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Sunto. - Si stabilisce una terminologia di base che sembra essere particolarmente adatta a

trattare alcune particolari questioni di geometria proiettivo-differenziale. Nell’ambito

di questa si dimostrano alcuni risultati generali, tra cui delle formule ‘di inversione’

riguardanti le deformazioni di famiglie di sottoschemi non ridotti. Come applicazione,

si propongono nuove definizioni di alcuni concetti classici, tra cui quello di fuochi di

ordine qualsiasi; infine si dà una nuova dimostrazione del teorema di struttura delle

fibre della prima mappa di Gauss.

Abstract. - We set up a framework in which some projective-differential intuitive con-

cepts can be very easily formalized. Then we prove some general formulas. Among

them, two ‘inversion formulas’ about deformations of families of nonreduced sub-

schemes are particularly remarkable. As applications, we give convenient definitions

about some classic topics, such as higher order foci; finally we propose a new proof

of the classic structure theorem about the first Gauss map.

Introduction.

The study of varieties with a particular behaviour of the tangent spaces is a fundamental
topic in projective-differential geometry. It is natural to consider similar questions about
higher order osculating spaces, and in fact it is possible to find in the literature a certain
amount of papers dealing with this subject. In this theory some basic operations such as
spans, or intersections and unions of families of subspaces, are repeatedly used. It is also
evident that the study of deformations of such families is crucial.

The classic authors treated deformations by the intuitive language of infinitely near
objects. In some old papers one can find rigorous analytical explanations of the intuitive
concepts involved (see for instance [T], [Seg]). In some other old papers, for instance in
[C], there is lack of a rigorous foundation of some intuitive statements (fixing this problems
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was the starting point of our studies in this field). Certainly a rigorous treatment can be
given on the same line of [T] and [Seg], but it is evident that modern techniques, such as
the introduction of nonreduced schemes, allow handling this questions in a more concise
and clear fashion. For instance, the osculating spaces can be simply (and completely
rigorously) defined as the subspaces spanned by the infinitesimal neighborhoods (which
are nonreduced schemes). At a very general level one can find a modern treatment of
projective-differential geometry in [GH]. Also [Pe] contains many general results, which
are useful in this context. However, the particular nature of the questions we are dealing
with suggests to set up some additional simple definitions and notation, by which many
concepts can be handled in a way that is very intuitive and very rigorous at the same
time. It is the case, for instance, of Proposition 4.3 and its corollary (cf. also the end of
Remark 5.4).

Meanwhile some definitions are completely natural, some others require to be modified
with respect to what one could näıvely think, in a way which is also natural but not
obvious at all. Once set the right definitions, basic properties which are extensions of the
set-theoretic ones, are proved in detail: straightforwardly for the majority of them, some
others with a little effort.

But a very natural equality between particular nonreduced schemes, which arises in
this framework, seems to be rather deep. In fact the right hypotheses in which the two
opposite inclusions hold, are far from being evident. Moreover, in the related proofs we
need some advanced tools from deformation theory (such as 0-smoothness and infinitesimal
lifting). This equality looks like a sort of inversion formula, similar to the exchange of
summation indexes (or to Dirichlet inversion formula on double integrals).

In order to illustrate applications, we give simple definitions about classic concepts
as higher order characteristic spaces and higher order foci. Finally, we give a proof of the
classic theorem on the structure of the fibres for the first Gauss map, which is new as far
as we know. These applications certainly provide a strong motivation for the results we
discussed above (although we believe they have both an evident intrinsic interest).

Since we had to set up a convenient, but a little bit unusual terminology, we in-
cluded detailed proofs, even of some very easy facts, which make the paper somewhat
self-contained. In this way we could clarify differences with other approaches and avoid
overlaps with them. We tried to organize the material in such a way that one can distin-
guish trivial or straightforward facts from deeper ones (but clearly it was only partially
possible). In Section 1 we collect standard facts that are repeatedly used in the paper.
The only unusual fact is the following. Exactly as a group (or other algebraic structures)
is defined as a set equipped with an operation, although it could be formally described by
the operation only, in this paper a family of subschemes, which is completely determined
by a morphism f of schemes, is defined emphasizing the notation on the set of the closed
fibres. We proceed similarly for families of subspaces (using a little bit more flexible defi-
nition). In Section 2 we define some basic operations, which in some cases are not obvious;
the proofs are quite straightforward. In Section 3 we show as the framework of Section 2
allows to give concise definitions of some classic concepts such as (any order) foci, and
particular types of varieties. In Section 4 there are the main results, roughly disposed by
increasing order of difficulty. Finally in Section 5 there is our proof of the structure the-
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orem for the first Gauss map, with a little discussion about possible extensions to higher
order osculating spaces.

1. - Preliminaries.

— For the basic terminology we refer to [H], with only a few exceptions, explained through
the paper.

— We fix once for all an algebraically closed field k and a k-vector space V , of finite
dimension n+ 1.

— All the schemes will be defined over k. The fibred products, unless otherwise indicated,
are supposed over Spec k. Tensor products without indication of the base ring are
over k.

— If ϕ : F → G is a morphism of quasi-coherent sheaves, we denote by ϕ̌ : Ǧ → F̌ its
transposed morphism, even if F and G are not locally free of finite rank.

— By abuse of notation, we shall often identify objects which are naturally isomorphic.
— We identify any k-vector space with its associated sheaf over Spec k; so P(V̌ ) (cf. [H,

II, 7]) is a scheme over k, denoted by Pn.
— A variety is defined as in [H, II, 4], hence a variety in Pn is an irreducible, reduced

subscheme of Pn.
— A subspace of Pn is a variety of degree 1 in Pn.
— Let X be a scheme over k and let W be a k-vector space. We denote by W ⊗OX the

sheaf f∗W , where f is the structural morphism X → Spec k.
— Let X be a scheme. A scheme Y will be a (locally closed) subscheme of X if is given

an immersion Y → X which can be obtained composing a closed immersion with an
open immersion. We shall say that a locally closed subscheme Y of Pn is contained
in a locally closed subscheme X if the immersion of Y factors through that one of X.
The subscheme Y ×X Y ′ of X will be the intersection Y ∩ Y ′ of two subschemes Y
and Y ′ of X.

— The sheaf OX(1) on a locally closed subscheme X of Pn will be the inverse image of
OPn(1). Its direct image on Pn will be often denoted again by OX(1) (it is an usual
abuse of notation; cf. [H]).

— If Y is a closed subscheme of X and i is a nonnegative integer, we call i-th infinitesimal
neighborhood of Y in X the subscheme Y iX of X defined by the (i+ 1)-th power of the
ideal sheaf of Y in X (notice that in [H] this is the (i+ 1)-th neighborhood).

Since we are interested in quasi-projective varieties we shall restrict our propositions
and definitions to quasi-projective schemes (but in many cases will be fundamental that
they may be nonreduced, since we often deal with infinitesimal neighborhoods). We shall
use the following terminology about families of schemes.

Definition 1.1. A family of quasi-projective schemes is given by the set of the closed
fibres of a morphism π : X → S of quasi-projective schemes. We denote the family by
{XP }‘P∈S’. We shall also say that the structure of the family {XP }‘P∈S’ is defined by π.
When {XP }‘P∈S’ and {X ′P }‘P∈S’ are families of schemes defined respectively by π and π′

such thata X is a subscheme of X ′ and π is the restriction of π′, we write

XP ⊆ X ′P ‘∀P ∈ S ’.
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If X is a nonempty open subscheme of X ′, we shall say that {XP }‘P∈S’ is a nonempty
open subfamily of {X ′P }‘P∈S’. If T is a subscheme of S then the family {XP }‘P∈T ’ will
have the structure obtained by base change.

Clearly the same set of schemes may have different structures, but throughout the
paper, when we deal with a family of schemes, it will be always supposed to be defined
by a fixed (sometimes understood) structure. We consider now those families of schemes
which are subschemes of a fixed quasi-projective scheme Y . This is a particular case of
the situation described above, and precisely when the second family is constant.

Definition 1.2. Let Y and S be quasi-projective schemes, let X be a subscheme of
S × Y , and let π be the restriction on X of the first projection S × Y → S. We say that
the family {XP }‘P∈S’ defined by π is a family (over S) of (locally closed) subschemes of
Y and that the structure of the family {XP }‘P∈S’ is defined by X ⊆ S × Y . The notation
is slightly different with respect to [H], where the parameter space is the second factor.

Now we introduce a convenient definition about families of subspaces.

Definition 1.3. Let λ : V̌ ⊗OS → L be a morphism of quasi-coherent OS-modules
over a quasi-projective scheme S, let P ∈ S and iP : Spec k(P )→ S be its immersion in S.
The morphism H0(i∗Pλ) is (up to natural isomorphisms) a homomorphism V̌ ⊗k(P )→ i∗PL
of k(P )-vector spaces. If the point P is closed, applying P(·) to the morphism we obtain
a rational map (linear projection) P(i∗PL) → Pn, whose image will be denoted by LP .
Note that the linear projection can be degenerate and the space P(i∗PL) can be infinite-
dimensional. We call the set of LP a family (over S) of subspaces of Pn, or sometimes
simply a family of subspaces. We denote it by {LP }‘P∈S’, and we shall say that the
structure of the family is defined by λ. If T is a subscheme of S the family {LP }‘P∈T ’ will
be defined by the restriction (i.e. the inverse image) of ϕ on T .

Some families of subspaces can be also naturally regarded as a family of subschemes,
as follows.

Definition 1.4. Let {LP }‘P∈S’ be a family of subspaces defined by a morphism

λ : V̌ ⊗ OS → L. Suppose that the sheaves Coker λ and Im λ are flat over S. We shall
call {LP }‘P∈S’ a flat family of subspaces.

Remark 1.5. In the situation of the above definition, consider the morphism λ′ :
V̌ ⊗ OS → Im λ, obtained by restriction of λ on its image. This morphism defines an-
other structure on the same set {LP }‘P∈S’: the only difference is the fact that the linear
projections (whose images are the spaces LP ) are injective. Notice that {LP }‘P∈S’ has
also a natural structure of family of subschemes of Pn, which is flat in the ordinary sense,
given by P(λ′), which is a closed immersion of P(Im λ) in P(V̌ ⊗ OS) ∼= S × Pn (cf.
Definition 1.2). If S is connected then all the spaces LP have the same dimension, say d,
so in this case we shall say that {LP }‘P∈S’ is a flat family of subspaces of dimension d.
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The flat families above are in a natural correspondence with morphisms of S into a
grassmannian. This fact is explained by the universal property of the grassmannian, as
follows.

Proposition 1.6. There is a locally free rank d+ 1 quotient q : V̌ ⊗OG(V,d+1) → Q
on the grassmannian G(V, d+ 1) such that for every surjective morphism λ : V̌ ⊗OS → L
over a noetherian scheme S over k, with L locally free of rank d + 1, there is a unique
morphism l : S → G(V, d+ 1), such that l∗q = λ (up to isomorphisms).

Proof. See [Ser].ut

Remark 1.7. The universal property of the grassmannian implies that the set of
closed points of G(V, d+1) can be naturally identified with the set of the (d+1)-subspaces
of V , or equivalently with the linear subspaces of dimension d of Pn. In fact, if W is a
subspace of V , the homomorphism ϕ : V̌ → W̌ obtained transposing the immersion of
W can be regarded as a morphism of sheaves on Spec k. Hence, by the above universal
property, it gives rise to an immersion Spec k → G(V, d+1), which is the immersion of the
required closed point representing W . The corresponding linear subscheme L of Pn is the
image of the immersion P(ϕ) : P(W̌ ) → P(V̌ ) = Pn. In our settings we can express this
fact by saying that ϕ is a structure of family of subspaces on the set {L}, and the universal
quotient is a structure of family of subspaces on the set of all d-dimensional subspaces of
Pn.

Proposition 1.6 deals only with surjective morphisms. This is not a restriction since,
as pointed out in Remark 1.5, if we replace a morphism λ defining a flat family with its
restriction (on the codomain) λ′, we obtain another structure on the same set, obviously
fulfilling again the ‘flat’ condition. However, in the next section we shall introduce some
operations on families of subspaces, and in some cases we shall need to replace λ by λ′

without affecting the result. It will be an immediate fact if the sheaves Coker λ and Im λ
are locally free. For the image there are no problems since it is coherent, but the cokernel
can be only quasi-coherent, hence ‘locally free’ is a condition stronger than ‘flat’. This is
the reason for the following definition.

Definition 1.8. Throughout this paper, a family of subspaces {LP }‘P∈S’, defined

by a morphism λ : V̌ ⊗ OS → L, will be called a good family if the sheaves Coker λ and
Im λ are locally free.

Remark 1.9. Let us consider a family of subspaces {LP }‘P∈S’, over a quasi-projective

variety S, defined by λ : V̌ ⊗ OS → L. Since Im λ is a coherent sheaf and S is reduced
(since it is a variety) over a nonempty open subscheme U of S it is locally free of finite
rank, say d + 1. If additionally Coker λ is locally free over a nonempty subscheme S′ of
U (if L is coherent there are no problems), then {LP }‘P∈S′’ is a good (hence flat) family
of subspaces of dimension d. We say that the integer d is the dimension of the generic
space of {LP }‘P∈S’. From now on, for every such family of subspaces {LP }‘P∈S’, we
shall always take S′ as ‘big’ as possible. We shall also consider the associated morphism
S′ → G(V, d+ 1).
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2. - Some operations on families.

Families of spans.

Definition 2.1. Let X be a (locally closed) subscheme of Pn. We shall denote by
〈X〉 the subspace spanned by X. More precisely, 〈X〉 is the minimum subspace of Pn

which contains X.

Remark 2.2. We shall often deal with families of subspaces which are spanned
by subschemes in a family, then we need an appropriate technical definition. If X is
a subscheme of Pn then the homomorphism V̌ ∼= H0(OPn(1)) → H0(OX(1)) defines
a structure of a family of subspaces on the single space 〈X〉. This gives the idea of the
required definition, but we have to carefully point out some details. We begin by reminding
the following useful lemma.

Lemma 2.3. Let A be a noetherian integral domain.
(I) If B is a finitely generated A-algebra and M is a finitely generated B-module, then

there is an f ∈ A− {0} such that Mf is free over Af ;
(II) if ϕ : M → N is a homomorphism of a finitely generated A-module M to a free

(possibly infinite-rank) A-module N , then there is an f ∈ A − {0} such that Coker ϕf is
free over Af .

Proof. (I). See [Mu, lecture 8, Proposition pag. 57 and its proof].
(II). Take a (possibly infinite) base X of N and a finite set of generators {gj} of

Im ϕ. Each gj is a linear combination of elements of a finite subset Xj ⊆ X, hence we
can consider the finitely generated free submodule N ′ of N generated by ∪jXj . We have
N = N ′ ⊕N”, with N” free and Im ϕ ⊆ N ′. Since N ′ is finitely generated F := N ′/Im ϕ
is finitely generated. Hence there is an f ∈ A − {0} such that Ff is free over Af . Then
Coker ϕf ∼= Ff ⊕N”f is free over Af .ut

Proposition 2.4. Let {XP }‘P∈S’ be a family of subschemes of Pn defined by X ⊆
S × Pn, let π be the projection S × Pn → S and πX its restriction to X. Consider the
morphism ϕ : V̌ ⊗OS ∼= π∗OS×Pn(1)→ π∗OX(1). If X is affine over S (i.e. the morphism
πX : X → S is affine) then

(a) for any morphism of quasi-projective schemes f : S′ → S, setting X ′ := X×SS′ ⊆
S′×Pn and denoting by π′ the projection on S′ of S′×Pn, the morphism ϕ′ : V̌ ⊗OS′ ∼=
π′∗OS′×Pn(1)→ π′∗OX′(1) is equal (up natural isomorphisms) to f∗ϕ;

(b) ϕ is a structure for the family {〈XP 〉}‘P∈S’;
(c) if S is reduced then over a nonempty open U ⊆ S the family {〈XP 〉}‘P∈U’ is good.

Proof. (a). It is enough to show that the natural morphism f∗πX∗ OX(1) →
π′
X′

∗ OX′(1) is an isomorphism, where πX
′

∗ is the restriction of π′ to X ′. The question
is local on the base, hence we can suppose S = Spec A, S′ = Spec A′ and f induced by
A → A′. Since πX is affine we can also suppose X = Spec B, πX induced by A → B,
OX(1) = M̃ , with M a finitely generated B-module (where the tilde indicate the associated
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sheaf), and X ′ = Spec B⊗AA′. Then, our natural map is (M⊗AA′)̃→ (M⊗B (B⊗AA′))̃
(where the associated sheaves are taken on A′), which is clearly an isomorphism.

(b). It is an immediate consequence of (a), taking f equal to the immersion of P , for
each closed point P ∈ S (cf. Remark 2.2).

(c). Again the question is local on the base, hence we can keep the above notation.
Moreover ϕ is induced by a homomorphism h : V̌ ⊗ A → M of A-modules. Since we are
looking for a nonempty open subscheme, we can suppose S integral. Then A is an integral
domain, hence we can apply lemma 2.3. By (I) we get an f ∈ A−{0} such that Mf is free
over Af . By (II) we get an f ′ ∈ A − {0} such that Coker hff ′ is free over Aff ′ . Hence
on the nonempty open D(ff ′), ϕ has a locally free (actually, free) cokernel. Since Im h
is finitely generated we can get a nonempty open U over which Im ϕ is locally free too.
Then the family defined by ϕ is good over U .ut

Corollary 2.5. Let {XP }‘P∈S’ be a family of locally closed subschemes of Pn,
defined by X ⊆ S ×Pn, and let {Xi} be a finite covering of X, such that each Xi is open
and affine over S (such a covering always exists). Let ϕi be the morphisms V̌ ⊗ OS ∼=
π∗OS×Pn(1) → π∗OXi(1). Finally, let ϕ : V̌ ⊗ OS → ⊕iπ∗OXi(1) be the morphism
induced by the morphisms ϕi. Then ϕ defines a structure of family of subspaces on the
set {〈XP 〉}‘P∈S’. If S is reduced, over a nonempty open subscheme U of S the family
{〈XP 〉}‘P∈U’ is good.

Proof. It follow easily from Proposition 2.4 and lemma 2.3 again, taking into account
that if a set of morphisms {ϕi : V̌ → Mi} define a set of subspaces Li, then the induced
morphism V̌ → ⊕iMi define the minimum subspace containing each Li.ut

Definition 2.6. Let {XP }‘P∈S’ be a family of subschemes of Pn. We shall call an
associated structure on {〈XP 〉}‘P∈S’ any structure defined as in the statement of corol-
lary 2.5. The choice of an associated structure depends on the choice of the open covering.
In the following, when we deal with a family {XP }‘P∈S’ of subschemes of Pn, we shall
always suppose the family {〈XP 〉}‘P∈S’ defined by one of these structures. If the scheme
X ⊆ S×Pn is affine over S, we shall always choice the (associated) structure correspond-
ing to the trivial covering of X (i.e. {X}; in other words, it is the structure defined in the
statement of Proposition 2.4).

Remark 2.7. Once fixed an associated structure on {〈XP 〉}‘P∈S’, with respect to
a covering {Xi}, if f : T → S is a morphism of quasi-projective schemes, the family
{XP }‘P∈S’ induces (by base change) a family of subschemes {XQ}‘Q∈T ’ over T . Consider

the set {〈XQ〉}‘Q∈T ’. It is easy to see that on this set, up to natural isomorphisms, the

structure obtained by base change from the structure of {〈XP 〉}‘P∈S’ coincides (up to
natural isomorphisms) with the associated structure to {XQ}‘Q∈T ’, with respect to the

covering {f−1(Xi)}.
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Union of schemes in a family.

Definition 2.8. Let {XP }‘P∈S’ be a family of subschemes of a quasi-projective
scheme Y , defined by X ⊆ S × Y . The scheme-theoretic image of X via the second
projection S×Y → Y will be denoted by

⋃
‘P∈S’XP , or sometimes simply by

⋃
‘P∈S’XP .

Remark 2.9. Notice that in the situation of Definition 2.8, we have also a natural
definition for

⋃
‘P∈T ’XP for any subscheme T of S, in fact the family {XP }‘P∈T ’ has the

natural structure obtained by base change, as already pointed out in Definition 1.1.

Span of families.

Definition 2.10. Let {LP }‘P∈S’ be a family of subspaces defined by λ : V̌ ⊗OS → L.

Consider the morphism ϕ, obtained by the composition V̌ → H0(V̌ ⊗OS)→ H0(L), where
the first map is the natural one and the second map is H0(λ). In other words, ϕ is the
morphism of sheaves on Spec k corresponding to λ via the structural map s : S → Spec k,
by the adjointness of s∗ and s∗. As a morphism of sheaves on Spec k, ϕ defines a family
made of a single subspace L (by Definition 1.3, L is the image of the linear projection
P(ϕ) : P(H0(L))→ Pn). We shall denote the subspace L by 〈

⋃
‘P∈S’ LP 〉.

The above definition agrees with the näıve notion of 〈
⋃
P∈S LP 〉 when S is a variety

(hence reduced) and the family is good. When the base scheme S is the i-th neighborhood
of a point P in some variety, we have a good definition of ‘the space spanned by the i-th
order infinitely near spaces to LP ’.

Remark 2.11. Let {SP }‘P∈T ’ be a family of subschemes, defined by an affine mor-
phism f : S → T of quasi-projective schemes, and let {LQ}‘Q∈S’ be a family of subspaces

defined by a morphism λ : V̌ ⊗ OS → L. The family {〈
⋃

‘Q∈SP ’ LQ〉}‘P∈T ’ has a natural

structure given by the morphism of OT -modules V̌ ⊗OT → f∗L, canonically obtained from
λ by the adjointness of f∗ and f∗. If we want to remove the affineness hypothesis on f , in
order to get a structure for {〈

⋃
‘Q∈SP ’ LQ〉}‘P∈T ’, we have to proceed as in the statement

of corollary 2.5.

Remark 2.12. For a flat family of subspaces {LP }‘P∈S’, which can be also regarded
as a family of subschemes (cf. Remark 1.5), Definition 2.10 of 〈

⋃
‘P∈S’ LP 〉 agrees with

simultaneous application of Definitions 1.2 and 2.1 (which gives rise to a subspace which,
according to these definitions, could be denoted in the same way). In fact, let λ : V̌ ⊗OS →
L be the morphism defining {LP }‘P∈S’, and let λ′ : V̌ ⊗OS → L′ := Im λ its restriction on
the image (which is another structure for the same family). We can replace the structure
λ with the structure λ′, since the space L = 〈

⋃
‘P∈S’ LP 〉 of Definition 2.10 is the same in

both cases. In fact, in the sequence

V̌ → H0(V̌ ⊗OS)
λ′−→H0(L′)→ H0(L),

the last morphism is injective. Let X be the subscheme of P(V̌ ⊗OS) ∼= S ×Pn defining
{LP }‘P∈S’ as a family of subschemes. Since the immersion of X in S × Pn is P(λ′) (up
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to natural isomorphisms), then λ′ is equal, up to natural isomorphisms, to the morphism
OS×Pn(1) → OX(1). Now, by Definition 1.2, Y =

⋃
‘P∈S’ LP is the (scheme-theoretic)

image of X in Pn, via the projection π : S × Pn → Pn. By Remark 2.2, our space
〈
⋃

‘P∈S’ LP 〉 = 〈Y 〉 can be recovered by the morphism V̌ ∼= H0(OPn(1)) → H0(OY (1)).

But composing with the morphism H0(π](1)) : H0(OY (1)) → H0(OX(1)) we get exactly
the morphism defining L. Since the map X → Y is dominant, H0(π](1)) is injective, hence
〈Y 〉 = L, as required.

On the same line we can prove the following two propositions, which will be useful in
Section 4.

Proposition 2.13. If {XP }‘P∈S’ is a family of subschemes of Pn, choosing an associated
structure for {〈XP 〉}‘P∈S’ we have

〈
⋃

‘P∈S’

〈XP 〉〉 = 〈
⋃

‘P∈S’

XP 〉.

In particular 〈
⋃

‘P∈S’〈XP 〉〉 does not depend on the choice of the associated structure for
{〈XP 〉}‘P∈S’ (cf. Definition 2.6).

Proof. Let X ⊆ S × Pn be the subscheme defining the family {XP }‘P∈S’, let πS

and πPn

be the projections of S × Pn and let Y =
⋃

‘P∈S’XP ⊆ Pn. In order to define
an associated structure λ for {〈XP 〉}‘P∈S’, according to Definition 2.6, we choose a finite

open affine covering {Xi} of X and define λ : V̌ ⊗OS ∼= πS∗OS×Pn(1)→ L := ⊕iπS∗OXi(1).
By Definition 2.10, the first side of the equality in the statement is given by the

following morphism ϕ:
V̌−→H0(V̌ ⊗OS)

H0(λ)−→ H0(L).

The second side of our equality is 〈Y 〉. By Remark 2.2, it is given by the morphism
ν : V̌ ∼= H0(OPn(1))→ H0(OY (1)).

The equality will follow if we find an injective morphism i : H0(OY (1)) → H0(L),
such that ϕ = i ◦ ν. Since Y is the image of X via the projection πPn

, we have morphisms
Xi → Y , hence morphisms OY (1) → π∗OXi

(1) of sheaves over Pn which patch together
to give a morphism ι : OY (1)→ ⊕iπPn

∗ OXi
(1). This morphism is injective, since the map

X → Y is dominant, and {Xi} is an open covering of X. It is easy to check that we can
take i = H0(ι).

Finally, the first side of the equality is independent of the choice of the structure for
the family of subspaces {〈XP 〉}‘P∈S’, because clearly the second side is.ut

Proposition 2.14. Let X be a subscheme of Pn and let {LP }‘P∈X’ be a flat family
of subspaces of Pn such that (considering it as a family of subschemes) P ∈ LP ‘ ∀P ∈ X ’.
Fix an integer i > 0 and give the family {P iLP

}‘P∈X’ its obviuos structure. Then

〈
⋃

‘P∈X’

P 1
LP
〉 = 〈

⋃
‘P∈X’

LP 〉.

9



Proof. By Proposition 2.13, it is enough to show that

(∗) 〈
⋃

‘P∈X’

〈P 1
LP
〉〉 = 〈

⋃
‘P∈X’

LP 〉

(clearly {〈P iLP
〉}‘P∈X’, as a set of subspaces, is nothing else than {LP }‘P∈X’, but we have

to be careful with the structures). We can suppose that the structure ϕ : V̌ ⊗OX → L is
surjective (arguing as in Remark 2.12). Let L ∼= P(L) ⊆ X ×Pn be the scheme definining
{LP }‘P∈X’ as a family of subschemes and let ∆ ⊆ X × X ⊆ X × Pn be the diagonal.

By our hypotheses ∆ ⊆ L, and the structure of {P iLP
}‘P∈X’ is ∆i

L which is finite over

X, hence affine over X. Then the natural associated structure α for {〈P iLP
〉}‘P∈X’ is

V̌ ⊗OX ∼= π∗OX×Pn
(1)→ π∗O∆i

L
(1), where π is the projection X ×Pn → X. Hence the

first side of (∗) is the space defined by

V̌−→H0(V̌ ⊗OX)
H0(α)−→ H0(O∆i

L
(1)).

The second side of (∗) is the space defined by

V̌−→H0(V̌ ⊗OX) ∼= H0(OX×Pn
(1))

H0(ϕ)−→ H0(L) ∼= H0(OL(1))

(cf. Remark 2.12). It is enough to show that the natural morphism ν : OL(1)→ O∆i
L

(1) is

injective (in fact the morphism defining the first side is the composition of H0(ν) with the
morphism defining the second side). The question is local on X, hence we can replace X
by Spec A, where A is a noetherian local ring. Then we can suppose L = Proj A[x0, . . . , xd]
(where d is the dimensions of the spaces LP ), and ∆ defined by an ideal I in A[x0, . . . , xd],
which is the kernel of a suitable graded homomorphism h : A[x0, . . . , xd] → A[x] of A-
algebras. As such, h is completely determined in degree 1, i.e. by the homomorphism h1

of the free A-modules generated by x0, . . . , xd and x respectively. Since A is local, the
domain of h1 splits into a direct sum of I1 (the homogeneous part of degree 1 of I) and a
rank 1 submodule generated by a linear form with at least one invertible coefficient. Then,
up to an invertible change of variables, we can suppose I generated by x1, . . . , xd. But the
kernel of ν is given by the degree 1 homogeneous part of the saturation of Ii, which clearly
vanishes.ut

Intersection.

Definition 2.15. Let {LP }‘P∈S’ be a family of subspaces defined by λ : V̌ ⊗OS → L.

Let λ̌ : Ľ → V ⊗OS be the transposed of λ, and let ω : V → H0(V ⊗OS) be the natural
morphism. Starting from H0(λ̌) and ω construct the pull back diagram

G p2−→ H0(Ľ)yp1 yH0(λ̌)

V
ω−→ H0(V ⊗OS)

.
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The subspace of Pn defined by p̌1, i.e. the image of P(p̌1) : P(Ǧ) → Pn, will be denoted
by

⋂
‘P∈S’ LP .

The above definition agrees with the näıve notion of 〈
⋂
P∈S LP 〉 when S is a variety

(hence reduced) and the family is good.

3. - Some classic definitions revisited.

Definition 3.1. Let X be a subscheme of Pn, let P be a closed point of X, let i
be a nonnegative integer, and let P iX be the i-th infinitesimal neighborhood of P in X.
The space 〈P iX〉 is called the i th order osculating space to X at P , and it is denoted by
T i(X,P ), or simply by T iP . The family {P iX}‘P∈X’ has a natural structure of a family of

subschemes of Pn, given by ∆i
X×X ⊆ X×X ⊆ X×Pn, where ∆ is the diagonal subscheme

of X ×X, and ∆i
X×X is its i-th infinitesimal neighborhood. By Definition 2.6 {T iP }‘P∈X’

is in a natural way a family of subspaces. We denote its structure by τ iX : V̌ ⊗OX → T iX .
The associated morphism of the appropriate open subscheme of X into the appropriate
grassmannian (cf. Remark 1.7) will be called i-th Gauss map, and denoted by ti : X(i) → G.

Remark 3.2. The sheaf T iX introduced above is the sheaf P i(OX(1)) of i-th order
principal parts (or i-jets) of OX(1) (over Spec k; cf. [Pe, Appendix A, Definition 1.2]). In
fact, since any infinitesimal neighborhood of the diagonal ∆ is finite over X, hence affine
over X, then the structure τ iX is the morphism

V̌ ⊗OS ∼= (πX)∗OX×Pn(1)→ (πX)∗O∆i
X×X

(1).

Thus T iX = (πX)∗O∆i
X×X

(1). Following the notation of [Pe, Appendix A, Section A1],

where we put S = Spec k, the first projection π1 : X × X → X is the restriction of
πX : X×Pn → X, hence p is the restriction of πX to the subscheme ∆i

X×X (which in [Pe]
is denoted by ∆(i)). Moreover, looking at the diagram

∆i
X×X

ι−→ X ×X π2−→ Xy y
X ×Pn −→ Pn

,

O∆i
X×X

(1) (as a sheaf on ∆i
X×X) is the inverse image of OPn(1) on ∆i

X×X and OX(1) is the

inverse image of OPn(1) on X, then O∆i
X×X

(1) = q∗OX(1), where q = π2◦ι. Hence (taking

in account the abuse of notation OX(1) = ι∗OX(1)) we have T iX = (π1)∗O∆i
X×X

(1) =

(π1)∗ι∗O∆i
X×X

(1) = p∗q
∗OX(1) = P i(OX(1)) as required.

Definition 2.15 allows us to give in a rigorous form some classic definitions about i-th
order characteristic space (i.e. the intersection of the spaces of the family which are ‘i-th
order infinitely near’ to a given one) and i-th order foci.
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Definition 3.3. Let {LP }‘P∈S’ be a family of subspaces. If P ∈ S is a closed point,

and P i is its i-th infinitesimal neighborhood, the space
⋂

‘Q∈P i’ LQ is called the i-th order
characteristic space in LP of the family. The i-th order foci in LP of the family are the
closed points Q ∈ LP such that there exists a curve C ⊆ S passing smoothly through P
and Q ∈

⋂
‘R∈P i

C ’ LR. In other words, Q is an i-th order focus if it lies on the i-th order

characteristic space in LP of a one-dimensional subfamily which contains LP ‘regularly’.

Remark 3.4. Our definition of ‘foci’, like that one of ‘Gauss map’, is a natural
extension of the classic ones (cf. [CS]). However, modern terminology about them is not
standard at all, since these notion can be extended in many ways.

Example 3.5. Consider the nondegenerate conic C : x0x1 − x2
2 in P2, over a field

k of characteristic 6= 2. We can assume V̌ = 〈x0, x1, x2〉k. The family of the tangents
{T 1

P }‘P∈C’ is given by the morphism ϕ : V̌ ⊗ OC → T 1
C . Let us calculate the first order

characteristic space in T 1
O where O = [1, 0, 0]. Parametrizing an affine open U of C by

Spec k[t], with
x0 7→ 1, x1 7→ t2, x2 7→ t,

over U we have that T 1
U is the sheaf associated to the k[t1]-module k[t1,t2]

(t1−t2)2 and ϕ|U :

V̌ ⊗OU → T 1
U corresponds to the homomorphism V̌ ⊗ k[t1]→ k[t1,t2]

(t1−t2)2 given by

x0 7→ 1, x1 7→ t22, x2 7→ t2.

Pulling-back over O1
C
∼= Spec k[ε], with ε2 = 0, we get the homomorphism of k[ε]-modules

V̌ ⊗ k[ε]→ k[ε, t2]

(ε− t2)2
= k[ε]⊕ (k[ε] · t̄2)

given by
x0 7→ 1, x1 7→ 2εt̄2(= t̄2

2
), x2 7→ t̄2.

Now, according to Definition 2.15, dualizing over k[ε] construct the diagram

G → k[ε]⊕ k[ε]yp yα
V → V ⊗ k[ε]

.

The matrix of the homomorphism α (of k[ε]-modules) in the above diagram, with respect
to the dual bases of (1, t̄2) and (x0, x1, x2) respectively is 1 0

0 2ε
0 1

 ,
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hence G = α−1(V ) = k and p is defined by c 7→ c · (1, 0, 0). Thus p̌ has kernel 〈x1, x2〉,
then the characteristic space is just the point O, as one could intuitively expect.

Definition 3.6. Let {LP }‘P∈C’ be a flat family of subspaces of dimension d, where
C is a curve and such that the generic space of the family {〈

⋃
‘Q∈P 1

C ’ LQ〉}‘P∈C’ (cf.

Remark 2.11) has dimension d+1. Thinking {LP }‘P∈C’ as a family of subschemes, consider⋃
‘P∈C’ LP . Any nonempty open subvariety of

⋃
‘P∈C’ LP is called an ordinary developable

variety.

Definition 3.7. Let {LP }‘P∈S’ be a flat family of lines, where S is a surface, such
that the generic space of {〈

⋃
‘Q∈P 1

S’ LQ〉}‘P∈S’ has dimension 3. In this situation, the

family {LP }‘P∈S’ is called a Laplace congruency; we shall also call Laplace congruency

any nonempty open subvariety of
⋃

‘P∈S’ LP .

Remark 3.8. In the above definition we used the term ‘Laplace congruency’ following
[C, pag. 349]. As pointed out there, the term was introduced first for a more restricted
class of congruencies, arising in the theory of Laplace equations (hence the name).

4. - Main results.

Proposition 4.1. Let {XP }‘P∈S’ be a family of subschemes of Pn defined by a closed
subscheme X ⊆ S × Pn and let Y be a subscheme of Pn. If the family is flat (i.e. X is
flat over S) and S is a variety then

XP ⊆ Y ∀P closed point of S ⇒ XP ⊆ Y ‘ ∀P ∈ S ’.

Proof. We have to show that X ⊆ S × Y . We can suppose Y closed. In fact, if Ȳ
is the closure of Y and X ⊆ S × Ȳ , if X were not in the open subscheme S × Y of S × Ȳ ,
then there would be a closed point of X lying out of S × Y , and then some XP would not
be contained in Y .

Let X ′ = X ∩ (S × Y ), so that X ′ is a closed subscheme of X. Let I be the ideal
sheaf of X ′ in X, let P be a closed point of X and let Q be its projection in S. Consider
the exact sequence

0→ IP → OX,P → OX′,P → 0.

The closed fibres of X and X ′ over S are the same and since X is flat, their Hilbert
polynomial is the same. Hence X ′ is flat over S, and in particular OX′,P is a flat OS,Q-
module. Then, if kQ is the residue field of Q, tensorizing the above sequence by kQ over
OS,Q we get the exact sequence

0→ IP ⊗OS,Q
kQ → OXQ,P → OX′Q,P → 0.

Since XQ = X ′Q, we have IP ⊗OS,Q
kQ = 0. By Nakayama’s lemma IP = 0. This holds for

any closed point P of X, hence I = 0. Thus X = X ′ = X ∩ (S × Y ), then X ⊆ S × Y .ut
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When {LP }‘P∈S’ is a flat family of subspaces, and l : S → G is the associated
morphism into the grassmannian, two closed points P,Q ∈ S lies on the same fibre of l
if and only if LP = LQ. Unfortunately this condition cannot be used when P and Q are
‘infinitely near’. More precisely, we shall need a criterion to know when a nonreduced
subscheme of S lies on a fibre of l. A good idea is to write the condition LP = LQ in the
equivalent form 〈LP ∪LQ〉 = LP (notice in fact that LP and LQ have the same dimension)
or even LP ∩ LQ = LP . In fact we state the following proposition.

Proposition 4.2. Let {LP }‘P∈S’ be a good family of subspaces, defined by λ : V̌ ⊗
OS → L, let l : S → G be the associated morphism into the suitable grassmannian, and
let L be a space of the family. Then the following conditions are equivalent:

(a) 〈
⋃

‘P∈S’ LP 〉 = L.

(b)
⋂

‘P∈S’ LP = L.

(c) l is a constant map, on the point corresponding to L.

Proof. Up to a restriction on the image, we can suppose λ surjective. Let i : {L} ∼=
Spec k → G be the immersion of the point of G corresponding to L and let π : S → {L}
the constant morphism (i.e. the structural morphism of S over k). Let W be the vector
subspace of V corresponding to L (cf. Remark 1.7), and let ϕ : V̌ → W̌ be the transposed
of the immersion of W in V . We show that (a), (b), (c) are all equivalent to the following
fact:

(d) π∗ϕ = λ, up to an isomorphism π∗W̌ ∼= L.
(a)⇒(d). Let λπ : V̌ → π∗L be the morphism of vector spaces corresponding to λ via

π. Condition (a), by Definition 2.10, means that P(λπ) has image L, therefore it factors
through the immersion of L in Pn, which is P(ϕ); then λπ factors through ϕ. Pulling
back on S and composing with π∗π∗L → L we get λ = ψ ◦ π∗ϕ. Now ψ : π∗W → L
must be surjective since λ is surjective, and π∗W and L have the same rank, hence ψ is
an isomorphism.

(d)⇒(a). The morphism of vector spaces on {L} = Spec k corresponding to π∗ϕ is
the composition V̌ → π∗π

∗V̌ → π∗π
∗W̌ , which is equal to V̌

ϕ−→W̌ → π∗π
∗W̌ . Hence

the linear projection defining 〈
⋃

‘P∈S’ LP 〉 factors through the immersion of L, and since

W̌ → π∗π
∗W̌ is injective, its image must be equal to L, hence 〈

⋃
‘P∈S’ LP 〉 = L as required.

(b)⇒(d). Looking at Definition 2.15, let us construct the pull-back diagram

M p2−→ H0(Ľ)yp1 yH0(λ̌)

V
ω−→ π∗(V ⊗OS)

.

The space
⋂

‘P∈S’ LP is the image of P(p̌1), so (b) implies that this map factors through

the immersion of L, via a surjective linear projection P(M̌) → L; we can get then a
factorization of p1 through the immersion ϕ̌ of W in V , via a surjective homomorphism
M → W . Choosing a right inverse ψ : W → M of this homomorphism, we have a
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factorization ϕ̌ = p1 ◦ ψ. Composing with the preceding pull-back diagram, we have the
following commutative diagram

W −→ H0(Ľ)yϕ̌ yH0(λ̌)

V
ω−→ π∗(V ⊗OS)

.

Applying π∗ and taking in account the adjointness of π∗ and π∗, we get a factorization of
π∗ϕ̌ through λ̌, and then a factorization of π∗ϕ through λ. Now we can conclude like at
the end of the proof of (a)⇒(d).

(d)⇒(b). It is enough to notice that the natural diagram

W −→ W ⊗OSyϕ̌ yϕ̌⊗idOS

V −→ V ⊗OS

is exactly the pull-back diagram required by Definition 2.15, so
⋂

‘P∈S′ LP is defined by
P(ϕ) (as a single subspace), which is nothing else the immersion of L.

(c)⇐⇒ (d). Let q be the universal quotient over G. By definition of l and i, λ = l∗q
and ϕ = i∗q. So (d) means that l∗q = π∗i∗q, which by the universal property of G
(Proposition 1.6) is equivalent to l = i ◦ π, i.e. (c).ut

Proposition 4.3. Let X be a quasi-projective variety, let P be a closed point of X,
and let i, j be nonnegative integers. Then we have⋃

‘Q∈P i’

Qj ⊆ P i+j .

Proof. Restricting to an affine open neighborhood of P , we can assume X = Spec A,
and let m be the ideal of P . The family {QjX}‘Q∈X’ is defined by the j-th infinitesimal

neighborhood of the diagonal subscheme D ⊆ X ×X = Spec (A⊗ A) and recall that the
ideal p of D is the kernel of the multiplication map A⊗A→ A, and it is generated by the

elements of the form 1 ⊗ a − a ⊗ 1. The scheme
⋃

‘Q∈P i
X ’Q

j
X is obtained restricting the

family {QjX}‘Q∈X’ over P i (just changing base over the first factor X by the immersion

of P i) and then taking the image via the second projection on X. Hence we first take the
tensor product

B =
A

mi+1
⊗A

A⊗A
pj+1

,

where the structure of A-algebra on A⊗A
pj+1 is given by the first factor, then we take the

kernel of the map A → B defined starting from the second immersion A → A ⊗ A: it is
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enough to prove that mi+j+1 is contained in this kernel. Notice that B is the quotient of
A⊗A over the ideal q, generated by pj+1 and by the elements which are products of i+ 1
elements of the form m ⊗ 1, with m ∈ m. Now it is enough to prove that the elements
which are products of i + j + 1 elements of the form 1 ⊗m, with m ∈ m, are in q. Write
1 ⊗ m = m ⊗ 1 + (1 ⊗ m − m ⊗ 1) and observe that every ‘monomial’ of a product of
i+ j + 1 elements of this form must contain either a product of j + 1 elements of the form
(1⊗m−m⊗ 1) or a product of i+ 1 elements of the form m⊗ 1, hence belongs to q, as
required.ut

Corollary 4.4. Let X be a quasi-projective variety, and let i, j be nonnegative
integers. The following inclusion holds:

〈
⋃

‘Q∈P i’

T j〉 ⊆ T i+j .

Proof. By Proposition 4.3, we have
⋃

‘Q∈P i
X ’Q

j
X ⊆ P i+jX . Now it is enough to take

the subspaces spanned by each members of the inclusion, and apply Proposition 2.13.ut

An ‘inversion formula’.

Let {XP }‘P∈S’ be a family of subschemes of a scheme Y such that Y =
⋃

‘P∈S’XP

and let P be a closed point of S. Consider the schemes⋃
‘Q∈XP ’

QiY and
⋃

‘Q∈P i
S’

XQ.

It is natural to conjecture that they are equal. Moreover, one could think that they are
nothing else than the i-th neighborhood of XP in Y . This is true in many cases, but
sometimes this neighborhood is ‘thicker’ than the two schemes above, as shown by the
following example.

Example 4.5. Let S = Y = P1, and XP = P 1
Y ‘∀P ∈ Y ’. Obviously Y =⋃

‘P∈S’XP . It is easy to see that for any closed point P ∈ Y , the two schemes
⋃

‘Q∈XP ’Q
1
Y

and
⋃

‘Q∈P 1
S’XQ are equal to P 2

Y (cf. also Proposition 4.3), while the first neighborhood

of XP in Y is P 3
Y .

Now we give some examples which show that there are exceptions to the equality of

the schemes
⋃

‘Q∈XP ’Q
i
Y and

⋃
‘Q∈P i

S’XQ.

Example 4.6. (a) Let S = P1, let Y be a (reduced, irreducible) quadric cone and

let {XP }‘P∈S’ the family of its lines. If P is any closed point of S, then
⋃

‘Q∈XP ’Q
1
Y ⊇⋃

‘Q∈P 1
S’XQ, but they are not equal, since the first one has an embedded component at

the vertex of Y . However, notice that they are equal apart from the vertex.
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(b) Let X ⊂ A1 × A1 be the graph of the morphism F : A1 → A1 defined by
y = x2 (i.e. X is the subscheme defined by the map A1 → A1 × A1 which gives the
identity on the first factor and F on the second). If S = A1 is the first factor, X defines
a family {XP }‘P∈S’ of subschemes of A1. If P is the origin (x = 0) of S = A1 then⋃

‘Q∈XP ’Q
1
Y = X1

P while
⋃

‘Q∈P 1
S’XQ = XP (and XP = F (P ) = P ). Again the first

scheme properly contains the second one. Notice that if the characteristic of k is 2 (so that
F is the Frobenius morphism) this holds for any closed point P ∈ S.

Example 4.7. Exchange the factors in Example 4.6b (i.e. now X is defined by the
map A1 → A1 ×A1 which gives F on the first factor and the identity on the second) and

let S be again the first factor. If P is the origin of S = A1 then
⋃

‘Q∈XP ’Q
1
Y = P 2 while⋃

‘Q∈P 1
S’XQ = P 3 (and XP = P 1). In this case the first scheme is properly contained in

the second one.

The examples above allow us to conjecture that the equality⋃
‘Q∈XP ’

QiY =
⋃

‘Q∈P i
S’

XQ

holds over an open subfamily of {XP }‘P∈S’, which may be empty only in special cases
in positive characteristic. We prove now two useful proposition about the two inclusions.
The first one requires the hypothesis of regularity of XP , and holds even if Y is not equal
to

⋃
‘P∈S’XP .

Proposition 4.8. Let {XP }‘P∈S’ be a family of subschemes of a quasi-projective
scheme Y , let P ∈ S be such that XP is smooth and let i be a nonnegative integer. Then⋃

‘Q∈XP ’

QiY ⊇
⋃

‘Q∈P i
S’

XQ.

Proof. We can replace S by the affine scheme P iS
∼= Spec AS , where AS =

OP,S

mi+1
P,S

.

Restricting to an open set of Y in which XP is closed, and considering an open affine cover
of it, we reduce to the case Y affine, ∼= Spec AY and X (the scheme defining the family)
closed in S × Y . Hence X is affine, say ∼= Spec AX . Let m be the ideal of XP in AX ,
which is the extension in AX of the maximal ideal of AS , hence mi+1 = (0). The ideal
of

⋃
‘Q∈P i

S’XQ is the kernel k of the homomorphism AY → AX and the ideal of XP in Y

is the contraction mY of m via the same homomorphism. Now we have to prove that k

contains the ideal h of
⋃

‘Q∈XP ’Q
i
Y , and this one is obtained in the following way. Let p

be the extension in AY /mY ⊗AY of the kernel of the multiplication map AY ⊗AY → AY .
Then h is the contraction of pi+1 via the second factor immersion of AY in AY /mY ⊗AY .
Let us look at the commutative diagram

AY −→ AXy y
AY

mY
⊗AY −→ AX

m ⊗AX
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(where the vertical arrows are immersions of the second factor), and consider the ideal
q of AX/m ⊗ AX , extension of the kernel of the multiplication map AX ⊗ AX → AX .
The contraction of q in AY /mY ⊗ AY is p. In fact, AX/m ∼= AY /mY (since they are
both the coordinate ring of XP ), and notice that the two ideals can be obtained as the
contraction of the kernel of the multiplication map AX/m ⊗ AX/m → AX/m. Hence the
contraction of qi+1 contains pi+1. Then h is contained in the contraction of qi+1 in AY
via the above diagram. Now we prove that this one is k: clearly it is enough to show
that the contraction of qi+1 in AX is (0). Starting from the identity AX/m → AX/m,
since XP is smooth, we can apply the infinitesimal lifting property [H, II, ex. 8.6] in
order to get a homomorphism AX/m → AX/m

2. Iterating, we get a homomorphism
ϕ : AX/m → AX/m

i+1 ∼= AX such that AX/m
ϕ−→AX → AX/m is the identity. From ϕ

and the identity on AX , we get a homomorphism ψ : AX/m ⊗ AX → AX such that the
contraction of m is q. Since mi+1 = (0), the ideal qi+1 is contained in the kernel of ψ. But
the composition AX−→AX/m ⊗ AX

ψ−→AX is the identity, hence the contraction of qi+1

in AX is (0), as required.ut

Let us now consider the reverse inclusion. Example 4.6 indicates that it should be
true on an open subfamily of the assigned one. Unfortunately this subfamily may be
empty in some special situations in positive characteristic or in some nonreduced cases.

The inclusion
⋃

‘Q∈XP ’Q
i
Y ⊆

⋃
‘Q∈P i

S’XQ is useful in nonreduced situation: we shall see

an example in our proof of theorem 5.3 in the next section. Hence we have to find some
good conditions under which the subfamily is nonempty. The Proposition 4.11 below will
be enough in the proofs of the next section. We need to state a preliminary proposition
(4.10), which is interesting in its own.

Remark 4.9. In the next proposition we shall adopt the definition of separability of
[Ma, Section 26, pag. 198], which is a generalization of the usual one, and allows to speak
about separability of any (not necessarily algebraic) extension of a field. Then we can say
that a dominant morphism X → Y of quasi-projective varieties is separable if K(Y ) is
separable over K(X). By [Ma, theorem 26.1], separability is automatic in characteristic 0.

Proposition 4.10. Let f be a dominant morphism from a quasi-projective irreducible
scheme X to a quasi-projective variety Y , let I be the ideal sheaf of Xred in X (i.e. the
nilradical of OX) and let i be a nonnegative integer. If f |Xred

is separable and I2 = 0 then
there is a nonempty open subscheme U of X such that for any subscheme Z of U such that

f |Z is an immersion, the scheme-theoretic image of
⋃

‘P∈Z’ P
i
X in Y is

⋃
‘P∈Z’ P

i
Y (where

we consider Z also as a subscheme of Y , via f |Z).

Proof. Let L be the local ring at the generic point of X and K be the function field
of Y . Since f |Xred

is separable, Lred is a separable extension of K, hence is 0-smooth over
K by [Ma, Section 26, theorem 26.9]. Thus, we can lift the identity of Lred to a morphism
Lred → L, which gives rise to a morphism ψ of a nonempty open subscheme U of X
to Ured such that the composition with f |Ured

is f |U . Shrinking U if necessary, by [Mu,
lecture 8, Proposition pag. 57] we can suppose that I is flat over Ured via the morphism
ψ : U → Ured. Moreover, since I2 = 0, we can suppose (shrinking again if necessary) that
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U is a product U |red × T , with T a 0-dimensional scheme (in general nonreduced). Then
f |U is a composition U → Ured → Y , hence we can reduce ourselves to prove the statement
in the following two cases:

(a) X = Y × T (and f is the first projection).
(b) X is reduced. Let G ⊆ X×Y be the graph of f and ∆X ⊆ X1×X2, ∆Y ⊆ Y1×Y2

be the diagonals, where we set X1 = X2 = X and Y1 = Y2 = Y in order to distinguish the
factors. It is enough to show that the scheme-theoretic image of ∆i

X ×X1
Z in Gi ×X Z

is the whole Gi ×X Z: in fact,
⋃

‘P∈Z’ P
i
X is the scheme-theoretic image of ∆i

X ×X1 Z in

X2 and
⋃

‘P∈Z’ P
i
Y is the scheme-theoretic image of ∆i

Y ×Y1
Z in Y2, which is equal to the

scheme-theoretic image of Gi ×X Z in Y .
Let us prove the statement in the case (a). If X = Y ×T , then X×Y ∼= Y ×Y ×T and

X1×X2
∼= Y1×Y2×T ×T , hence the diagonal morphism T → T ×T induces a morphism

X × Y → X ×X such that the composition X × Y → X ×X → X × Y is the identity of
X × Y . Then we get a composition Gi → ∆i

X → Gi which gives the identity, hence the
scheme-theoretic image of ∆i

X ×X1
Z in Gi ×X Z is the whole Gi ×X Z, as required.

Let us prove the statement in the case (b). Let G and D be the direct images on X
of the sheaves OGi and O∆i

X
. We have to find U in such a way that the restriction on Z

of the morphism ϕ : G → D is injective.
At the generic point η of X, the morphism ϕ has a left inverse. In fact, if K and L

are as above, looking at the map (K ⊗ L)/Ii+1 → L, where I is the kernel of K ⊗ L →
L, and using again the 0-smoothness of L over K, we can lift the identity of L to a
homomorphism L → (K ⊗ L)/Ii+1 which, together with L → K ⊗ L → (K ⊗ L)/Ii+1

induces a homomorphism (L⊗L)→ (K ⊗L)/Ii+1. This homomorphism sends the kernel
J of L⊗ L→ L to I/Ii+1. Thus we get a homomorphism (L⊗ L)/J i+1 → (K ⊗ L)/Ii+1,
which is (up to natural isomorphisms) a left inverse of ϕη. Now it is enough to take U as
a nonempty open subscheme over which this left inverse is defined.ut

Proposition 4.11. Let Y ⊆ Pn be a (quasi-projective) variety, let i be a nonnegative
integer and let {X ′P }‘P∈S’ be a family of subschemes of Y defined by an irreducible sub-

scheme X ′ ⊆ S×Y , such that
⋃

‘P∈S’X
′
P = Y . If the restriction of the morphism X ′ → Y

to X ′red is separable (in particular if char k = 0) and the square of the ideal sheaf of X ′red

in X ′ is 0, then there is a nonempty open subfamily {XP }‘P∈S’ of {X ′P }‘P∈S’ such that
for any closed point P ∈ S ⋃

‘Q∈XP ’

QiY ⊆
⋃

‘Q∈P i
S’

XQ.

Proof. It is enough to take the family {XP }‘P∈S’ be defined by a nonempty open

subscheme X of the scheme X ′ as in the statement of Proposition 4.10. In fact,
⋃

‘Q∈P i
S’XQ

is the scheme-theoretic image in Y of the i-th infinitesimal neighborhood of XP , which

contains
⋃

‘Q∈XP ’Q
i
X , whose scheme-theoretic image in Y is

⋃
‘Q∈XP ’Q

i
Y , by Proposi-

tion 4.10.ut
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5. - Some classic results revisited

We begin this section giving a new proof of a classic result, using the framework developed
in the previous sections. We state before a simple proposition and a technical lemma.

Proposition 5.1. Let P be a closed point of a variety X in Pn. Then the first
neighborhood P 1

X of P in X is equal to the first neighborhood P 1
T 1
P

of P in the tangent

space T 1
P .

Proof. It is enough to notice that P 1
X is contained in T 1

P , hence is contained in P 1
T 1
P

,

but P 1
X and P 1

T 1
P

have clearly coordinate rings of equal length.ut

Lemma 5.2. Let X be a variety of dimension d in Pn, over a field k of characteristic
0, let t1 : X(1) → G := G(V, d+ 1) be the first Gauss map. For any closed point P ∈ X(1)

let FP be the fibre of t1 containing P and let LP = 〈FP 〉. Then there is a nonempty open
subset U of X, such that

(a) {FP }‘P∈U’ is a family of smooth subschemes of Pn;

(b) there is an associated structure of good family of subspaces for {LP }‘P∈U’;

(c) for any closed point P ∈ U , 〈
⋃

‘Q∈P 1
LP

’Q
1
X〉 ⊆ 〈

⋃
‘Q∈P 1

X’Q
1
LQ
〉.

Proof. There is no loss of generality if we suppose X = X(1). Let Y be the scheme-
theoretic image of X in G via t1, which is a variety since X is a variety. The restriction
of t1 on its image Y defines a family {Fy}‘y∈Y ’ (whose members are fibres of t1). It is
obviously a family of subschemes of Pn, since X can be embedded in Y ×X as the graph
of X → Y , hence in Y × Pn. Then we can apply Definition 2.6 and get a structure
for the family {〈Fy〉}‘y∈Y ’. By corollary 2.5 there is a nonempty open subset U1 of Y

over which the family {〈Fy〉}‘y∈U1’ is good. By generic smoothness, there is a nonempty

open subset U2 such that Fy is smooth for any closed y ∈ U2. Let U ′ be the preimage
of U1 ∩ U2 and define the families {FP }‘P∈U ′’ and {LP }‘P∈U ′’ as the pull-backs on U of
{Fy}‘y∈Y ’ and {〈Fy〉}‘y∈Y ’ respectively. The family {LP }‘P∈U ′’ is good since the pull-back

of a good family is good, and its structure is (up to natural isomorphisms) associated to
{FP }‘P∈U ′’, as already pointed out at the end of Definition 2.6. Let L ⊆ U ′ ×Pn be the
scheme defining {LP }‘P∈U ′’ as a family of subschemes and let ∆ ⊆ U ′ × U ′ ⊆ U ′ × Pn

be the diagonal. By Proposition 4.1, ∆ ⊆ L and the family {P 1
LP
}‘P∈U ′’ is defined by

∆1
L. It is a flat family since all closed fibres have Hilbert polynomial l + 1, where l is the

dimension of the subspaces LP . Moreover, for any closed point P ∈ U ′, P 1
LP
⊆ U ′. In

fact, LP = 〈FP 〉 ⊆ T 1
P , hence P 1

LP
⊆ P 1

T 1
P

= P 1
X = P 1

U ′ ⊆ U ′ by Proposition 5.1. Hence by

Proposition 4.1 {P 1
LP
}‘P∈U ′’ is a family of subschemes of U ′ and

⋃
‘P∈U ′’ P

1
LP

= U ′ since

U ′ is a variety and any closed point of U ′ lies on
⋃

‘P∈U ′’ P
1
LP

. But U ′ is open in X, hence

it is also a family of subschemes of X and, as such,
⋃

‘P∈U ′’ P
1
LP

= U ′. Since the scheme

defining the family is ∆1
L and ∆ ∼= U ′ is reduced, the square of the ideal sheaf of ∆1

L is
zero. Hence the hypotheses of Proposition 4.11 are fulfilled. Then, for i = 1, we get a
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nonempty open subscheme D of ∆1
L such that for any closed point P in U ′,

(∗)
⋃

‘Q∈DP ’

Q1
X ⊆

⋃
‘Q∈P 1

X ’

DQ.

(where we wrote P 1
X instead of P 1

U ′ , since they are clearly the same). Now notice that the
map ∆1

L → U ′ is an homeomorphism (since ∆ → U ′ is an isomorphism), hence D is the
preimage of a nonempty open subset U of U ′, which means {DP }‘P∈U’ = {P 1

LP
}‘P∈U’.

Then if P is a closed point of U , (∗) become⋃
‘Q∈P 1

LP
’

Q1
X ⊆

⋃
‘Q∈P 1

X ’

Q1
LQ
.

Taking the span, we have 〈
⋃

‘Q∈P 1
LP

’Q
1
X〉 ⊆ 〈

⋃
‘Q∈P 1

X ’Q
1
LQ
〉, as required.ut

Theorem 5.3. Let X be a variety of dimension d in Pn, over a field k of characteristic
0. If the first Gauss map t1 : X(1) → G := G(V, d+1) is not birational on the image, then
its generic closed fibre is an open subset of a linear space of positive dimension in Pn.

Proof. For any closed point P ∈ X let FP be the fibre of t1 containing P and let
LP = 〈FP 〉. By lemma 5.2, there is a nonempty open subset U of X, such that {FP }‘P∈U’
is a family of smooth subschemes of Pn, and there is an associated structure of good family
of subspaces for {LP }‘P∈U’. By the hypotheses, t1 is not birational on the image, hence
the dimension l of the subspaces of {LP }‘P∈U’ is positive. We show now that FP contains

the first infinitesimal neighborhood P 1
LP

of P in LP . According to Proposition 4.2, it is
enough to show that

〈
⋃

‘Q∈P 1
LP

’

T 1
Q〉 = T 1

P .

One inclusion is obvious, and the other follows from

〈
⋃

‘Q∈P 1
LP

’

T 1
Q〉

2.13
= 〈

⋃
‘Q∈P 1

LP
’

Q1
X〉

5.2c
⊆ 〈

⋃
‘Q∈P 1

X ’

Q1
LQ
〉 2.14

= 〈
⋃

‘Q∈P 1
X ’

LQ〉
2.13
=

2.13
= 〈

⋃
‘Q∈P 1

X ’

FQ〉
4.8
⊆ 〈

⋃
‘Q∈FP ’

Q1
X〉

2.13
= 〈

⋃
‘Q∈FP ’

T 1
Q〉

4.2
= T 1

P .

Then, since P is smooth for FP (because of smoothness of FP ) the fact that FP contains the
first infinitesimal neighborhood of P in LP means that FP (⊆ LP ) has at least dimension
l = dim LP , hence it is an open subvariety of LP .ut

Remark 5.4. In the proof above we needed Proposition 5.1 (since it is used in the
proof of Lemma 5.2). Clearly this proposition does not extend to osculating spaces of order
> 1, so we can expect that theorem 5.3 does not extend to osculating spaces of order > 1.
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In [T] is claimed that this fact is proved in [C]. Actually this paper gives a classification of
surfaces with second Gauss map t2 not birational on the image, and one class is made by
surfaces for which t2 has finite generic fibre. In this way the author gets a counterexample.
But her proof that this class is nonempty is incomplete. In fact, it is not obvious that
any variety contained in a Laplace congruency and meeting each fibre in a finite number
(s > 1) of points, is in this class: it would follow just if the 2-th osculating spaces have the
expected dimension 5. This fact is not obvious at all, since the surface is not a general one,
and in [C] there are no proofs on it. In [C] there are also some unexplained statements and
a proof in local coordinates. As one can see, using the settings of the present paper, we
can get coordinate-free proofs and statements which are rigorous and close to the intuitive
form of [C]. For instance, our corollary 4.4 provides us with a rigorous proof (and with a
generalization) of a statement in [C, first (complete) paragraph at pag. 349].

A complete treatment of this interesting subject goes beyond of the limits of a single
paper. As further examples in our settings we only give a quick proof of two well-known
results, which show that varieties as ordinary developable or Laplace congruencies (and
their generalizations) play certainly an important role in this kind questions (one can also
have an idea of this looking at the cited result of [C]).

Corollary 5.5. Let S be a smooth surface in Pn, with char k = 0. If the first Gauss
map t1 is not birational on the image then S is either a developable surface or an open
subset of a plane.

Proof. If the generic fibre has dimension 2, then t1 is constant. It follows that T 1
P

is the same for any P ∈ S, then S ⊆ T 1
P and it is an open subset of a plane. If the

generic fibre has dimension 1, the image C of t1 is a curve in the grassmannian. Since the
set of the fibres {FP }‘P∈C’ is a family of open subsets of the lines LP = 〈FP 〉, we have

S =
⋃

‘P∈C’ FP =
⋃

‘P∈C’ LP and then S is an open subset of
⋃

‘P∈C’ LP . Since the fibres
FP are smooth, Proposition 4.8 applies, and up to a shrinking {FP }‘P∈C’ to a nonempty
open subfamily, by Proposition 4.11 the reverse inclusion holds too. Hence for the generic
closed P ∈ C we have

〈
⋃

‘Q∈P 1
C ’

LQ〉 = 〈
⋃

‘Q∈P 1
C ’

FQ〉 = 〈
⋃

‘Q∈FP ’

Q1
S〉 = 〈

⋃
‘Q∈FP ’

T 1
Q〉 = T 1

P ,

and dim T 1
P = 2, hence (cf. Definition 3.6) S is an ordinary developable surface.ut

Corollary 5.6. Let X be a smooth variety of dimension 3 in Pn, with char k = 0. If
the first Gauss map t1 is not birational on the image then X is either a Laplace congruency,
or an ordinary developable 3-fold, or an open subset of a linear space.

Proof. It is enough to mimic the proof of corollary 5.5, in the three cases where the
generic fibre has dimension one, two or three, taking in account Definitions 3.6 and 3.7.ut
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