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Abstract. We study a class of rational curves with an ordinary singular

point, which was introduced in [GO]. We find some conditions under which

the tangent cone is reduced and we show that the tangent cone is not always

reduced. We construct another class of rational curves with an ordinary

singular point satisfying the condition required in [GO] and whose tangent

cone is always reduced.
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Introduction.

In the paper [GO] cones made by s lines through the origin of the affine n+1
space An+1 are studied. In Section 5 it is asked if such a cone always arise
as the tangent cone of a suitable irreducible curve. The answer given there is
positive in general, namely if the lines are in generic position. More precisely,
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let P1, . . . , Ps be a set of distinct points of the projective space Pn. In [GO,
Example 13] a rational curve CP1,...,Ps

in An+1 having at the origin an s-fold
ordinary singularity whose projectivized tangent cone is exactly {P1, . . . , Ps}
is constructed. Then the tangent cone is exactly the cone over P1, . . . , Ps if
and only if it is reduced. By [O1, Theorem 3.3], if P1, . . . , Ps are in generic
position then the tangent cone is reduced. The question was still open for
points in special position, and here we give a complete answer.

In Section 1 we set up the basic definitions, and introduce the reader to
the subject by a few simple remarks. In particular, we point out that the
curves constructed in [GO, Example 13] satisfy a natural necessary condition
for having a reduced tangent cone. This fact could induce to believe that the
answer to the question which remained open at the end of [GO, Section 5]
might be positive. But in Section 3 we find a curve in A3 of type CP1,...,P6

with non-reduced tangent cone, solving the question in the negative. In
Section 2 we find some classes of sets of points not in generic position, which
give rise to a curve with reduced tangent cone. In particular we show that
if we have a group of less than 6 points in A3 then the tangent cone of the
corresponding curve is reduced; so the example found in Section 3 is the
simplest one.

Finally, in Section 4 we give a construction similar to the one of [GO],
with the property that the tangent cone is exactly the (reduced) cone over
the assigned points, for any choice of them.

1. Basic constructions and remarks.

We recall the construction of [GO, Example 13].

Remark 1.1. Let (a1, . . . , as), (b1, . . . , bs) be s-tuples of elements of the
algebraically closed field k such that ai 6= aj for i 6= j. Then there is a unique
polynomial f ∈ k[x1, . . . , xs] of degree ≤ s − 1 such that f(ai) = bi, for all
i ∈ {1, . . . , s}. In fact the conditions f(ai) = bi form a square linear system
in the coefficients of f , whose determinant is the Vandermonde determinant
in a1, . . . , as.

Definition 1.2. Let Pn be the projectivized tangent space at the origin of
An+1, and let P1, . . . , Ps be a set of distinct points in Pn. Up to a change of
coordinates we can suppose that for any i ∈ {1, . . . , s} Pi = [1, ai1, . . . , ain]
and ai1 6= aj1 for i 6= j. Now let

g(t) =
s∏
i=1

(t− ai1) ∈ k[t]



and for j ∈ {2, . . . , n} let fj(t) be the unique polynomial of degree s−1 such
that fj(ai1) = aij for any i ∈ {1, . . . , s} (cf. Remark 1.1). We define CP1,...,Ps

as the curve in An+1 given parametrically by
x0 = g(t)
x1 = tg(t)
x2 = f2(t)g(t)
...
xn = fn(t)g(t)

.

Remark 1.3. In the above situation, let B = k[g, tg, f2g, . . . , fng] and N be
the ideal of B generated by g, tg, . . . , fng. Clearly CP1,...,Ps

∼= Spec B and
the local ring (A, η) at the origin of CP1,...,Ps

is the localization of B with
respect to N . The tangent cone (resp. the projectivized tangent cone) at the
origin is the Spec (resp. the Proj) of the associated graded ring Gη(A) ∼=
GN (B). From [O2, Section 4] we get that Proj Gη(A) = {P1, . . . , Ps}, hence
Spec Gη(A)red is the cone over {P1, . . . , Ps}. From [O1, Theorem 3.3] we
have that if {P1, . . . , Ps} are in generic position (i.e. their Hilbert function
is H(d) = min {

(
d+n
n

)
, s}), then Gη(A) is reduced, so the tangent cone is

exactly the cone over {P1, . . . , Ps}.

We want to know whether the tangent cone Spec Gη(A) is always the
cone over {P1, . . . , Ps}, i.e. if it is always reduced. We recall the following
useful characterization.

Proposition 1.4. Let A, η, B and N be as in Remark 1.3, and let
H be the Hilbert function of (A, η), i.e. the Hilbert function of Gη(A):
H(i) := dimk(Gη(A))i = dimk(ηi/ηi+1). Let S({P1, . . . , Ps}) be the graded
ring associated to {P1, . . . , Ps}, and let H ′ be its Hilbert function, i.e.
H ′(i) = dimk(S({P1, . . . , Ps}))i. Then Gη(A) ∼= GN (B) is reduced if and
only if H(i) = H ′(i) for i < s− 1.

Proof. The result comes from [O2, Theorem 2.15], as S({P1, . . . , Ps}) ∼=
(Gη(A))red (cf. Remark 1.3), and its Hilbert function is the same of that of
the local ring obtained by localizing at its irrelevant maximal ideal. ut

Remark 1.5. The curve CP1,...,Ps
satisfies “the first step” of the above

condition, i.e. if H and H ′ are as in the statement of Proposition 1.4, then
H(1) = H ′(1). In fact, the ring S({P1, . . . , Ps}) = Gη(A)red is the quo-
tient of Gη(A) ∼= GN (B) over its nilradical, so H ′ ≤ H. In order to prove
the opposite inequality, it suffices to show that for any linear homogeneous
polynomial λ0x0 + · · ·+ λnxn vanishing on P1, . . . , Ps, we have λ0g+ λ1tg+



λ2f2g+ · · ·+λnfng = 0 in GN (B), i.e. λ0g+λ1tg+λ2f2g+ · · ·+λnfng ∈ N2.
In geometrical terms this condition can be expressed in the following way.
Let O2 be the first order infinitesimal neighborhood of CP1,...,Ps

at the ori-
gin, which in [H, II, Example 3.2.5] is called the 2th infinitesimal neighbor-
hood. We require that the linear space of An+1 whose projectivized tan-
gent space at the origin is spanned by P1, . . . , Ps, contains O2. We show
more, namely that this linear space contains the whole CP1,...,Ps

, i.e. that
any linear homogeneous polynomial l(x0, . . . , xn) = λ0x0 + · · · + λnxn van-
ishing on P1, . . . , Ps is such that λ0g + λ1tg + λ2f2g + · · · + λnfng = 0
in B. In fact λ0g + λ1tg + λ2f2g + · · · + λnfng = gh, where h(t) =
λ0+λ1t+λ2f2(t)+· · ·+λnfn(t). Then h(ai1) = l(Pi) = 0 for any i ∈ 1, . . . , s,
hence h is divisible by g in k[t]. But deg h ≤ s− 1 < s = deg g, hence h = 0.
Since the most common examples of curves with non-reduced tangent cone do
not satisfy “the first step”, this fact could induce to believe that the tangent
cone to CP1,...,Ps

is always reduced. At least, it indicates that a counterex-
ample must be searched looking at the further steps of the Hilbert functions:
this will be done in Section 3.

Remark 1.6. From the discussion in the above proof we can immediately
deduce that Gη(A) is reduced when the points P1, . . . Ps are in a very special
position, namely when they lie on a line. In fact in this case we have that
CP1,...,Ps is a plane curve, then the tangent cone is reduced (since it is Cohen-
Macaulay by [S, II, Proposition 3.4] and Proj Gη(A) is the reduced scheme
{P1, . . . , Ps}). In the next section we shall prove directly this fact as a
particular case of a more general discussion about points in special position
which give rise to a reduced tangent cone.

2. Some classes of points in special position in P2.

In this section we restrict ourselves to curves in A3 and points in P2. Similar
results for higher dimension can be easily obtained from the same line of
proof.

Remark 2.1. A first obvious result is that if s ≤ 3 then the tangent cone is
reduced. In fact in this case the points are in generic position or on a line (cf.
Remarks 1.3 and 1.6; see also [O2, Section 4, discussion after Example 1.a)]).

Proposition 2.2. If n = 2 and the polynomial f2 of Definition 1.2 has
degree d ≤ 2 +

√
s+ 2 then the tangent cone of CP1,...,Ps

is reduced.

Proof. By Proposition 1.4, it is enough to show that the two Hilbert
functions H and H ′ defined in its statement are the same. Let f(x0, x1, x2)



be a homogeneous polynomial of degree i vanishing on P1, . . . , Ps. We have
to show that f(g, tg, f2g) ∈ N i+1.

Since f is homogeneous of degree i, f(g, tg, f2g) = gih, where h(t) =
f(1, t, f2). But h(aj1) = f(Pj) = 0 for any j ∈ {1, . . . , s}, so h is divisible by
g in k[t]. Let h′ = h/g ∈ k[t]. We have f(g, tg, f2g) = gi+1h′ and notice that
h′ has degree ≤ max {di− s, i− s}.

If there exists a homogeneous polynomial p(x0, x1, x2) of degree i +
1 such that p(1, t, f2) = h′ then f(g, tg, f2g) = gi+1h′ = gi+1p(1, t, f2) =
p(g, tg, f2g) ∈ N i+1. Hence it is enough to show that the k-subspace of
k[t] spanned by the polynomials of the form p(1, t, f2), with p(x0, x1, x2)
homogeneous of degree i + 1 contains the space of polynomials of degree
≤ max {di− s, i− s}. If d ≤ 1 it is obvious, so we can suppose d ≥ 2. Now it
is enough to show that for any j such that 0 ≤ j ≤ di−s there is a monomial
m(x0, x1, x2) of degree i+ 1 such that m(1, t, f2) has degree (exactly) j.

Write j = ad+ b with 0 ≤ b ≤ d− 1. We claim that

(∗) a+ b ≤ i+ 1.

Since b ≤ d − 1, if a ≤ (i + 1) − (d − 1) = i − d + 2 then (∗) is verified,
and it is also verified if a = i − d + 3 and b ≤ d − 2. Hence (∗) is true if
j ≤ (i− d+ 3)d+ d− 2 = −d2 + (i+ 4)d− 2. But we know that j ≤ id− s
and then the claim will follow if we show that id − s ≤ −d2 + (i + 4)d − 2,
which is equivalent to 2−

√
s+ 2 ≤ d ≤ 2 +

√
s+ 2. But 2−

√
s+ 2 ≤ d as

we are supposing d ≥ 2, and d ≤ 2 +
√
s+ 2 by hypotheses, so the claim is

true.
Now, by (∗), we can consider the monomial xi+1−a−b

0 xb1x
a
2 : it has degree

i+ 1 and 1i+1−a−btbfa2 has degree b+ ad = j, as required.ut

Corollary 2.3. If s ≤ 5 then the tangent cone to CP1,...,Ps
is reduced.

Proof. The polynomial f2 has degree ≤ s− 1, and if s ≤ 5 then s− 1 ≤
2 +
√
s+ 2, hence the result follows from Proposition 2.2.ut

Corollary 2.4. If P1, . . . , Ps lie on a line, then the tangent cone to CP1,...,Ps

is reduced.

Proof. If P1, . . . , Ps lie on a line, then the polynomial f2 has degree ≤ 1,
hence the result follows from Proposition 2.2.ut

Remark 2.5. By Remark 1.1 the polynomial f2 depends only on the points
P1, . . . , Ps and the choice of coordinates. Notice also that we can always find
a set of points with an assigned polynomial f2 of degree ≤ s − 1 (it follows
from Remark 1.1 too). So Proposition 2.2 really gives a class of sets of points
which give rise to a curve with a reduced tangent cone. These sets in most



of the cases are not in generic position. In fact the points lie on the curve
x2− f2(x1), which has degree d = max{deg f2, 1}, and if

(
d+2
2

)
≤ s, s points

in generic position can not lie on such a curve. For example, if s ≥ 66 all the
sets of points satisfying the hypotheses of Proposition 2.2 are not in generic
position.

3. A curve CP1,...,P6
with non-reduced tangent cone.

In the previous section we have seen that the tangent cone to CP1,...,Ps
is

reduced if the points are either in generic position or in a very special position.
Now we show that in the “middle range” the tangent cone can be non-
reduced, giving a negative answer to a question left open at the end of [GO,
Example 13]. In the following example n = 2 and s = 6 so the bound of
Corollary 2.3 is sharp.

Example 3.1. Let αi, i ∈ {1, . . . , 5}, the fifth roots of the unity in a field k
of characteristic 6= 5. Let Pi = [1, αi, 0] for i ∈ {1, . . . , 5} and P6 = [1, 0,−1].
Applying Definition 1.2 we have f2 = t5 − 1 and g = t(t5 − 1) = tf2. We
shall show that the tangent cone is not reduced by finding a homogeneous
polynomial p of degree 2 vanishing on the points P1, . . . , P6 and such that
p(g, tg, f2g) 6∈ N3 (where N is as in Remark 1.3). Consider p = x22+x0x2. We
have p(Pi) = 0 for all i ∈ {1, . . . , 6} and p(g, tg, f2g) = t4g3. Suppose that
t4g3 ∈ N3. Then there is a homogeneous polynomial q(x0, x1, x2) of degree
3 and a polynomial h(t) such that t4g3 = q(g, tg, f2g) +g4h = g3(q(1, t, f2) +
gh). Hence t4 = q(1, t, f2) + tf2h. Now write q(x0, x1, x2) = q̄(x0, x1) +
x2q
′(x0, x1, x2) with q̄ homogeneous of degree 3 in the variables x0, x1. We

have t4− q̄(1, t) = f2 ·(q′(1, t, f2)+th). But this is impossible since t4− q̄(1, t)
has degree (exactly) 4 and so it can not be divisible by f2 which has degree
5.

4. Curves with assigned reduced tangent cone.

We have seen in the previous section that the curve CP1,...,Ps may not have a
reduced tangent cone. In this section, given P1, . . . , Ps, we construct a curve
whose tangent cone is the (reduced) cone over P1, . . . , Ps.

Remark 4.1. In this section we shall use the fact that any polynomial
f ∈ k[t] can be expressed in a unique way as a linear combination of powers
of t − a, a ∈ k. In characteristic 0 or if the degree is less than the charac-
teristic, the coefficients may be calculated by the Taylor formula. We start
from the following geometric idea: imposing conditions on the derivatives of
the polynomials f1, . . . , fs, in order to have a curve such that a sufficiently



thick neighborhood of the origin is the same as that one of the cone over
P1, . . . , Ps. In order to make things working in any characteristic, we shall
impose conditions on the coefficients mentioned above.

Lemma 4.2. Let (a1, . . . , as), (b1, . . . , bs) be s-tuples of elements of k such
that ai 6= aj for i 6= j. For any natural number m there is a polynomial f(t)
of degree ≤ sm+ s− 1 such that writing f as a linear combination of powers
of t− ai we have

f(t) = bi + linear combination of powers of order > m of t− ai

for any i ∈ {1, . . . , s}.

Proof. The proof is by induction on m. For m = 0 this is just Re-
mark 1.1. We can suppose the statement true for m− 1, i.e. that there is a
polynomial f ′ of degree ≤ s(m− 1) + s− 1 such that for any i ∈ {1, . . . , s},
f ′(t) = bi + ci(t − ai)m + · · ·. By Remark 1.1 there is a polynomial h(t) of
degree ≤ s− 1 such that for any i ∈ {1, . . . , s} h(ai) = ci/(

∏
j 6=i(ai − aj))m.

Now it is sufficient to take f = f ′ − hgm, where g =
∏s
i=1(t− ai).ut

Definition 4.3 Let Pn be the projectivized tangent space at the origin of
An+1, and let P1, . . . , Ps be a set of distinct points in Pn. Up to a change of
coordinates we can suppose that for any i ∈ {1, . . . , s} Pi = [1, ai1, . . . , ain]
and ai1 6= aj1 for i 6= j. Let

g(t) =

s∏
i=1

(t− ai1) ∈ k[t].

By Lemma 4.2 (with m = s−1), for any j ∈ {1, . . . , n} there is a polynomial
fj(t) of degree ≤ s2 − 1 such that

fj = aij + cij(t− ai1)s + dij(t− ai1)s+1 + · · ·

for any i ∈ {1, . . . , s}. We define C ′P1,...,Ps
to be the curve in An+1 given

parametrically by 
x0 = g(t)
x1 = f1(t)g(t)
x2 = f2(t)g(t)
...
xn = fn(t)g(t)

.

Proposition 4.4. For any set of distinct points {P1, . . . , Ps} of Pn, the
tangent cone at the origin of C ′P1,...,Ps

is the (reduced) cone over P1, . . . , Ps.



Proof. Let A be the local ring at the origin of C ′P1,...,Ps
and η its max-

imal ideal. Let B = k[g, f1g, . . . , fng] and N the ideal of B generated by
g, f1g, . . . , fng. By [O2, Section 4] Proj Gη(A) = {P1, . . . , Ps}, so it is enough
to show that Gη(A) ∼= GN (B) is reduced. By Proposition 1.4 we reduce our-
selves to proving that for any i, if pi(x0, . . . , xn) is a homogeneous polynomial
of degree i which vanishes on P1, . . . , Ps, then pi(g, f1g, . . . , fng) ∈ N i+1.
Looking at the isomorphism N i/N i+1 ∼= ηi/ηi+1 the result will follow if we
prove that the image of pi(g, f1g, . . . , fng) in A (which is the localization of
B with respect to N) is contained in ηi+1.

First notice that pi(g, f1g, . . . , fng) = gipi(1, f1, . . . , fn). Fix j ∈
{1, . . . , s} and write for any h ∈ {1, . . . , n}

fh = ajh + cjh(t− aj1)s + djh(t− aj1)s+1 + · · · .

Then pi(1, f1, . . . , fn) is pi(1, aj1, . . . , ajn) plus a multiple (in k[t]) of (t −
aj1)s. But pi(1, aj1, . . . , ajn) = pi(Pj) = 0, so pi(1, f1, . . . , fn) is divisible (in
k[t]) by (t−aj1)s. This holds for any j ∈ {1, . . . , s}, hence pi(1, f1, . . . , fn) is
divisible in k[t] by gs, and then pi(g, f1g, . . . , fng) is divisible by gi+s. Now
notice that the normalization Ā of A is the localization of k[t] with respect
to the multiplicative system B −N , and its Jacobson radical J is generated
by the image of g. Hence the image of pi(g, f1g, . . . , fng) belongs to J i+s.
But J i+s = ηi+s by [O2, Theorem 2.13, (1)⇒(3)], and i + 1 ≤ i + s. Hence
the image of pi(g, f1g, . . . , fng) belongs to ηi+1, as required.ut

Remark 4.5. In every proof involving Proposition 1.4, we have shown that
the two Hilbert functions are the same everywhere, not only for i < s − 1.
Notice that Proposition 1.4 without the assumption i < s− 1 is very easy to
prove.
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