific
for the CD73 or one siRNA (Sigma-Aldrich, Milan, Italy) specific for
the green fluorescent protein (GFP). The sequences CD73 targeted
by the siRNAs were: 5-CAUUGCAGCCUGAAGUAGA-3 and 5-
GACAUUUGACCUCGUCCAA-3. The GFP sequence targeted by the
siRNA was 5-CGGCAAGCUGACCCUGAAGUUCAU-3 and analysed
for mRNA expression levels after 96 h. Total RNA was isolated from
mouse J774 cells with TRI Reagent® (Sigma-Aldrich, Milan, Italy)
and analysed spectroscopically. One microgram of RNA was
retro-transcribed using Prime Script RT reagent Kit with gDNA era-
ser (Takara, Otsu, Japan) and amplified with specific primers
described below. For CD73 mRNA fw: 5-GCGTGCATCGC
TATGGCCAGTCC-3 and rv: 5-CCACCGTTGGCCAGATAGCTTGG-3
and fw: 5-AAAACCAACCCGGTGAGCTCCCTC-3 and rv: 5-CTCAGG
CTCCCTCTCCGGAATCG-3 for 18 s, all primers were purchased from
IDT (IDT, Germany). PCR amplification was carried out as by means
of SYBR Premix Ex Taq (Takara, Otsu, Japan) according to manual
instruction. PCR amplification of 18 s rRNA was used as the nor-
malizer. Real-time PCR assays were performed using the Rotorgene
RG-3000A cycle system (Qiagen, Germany). The programme was
set to reveal the melting curve of each amplicon from 60 °C to
95 °C with a read every 0.5 °C.

2.10. Flow cytometry
The expression of the protein CD73 in mouse ]J774 silenced for

96 h and in untreated control was evaluated by flow cytometry
platform FACS CANTO II (BD, Franklin Lakes, NJ, USA) after the
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determination of nitrite release. Monoclonal antibody APC anti-
mouse CD73 (clone: TY/11.8; Biolegend, San Diego, CA, USA) and
the isotype-identical antibody as control were used for this pur-
pose. Dead cells were excluded by 7-ADD (Sigma-Aldrich, St. Louis,
MO, USA). Results were analysed with FCS Express 5.0 software (De
Novo, Glendale, CA, USA).

2.11. Statistical analysis

All results were expressed as mean * standard error of the mean
(S.E.M.); each in vitro experiment was run in triplicate. Data were
analysed by a one way ANOVA followed by Bonferroni’s test for
multiple comparisons or by Dunnett’s test, as appropriate. Two
way ANOVA was also utilised when appropriate. A value of
P < 0.05 was taken as statically significant.

3. Results
3.1. Carrageenan-induced oedema

Treatment of rats with the selective A5 agonist, CGS21680
(2 mg/kg i.p.), significantly inhibited oedema formation monitored
over a period of 6 h (Fig. 1A) and this effect was reversed by co-
administration with the A5 antagonist, ZM241385 (3 mg/kg i.p.).
In contrast treatment with ZM241385 alone did not modify
oedema development (Fig. 1A). In animals receiving nimesulide
(5 mg/kg i.p.), oedema formation was significantly reduced and
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this effect was partially reversed by treatment with ZM241385
(Fig. 1B). As shown in Fig. 1C, the anti-inflammatory effect of nime-
sulide was associated with a significant reduction of plasma PGE,
levels, evaluated 4 h following oedema induction, consistent with
COX-2 inhibition; however, PGE, plasma levels were only slightly,
but not significantly, reduced by treatment with CGS21680.

3.2. AMPase in inflamed tissues and plasma

We also evaluated whether the anti-inflammatory effect of
nimesulide would correspond to changes in AMPase activity in
inflamed tissues and plasma. We found that in paws obtained from
nimesulide-treated rats, AMP hydrolysis was significantly
increased compared to the hydrolysis measured in paws from con-
trol animals (Fig. 2A). This increased AMPase activity was of func-
tional significance since local injection of the CD73 inhibitor, APCP
(400 pg/paw), did not affect oedema development (Fig. 2D) but
reversed nimesulide effect (Fig. 2B). AMP hydrolysis was also sig-
nificantly increased in plasma obtained from animals treated with
nimesulide (Fig. 2C).

3.3. Nitrite production from J774

In initial experiments, we estabilshed that cell viability (>95%)
was not affected by any of the treatments reported below (data
not shown). Production of nitrite by un-stimulated J774 cells was
undetectable (< 0.8 uM). Stimulation with LPS caused a substantial
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Fig. 1. The effect of drug treatments on carrageenan-induced rat paw oedema. (A) The A4 agonist, CGS21680 (2 mg/kg i.p.), inhibits carrageenan-induced rat paw oedema;
the A, antagonist ZM241385 (3 mg/kg i.p.) does not modify oedema development but reverses the effects of CGS21680. (B) Nimesulide (5 mg/kg i.p.) inhibits carrageenan-
induced rat paw oedema and its effect is partially inhibited by co-administration of the A, antagonist, ZM241385 (3 mg/kg i.p.). Results are the mean + S.E.M (n = 9-10). (C)
Plasma PGE; levels evaluated 4 h following oedema induction were reduced following treatment with nimesulide (5 mg/kg i.p.). Each bar represents the mean + S.E.M. of

n=3-5."P<0.05 "P<0.01, " and ***P < 0.001 vs. control.
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Fig. 2. Effect of systemic treatment with nimesulide on AMPase activity. AMP hydrolysis was evaluated as Pi produced following sample (50 pig proteins) incubation with
AMP (2 mM). Rat treatment with nimesulide (5 mg/kg i.p.) increases the extent of AMP hydrolysis in paws (A) and in plasma (C) obtained 4 h following injection of
carrageenan. Each bar represents the mean + S.E.M. of n = 4-9. P < 0.01 vs. control; one way ANOVA followed by Dunnett’s test. (B) Administration of CD73 inhibitor, APCP
(400 pg) into the rat paw, 1 h following carrageenan injection, inhibits the anti-inflammatory effect of nimesulide (5 mg/kg i.p.) treatment and (D) does not affect oedema in
control rats. Each point represents the mean + S.E.M. of n = 5. Data are analysed by two ways ANOVA followed by Bonferroni's test. 'P< 0.05, "P<0.01 vs. control.

release of nitrite (26.0+0.9 uM, n=5) that was significantly
reduced by the adenosine A, receptor agonist, CGS21680
(1 uM). The inhibitory effect of CGS21680 (1 uM) was reversed
by cell co-treatment with the A,4 antagonist, ZM241385 (10 puM;
Fig. 3A). Similarly, nimesulide (100 uM) inhibited nitrite produc-
tion from LPS-activated J774 and its effect was reversed by the
Ao antagonist, ZM241385 (10 uM), 6 h following nimesulide treat-
ment (Fig. 3B). ZM2141385 did not have any effect when J774 cells
were treated together with nimesulide (data not shown). The inhi-
bitory effect of nimesulide on nitrite production from LPS-
activated ]774 was also fully reversed by the CD73 inhibitor, APCP
(5 uM, Fig. 3C). However, the inhibitory effect of celecoxib (10 uM)
on nitrite accumulation from LPS-activated J774 was neither
affected by ZM241385 nor by APCP (Fig. 3B and C).

3.4. Ecto-5'-nucleotidase in J774

Treatment with nimesulide (100 pM) increased AMPase activity
in both unstimulated and LPS-activated |774 cells (Fig. 4A). The
specificity of nimesulide effect was proved by evidence that it
was blocked by APCP (5 uM). APCP also significantly reduced Pi
accumulation from naive cells (from 17.67+1.4uM, n=9 to
3.7+1.8 uM, n=3; P<0.001). AMP hydrolysis was not affected
when ]J774 were incubated with celecoxib (Fig. 4B).

AMPase activity was also evaluated using e-AMP as substrate.
Similar to data described above, nimesulide (100 pM) increased
the activity while it was unaffected by celecoxib (10 uM) (Fig. 5).

3.5. PGE, formation

There was a significant increase in PGE, production following
J774 activation with LPS that was almost completely inhibited by
nimesulide (100 pM). Either ZM241385 (10 uM) and APCP (5 pM)
increased PGE, levels of nimesulide treated cells above control
value (Fig. 6). Treatment of cells with CGS21680 (1 M) did not sig-
nificantly modify PGE, production from LPS-activated ]J774
(662.3 £53.28 pg/ml vs. 770.8 £ 42.56 pg/ml; n = 6).

3.6. SiRNA CD73 silencing

After siRNA treatment, CD73 transcripts were reduced by
69 + 12% (n = 3) as revealed by real-time PCR (Fig. 7C). The reduced
expression of CD73 protein (55.4 + 20%, n=3) was confirmed by
means of flow cytometry, as shown in Fig. 7A and B. The effect of
nimesulide (100 pM) on nitrite production was then assessed in
siRNA CD73-treated cells. LPS significantly induced nitrite produc-
tion in siRNA treated cells (10.0 £ 4.3 uM, n = 3), effect that was not
significantly different from that of control cells (17.08 + 2 puM,
n=3). Nimesulide (100 uM) significantly inhibited LPS effect in
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control cells, while it did not impair nitrite production in siRNA
treated cells (Fig. 7D).

4. Discussion

In this study we demonstrate that CD73/adenosine/A,s sig-
nalling pathway is involved in mediating the anti-inflammatory
effect of nimesulide.

There is broad evidence that endogenous adenosine, generated
through the action of two ectoenzymes, CD39 and CD73, exerts
anti-inflammatory effects by activation of the A, receptor subtype
localised on several cell types [26]. Here, we have shown that the
adenosine A, receptor also modulates the inflammatory response
in our in vivo model of acute inflammation. Similar results have
been previously generated in other animal models of inflammation
[27-32]. We found that the A, agonist, CGS21680, strongly inhib-
ited carrageenan-induced rat paw oedema and this effect was
reversed by co-administration with the A5 antagonist,
ZM241385. Similarly, we found that nimesulide inhibited oedema
development and this effect was partially reversed by co-
treatment with ZM241385. These results indicate that the

adenosine A, receptor is involved in the anti-inflammatory effect
of nimesulide in vivo.

CD73 hydrolyses AMP to adenosine and forms extracellular
adenosine which can contribute to the regulation of immune-
inflammatory responses, either in vitro and vivo [3,8,33,34]. Inter-
estingly, CD73 has also been shown to be required for the biologi-
cal effect of several drugs that modulate the immune response
[9,10,35-37]. In our model of carrageenan-induced paw oedema
formation, AMP hydrolysis in nimesulide-treated rats was signifi-
cantly increased. This reflects a functional role of the ecto-5’
-nucleotidase (CD73) since local treatment with the CD73 inhibi-
tor, APCP, significantly reversed the anti-inflammatory effect of
nimesulide, without modifying the oedema development in
control animals. These findings indicate that the increased CD73
activity, most likely via the formation of adenosine, contributes to
the anti-inflammatory effect of nimesulide in the inflamed tissue.

Membrane bound 5'-nucleotidase can also be shedded into the
plasma and can act in concert with a soluble form of NTPDase in
the hydrolysis of extracellular ATP to adenosine [34,38]. Interest-
ingly, we found that systemic administration of nimesulide also
significantly increased plasma AMPase activity over basal controls.
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The anti-inflammatory role of the adenosine A,, receptor was
confirmed in the J774 macrophage cell line in that the A5 agonist,
CGS21680, reduced nitrite production following cell activation
with LPS and this effect was reversed by the A, antagonist
ZM241385. Nimesulide inhibited nitrite production from LPS-
activated J774 cells and this effect again was reversed by
ZM241385. Interestingly, the effect of ZM241385 was lost when
added concomitantly to nimesulide (data not shown) but was only
evident when it was added 6 h thereafter, suggesting that adeno-
sine A5 receptor was likely involved but not directly activated
by nimesulide. This result was also consistent with results
obtained in vivo, where the reversal of nimesulide effect by
ZM241385 was evident only after 4 h.

We found that CD73 activity was reduced following J774 activa-
tion with LPS, which is similar to findings in LPS-activated murine
peritoneal macrophages [39]. Similarly, LPS was reported to down-
regulate CD73 activity in cultured cortical astrocytes [40]. Here we
found that pre-treatment with nimesulide strongly increased CD73
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mulation. Breakdown of etheno-AMP (e-AMP) to etheno-adenosine (e-ADO, pmol/
min) by non activated and LPS-activated cells (250 x 10%/well) was increased by
nimesulide. P < 0.05 vs. —LPS/vehicle; #P < 0.05 vs. +LPS/vehicle. Each bar repre-
sents the mean + S.E.M. of n = 6.
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Fig. 6. PGE, accumulation in the culture medium. APCP (5 pM) and ZM241385
(10 uM) reversed the inhibitory effect of nimesulide (100 pM) on PGE, production
from LPS-activated J774. "P<0.01 and ~'P<0.001 vs. vehicle; **#P<0.001 vs.
nimesulide. Each bar represents the mean + S.E.M. of n=6.

activity in naive J774 cells and this effect was still evident 24 h fol-
lowing LPS-induced cell activation. Enhanced CD73 activity in the
presence of nimesulide was confirmed in independent experi-
ments using e-AMP as substrate.

Specific inhibition of CD73 with APCP reversed the nimesulide-
induced anti-inflammatory effect as evidenced by the inhibition of
nitrite accumulation. While the effect of CGS21680 on nitrite pro-
duction in LPS-activated J774 was not accompanied by changes in
PGE, release, nimesulide inhibited both nitrite and PGE, formation
and both effects were reversed by ZM241385 or APCP. These
results clearly suggest an important role of the CD73/adenosine/
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A, axis to regulate macrophage function and, consequently, the
innate immune response, as was already suggested [41,42]. It is
therefore very likely that nimesulide by activating the CD73/ade-
nosine/A;, pathway can inhibit macrophages shifting towards a
pro-inflammatory phenotype following activation with LPS. This
conclusion is in line with the observation that nimesulide was
unable to impair nitrite production when CD73 in J774 cells was
downregulated by siRNA.

The observed effect on CD73 is specific for nimesulide and is not
shared by other COX-2 inhibitors such as celecoxib. The effect of
celecoxib at a concentration that inhibited PGE, production and
reduced nitrite accumulation from LPS-activated J774 was neither
modified by ZM241385 nor by APCP. Furthermore, consistent with
an independent effect of nimesulide on adenosine signalling, cele-
coxib did not alter CD73 activity in the J774 macrophage cell line.
Thus, in addition to the COX-2/PGE, pathways, only nimesulide

activates the CD73/adenosine/A,, axis. The molecular mechanisms
by which nimesulide influences adenosine signalling is presently
unclear but might involve a direct or indirect effect on CD73 acti-
vation. It is also possible that nimesulide may change CD73 activity
by altering membrane fluidity [43,44].

Furthermore, by our data it appears that CD73/adenosine/A,5
axis, once activated, is required by nimesulide to inhibit COX-2
with a mechanism that needs to be elucidated. There is evidence
that Aya activation stimulates the expression and activity of ATP
binding cassette transporter A1 (ABCA1) that regulates the trans-
port of lipophilic molecules across membrane [45,46]; thus one
could speculate that CD73/adenosine/A;s axis might regulate
nimesulide intracellular concentration or, alternatively, might
reduce phospholipid availability for the action of COX-2. This
would explain the loss of COX-2 inhibition by nimesulide in the
presence of APCP or ZM241385.
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In summary, the in vivo experiments (carrageenan-induced
paw oedema) and in vitro studies (J744 macrophage cell line) have
shown that the anti-inflammatory effect of nimesulide involves the
CD73/adenosine/A;4 signalling pathway. These results are in sup-
port of a previous hypothesis suggesting that nimesulide may
share a common mechanism with methotrexate also involving
adenosine acting on immune cells [20]. Thus, the dual mode of
anti-inflammatory activity of nimesulide demonstrated in the
present study might be exploited in the future by synthesising
COX-2 inhibitors which in addition display a more potent activity
on adenosine signalling.
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