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Abstract. In this paper we study (in characteristic 0) the nodal map, which is here defined as

the application pd,g : Σd,g → Sym(δ)(P2), where Σd,g is the open set (subvariety) of the Severi

variety, which parametrizes all curves of degree d and geometric genus g in P2 having at most
nodes as singularities, and where pd,g sends a curve to the set of its nodes. In particular, we study
the injectivity of prd,g, the restriction of pd,g to the subset Σrd,g given by those curves, which are
projections of smooth, non degenerate, irreducible curves in Pr. We classify completely the (few)
values of d, r, g which make prd,g not injective (for r > 5 there are no such values, and for 3 ≤ r ≤ 5
see table 0.1), and obtain a simple necessary and sufficient condition for the injectivity (corollary
2.9), involving the canonical and hyperplane divisor series on curves of Hilbr,d,g.

0. Introduction

The aim of the paper is to investigate some connections between the theory of algebraic
curves in characteristic 0 and the study of groups of points in the plane. Starting from the
idea of Brill and Noether (see [2]), of considering plane nodal models of curves, in order
to obtain information on families and linear series, we deal with a “nodal map”. Stictly
speaking, we can define this map as the function, with domain in the set of plane curves
of degree d and genus g, having only nodes as singularities, which sends a curve to the set
of its nodes; but this map becomes really interesting when we insert it in a more general
context, and this can be done both from the viewpoint of moduli and from the viewpoint
of Hilbert schemes.

Let Mg be the moduli space of curves of genus g. Locally over Mg, it is possible to
construct varieties Wr

d,g, together with morphisms Wr
d,g → Mg, in such a way that for

every curve C, as a point of Mg, the fibre of the morphism parametrizes complete linear

series of degree d and dimension ≥ r. Then, we can consider the variety C2,rd,g , with the

morphism C2,rd,g → Wr
d,g, such that for every point of Wr

d,g, which represents a linear series
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on a curve C, the fibre parametrizes the subseries of dimension two and their bases. More
precisely, we are interested only in those subseries which send C birationally on a plane
curve having only nodes as singularities, and then we can relate C2,rd,g with Symδ(P2) (with
appropriate δ), via the nodal map.

For example, recall that the Brill-Noether conjecture, proved by several authors in
the last ten years, says the generic fibre of the morphism Wr

d,g → Mg has dimension
ρ(d, g, r) = g − (r + 1)(g + r − d) (Brill-Noether number), if it is ≥ 0, otherwise the
morphism is not dominant. One immediately checks that, once proved the dominancy, and
after some easy calculation on the morphism C2,rd,g → Wr

d,g, we can reduce the problem to
the determination of the image and of the generic fibre of some restrictions of the nodal
map (see also [5]).

As an other example, note that in the paper [1], of Arbarello and Cornalba, they obtain
results on Hurwitz spaces and Severi varieties, using considerations on the sets of nodes of
plane curves.

From the viewpoint of Hilbert schemes, which we shall use in this paper, we can con-
sider the open subvariety Vr,d,g ⊂ Hilbr,d,g, given by smooth, irreducible, non-degenerate
curves of degree d and genus g in Pr; if we fix a projection Pr → P2, this one sends
the generic curve of Vr,d,g on a nodal curve, and one easily checks that the set of nodal
plane curves obtained in this way, say Σrd,g, is independent of the projection. So, we can

obtain information about Vr,d,g by considering the nodal map prd,g: Σrd,g → Symδ(P2),
and reducing problems on components of Hilbert schemes to the study of subvarieties of
Symδ(P2). This construction, in the open set which we are interested in, is essentially
equivalent to the previous one.

Here we do not consider the interesting problem of the determination of the locus inside
Symδ(P2) formed by groups of points which are nodes of curves of fixed type (and of its
equations); what we are going to do, is to establish the injectivity of the nodal maps prd,g.

Treger, in [15], has improved some of the results of Arbarello and Cornalba, and has
proved, in the expected range, the birationality of the nodal map, defined over all the set
Σd,g of plane nodal curves of given degree and genus. These varieties were intoduced by
Severi in [14]; later, Zariski in [16] has proved they are open sets of these, just called Severi
Varieties, which parametrize all plane (not necessarily nodal) curves of given degree and
genus; of course, as Σrd,g is a closed, pratically always proper subset of Σd,g, we can not
directly use Treger’s results; indeed it may happen, and actually in many cases happens,
that Σrd,g lies outside the open set where the nodal map is an isomorphism.

We show that prd,g is injective, except for a few numerical cases, which we completely
classify (see table 0.1). Furthermore, we prove (corollary 2.9) that the locus in Vr,d,g, of
curves projecting on elements of Σrd,g that makes the nodal map not injective, is defined

by the simple equation h0(O(2K − (d − 6)H)) > 0 over the Hilbert scheme; notice that
this equation involves the canonical and hyperplane series, which are in many cases the
generators of the Picard group of the universal curve (see [12], or, more generally, [7] and
[13]). It is also interesting to note (see Remark 3.3), that in some cases, this equation
separates components of Hilbert scheme, while sometimes defines proper subvarieties of
components.
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Table 0.1
(All the values of r, d, g, such that prd,g is not injective)

r d g

3 3 0
4 0, 1
5 0, 1, 2
6 1, 2, 3, 4
7 3, 4, 5, 6
8 5, 6, 7, 8, 9
9 10, 12
10 11, 12, 15, 16
11 20
12 19, 24, 25
[13,∞] [ 14d

2 − d, 14d
2 − d+ 1]

4 4 0
5 0, 1
6 1, 2
7 3
8 5

5 5 0
6 1

1. Notations and recap

All the schemes will be supposed over a field k, algebraically closed of characteristic 0. If
D is a divisor, we shall denote by |D| the complete linear series of D, which will be often
supposed with its natural projective structure.

In this paper, a curve will mean projective reduced scheme, pure of dimension 1 over k
or divisor of P2, and will be clear from the context which meaning we are using; points
will be always closed.
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When we shall deal with a singular plane curve, we shall consider divisors as cut on the
desingularization.

Div X = divisor’s group of X.

Cd = P(H0(OP2(d))).

Vr,d,g = the set of smooth, irreducible, non-degenerate curves of degree d and genus g in
Pr (is an open set in the Hilbert scheme).

Σd,g = the set of irreducible curves in P2, of degree d and geometric genus g, having only
nodes as singularities (is an open set in the Severi variety; see [14], Anhang F, and [16]).

Σrd,g (r > 2) = the set of irreducible curves of Σd,g, which can be obtained from a curve C
of Vr,d,g, by birational projection from a point P ∈ Pr, P /∈ C.

δd,g = (d−1)(d−2)
2 − g = number of nodes of any curve of Σd,g.

pd,g : Σd,g → Symδd,g (P2) = function which sends a curve to the set of its nodes.

prd,g = restriction of pd,g to Σrd,g.

G(r, d) = M(M−1)
2 (r− 1) +Mq, where M and q are the quotient and the remainder of the

division of d− 1 by r − 1

Finally, it is necessary to recall two classical results, which we shall often use in the
paper.

Proposition 1.1. : If C is a smooth, irreducible, non- degenerate curve in Pr, of degree
d and genus g, then g ≤ G(r, d) (Castelnuovo bound).

Proof. [3] and [4]. ut

Proposition 1.2. If C is a smooth, irreducible curve in P3 of degree d and genus g, not
contained in any quadric surface, then g ≤ 1

6d
2 − 1

2d+ 1.

Proof. [8]. ut

2. Preliminary results

The problem of injectivity of prd,g, in many cases can be approached, starting from the
propositions of Section 1, by elementary considerations:

Proposition 2.1. If g < 1
4d

2 − 3
2d+ 1 then prd,g is injective.

Proof. If there are C0, C
′
0 ∈ Σd,g, C0 6= C ′0, with pd,g(C0) = pd,g(C

′
0), then, considering the

intersection in P2, must be 4δd,g ≤ C0.C
′
0 = d2, hence, using the expression of δd,g, we

have g ≥ 1
4d

2 − 3
2d+ 1.
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Hence, if g < 1
4d

2 − 3
2d+ 1, pd,g must be injective, and so its restriction prd,g. ut

Corollary 2.2. If r ≥ 6, then prd,g is injective, for all values of d and g.

Proof. It suffices to note that r ≥ 6 implies G(r, d) < 1
4d

2 − 3
2d + 1; hence we have that

r ≥ 6 and g ≥ 1
4d

2− 3
2d+ 1 imply Σrd,g = ∅ (by Proposition 1.1), while if g < 1

4d
2− 3

2d+ 1,
then prd,g is injective by Proposition 2.1. ut

If we notice that δd,g fixed singular points impose 3δd,g (not necessarily independent)
linear conditions, we can easily find, given a curve C0 ∈ Σd,g, a sufficient condition for
the existence of another curve C ′0, having singular points in all the nodes of C0; but we
can not deduce from this fact that prd,g is not injective, as we need that C ′0 has no other
singularities out of the nodes of C0, and that the singularities in these points are exactly
nodes. We should also have that even C ′0 comes, by birational projection from an external
point, from a curve of Vr,d,g. We shall prove now some propositions, which allow us to solve
these questions.

Proposition 2.3. Let C0 ∈ Σd,g. If there exists a curve A ∈ Cd, A 6= C0, having singu-
larities in all the points of the set pd,g(C0) of the nodes of C0, then there exists a curve
C ′0 ∈ Σd,g, C ′0 6= C0, with pd,g(C0) = pd,g(C

′
0).

Proof. Let L ⊂ Cd the pencil generated by C0 and A. The condition pd,g(C0) = pd,g(C
′
0)

is equivalent to the following two open conditions:
a) C ′0 is smooth outside pd,g(C0).
b) Singularities in C ′0 are at most nodes.
The subset of L given by those C ′0 ∈ L satisfying a) and b) is hence open and nonempty

(because it contains C0), thus in this set there are infinitely many elements among which
we can find a curve distinct from C0. ut

Lemma 2.4. Let C0, C
′
0 ∈ Σd,g, with pd,g(C0) = pd,g(C

′
0) and with respective desingular-

izations C and C ′, let R be a line of P2, which cuts both C0 and C ′0 in d distinct points, and
finally let H ∈ Div C and H ′ ∈ Div C ′ be the divisors cut by R. Then dim|H| = dim|H ′|.

Proof. Since C0 and C ′0 have the same degree and geometric genus, it suffices to show that
H and H ′ have the same index of speciality; so, let i be the index of H and i′ that one of
H ′, and let us prove that i′ ≥ i:

If i = 0 it is trivial; otherwise, we find i canonical groups containing H and, conse-
quently, i adjoint curves of C0, say A1, · · · , Ai, of degree d− 3, which are linearly indepen-
dent on P2 and contain R∩C0. Since R∩C0 has d points, the adjoints, which have degree
d− 3, must have R as a component, and then they contain R ∩ C ′0; furthermore they are
adjoint of C ′0 (because pd,g(C0) = pd,g(C

′
0)). Hence, A1, · · · , Ai cut i canonical groups of

C ′, which will be independent and contain H ′, and this means that i′ ≥ i. Exchanging the
roles of C0 and C ′0, we obtain i ≥ i′ and then the equality. ut
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Lemma 2.5. Let C0, C
′
0 ∈ Σd,g, with pd,g(C0) = pd,g(C

′
0) and with respective desingular-

izations C and C ′; let R be a line of P2, which cuts both C0 and C ′0 in a fixed common
node and in other d−2 distinct points; finally, let N ∈ Div C, N ′ ∈ Div C ′ be the divisors
which correspond to the node, and H ∈ Div C, H ′ ∈ Div C ′ the divisors cut by R. Then
dim|H −N | = dim|H ′ −N ′|.

Proof. Similar of that of Lemma 2.4, except for the fact that now R ∩ C0 is a set of d− 1
distinct points. ut

Proposition 2.6. Let C0 ∈ Σrd,g and C ′0 ∈ Σd,g such that pd,g(C0) = pd,g(C
′
0), then

C ′0 ∈ Σrd,g.

Proof. Let C and C ′ the respective desingularizations of C0 and C ′0. If |H| is the hyperplane
section on C, relative to C0, we must have dim|H| ≥ r and |H| very ample. If |H ′| is the
hyperplane section on C ′, Lemma 2.4 gives that dim|H| ≥ r, and implies, togheter with
Lemma 2.5, that |H ′| separates the pairs of points of C ′, which correspond to each node
of C ′0 (indeed dim|H ′−N ′| = dim|H−N | = dim|H|−2 = dim|H ′|−2); hence |H ′| is very
ample.

By the above discussion, we can think of C ′ as embedded in Pr
′
, with r′ ≥ r, and we

have a projection of C ′ on C ′0 ⊂ P2 from a subspace L of Pr
′
, of dimension r′ − 3. The

secant variety of C ′ only meet L in the points of the intersection of L with the secant lines
which meet the nodes of C ′0, while the tangent variety does not meet L (because C ′0 has
no cusps), hence it is possible to find a subspace L′ of L, of dimension r′ − r − 1 and not
passing thru those points of intersection. If we project C ′ from L′ in a Pr ⊃ P2 such that
L′ ∩ Pr = ∅, we have a smooth, non- degenerate, irreducible curve C ′′ ⊂ Pr , and the
projection of Pr from L ∩Pr send C ′′ on C0. ut

Proposition 2.7. If g > 1
3d

2 − 2d+ 1 and Σrd,g 6= ∅, then prd,g is not injective.

Proof. By some easy calculations, g > 1
3d

2 − 2d + 1 is equivalent to 3δd,g <
d(d+3)

2 ; now,
take a C0 ∈ Σrd,g: we have that the linear system of curves having singular points in all the

nodes of C0 has dimension ≥ d(d+3)
2 −3δd,g, which in turn (according to our hypotheses) is

> 0; hence there exists a curve A, which satisfy the hypotheses of the Proposition 2.3, and
then we can find a curve C ′0 ∈ Σd,g such that C ′0 6= C0 and pd,g(C

′
0) = pd,g(C0). Finally,

by Proposition 2.6, C ′0 belong to Σrd,g. ut

The previous proposition is far from providing us with a complete answer to the problem
of the injectivity of prd,g, because its hypothesis is too strong; however, the propositions
proved till now, suggest that this problem can be solved by studying the linear series;
indeed, as we have seen, the injectivity of prd,g depends on the existence, once fixed a
C0 ∈ Σrd,g, of curves A, which are singular in the nodes of C0. Such curves are called
biadjoints (see [6]), and we have that the biadjoints of degree 2(d − 3) cut, outside the
doubled adjoint divisor (i.e. the double of the divisor corresponding to the nodes), the
double of the canonical series; starting from this fact, we can state the following proposition.
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Proposition 2.8. Let C0 ∈ Σd,g, with desingularization C; then there is a curve C ′0 ∈ Σd,g,
distinct from C0, with pd,g(C

′
0) = pd,g(C0), if and only if |2K − (d − 6)H| is effective on

C, where |K| is the canonical series and |H| is the hyperplane section relative to C0.

Proof. From Proposition 2.3 we have that the existence of a C ′0 which satisfies the imposed
condition is equivalent to the existence of a biadjoint of C0 of degree d. Hence, it suffices to
show that the biadjoints of degree d cut, outside of 2N , the complete series |D| = |2K−(d−
6)H| (here we writeN for the adjoint divisor of C). This means that each biadjoint of degree
d cuts a divisor linearly equivalent to 2N +D, and for each divisor D′ ∈ |2K − (d− 6)H|
there is a biadjoint A which cuts 2N + D′ on C. Now, it is clear that curves of degree d
cut divisors linearly equivalent to 2N +D; in order to prove the completeness, we observe
that if we fix a divisor D′ ∈ |2K − (d− 6)H|, then 2N +D′ = N + (N +D′) will be cut by
an adjoint A, of degree d, as we know the adjoints cut complete series outsides the nodes.
But this one must be a biadjoint too: indeed, since C0 has at most nodes as singularities,
the fact that A cuts a divisor containing 2N , implies that A has multiplicity at least 2 in
each node of C0. ut

Corollary 2.9 prd,g is not injective if and only if there is a smooth, irreducible, non-
degenerate curve in Pr, of degree d and genus g, on which |2K − (d − 6)H| is effective,
where |K| is the canonical series and |H| is the hyperplane section.

Proof. It follows immediately from Proposition 2.6, Proposition 2.8 and the fact that every
smooth curve can be projected on a plane nodal curve. ut

The previous assertion says that the locus of the curves in Vr,d,g which can be pro-
jected on curves of Σrd,g which make prd,g not injective, is described by the “equation”

h0(O(2K − (d− 6)H)) > 0, defined on the Hilbert scheme which contain Vr,d,g; it is inter-
esting to notice that this equation involves the series |K| and |H|, which in many cases are
“the unique” series on the universal curve over the Hilbert scheme (i.e. the Picard group is
generated by these series; see [12], or, more generally [7] and [13]). Finally we remark that
this locus is independent of the choosen projection (on the other hand, this fact comes
from elementary considerations of projective geometry).

3. Curves in P4 and P5

In this section we solve our problem for r = 4, 5:

Proposition 3.1. p5d,g is not injective if and only if (d, g) ∈ {(5, 0), (6, 1)}; p4d,g is not
injective if and only if (d, g) ∈ {(4, 0), (5, 0), (5, 1), (6, 1), (6, 2), (7, 3), (8, 5)}.

Proof. By Propositions 1.1 and 2.1, prd,g can be not injective only if 1
4d

2 − 3
2d + 1 ≤ g ≤

G(r, d). For r = 5 this condition holds only if (d, g) ∈ {(5, 0), (6, 1)}, and in this cases prd,g is
actually not injective: indeed in the case (d, g) = (5, 0) it suffices to consider a plane nodal
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projection of the quintic rational normal curve in P5, and then apply Proposition 2.7, while
in the case (d, g) = (6, 1) we can consider an elliptic smooth curve, embed it in P5 by a
complete series |H|, of degree 6, and use Corollary 2.9, as in this case |2K− (d−6)H| = 0.

For r = 4, the unique pairs of values of d and g, which satisfy the condition 1
4d

2− 3
2d+1 ≤

g ≤ G(r, d), are those predicted, and in these cases p4d,g is actually not injective, indeed:

(d, g) = (4, 0) : Σ4
4,0 6= ∅, as there is a plane nodal projection of a quartic rational

normal curve in P4, then p44,0 is not injective by Proposition 2.7.

(d, g) = (5, 0) : Σ4
5,0 6= ∅, as we can obtain, projecting the quintic rational normal curve,

a smooth rational quintic in P4; then a plane nodal projection of the last one is clearly an
element of Σ4

5,0. Now it suffices to apply Proposition 2.7.

(d, g) = (5, 1) : Σ4
5,1 6= ∅, as we can embed a smooth elliptic curve in P4, by any complete

series of degree 5, and then as above obtain an element of Σ4
5,1; again, Proposition 2.7

implies p45,1 is not injective.

(d, g) = (6, 1) : It suffices to take a smooth projection in P4 of the elliptic sestic in P5

considered in the case r = 5, and apply Corollary 2.9, as the condition of effectivity on
|2K − (d− 6)H| is clearly preserved.

(d, g) = (6, 2) : Σ4
6,2 6= ∅, because we can take a plane nodal projection of any smooth

curve in P4, obtained from a smooth curve of genus 2 embedded by any complete series of
degree 6 (which is certainly very ample, see e.g. [10], IV, 3.2). Then, apply Proposition 2.7.

(d, g) = (7, 3) : take a smooth curve of genus 3. A canonical divisor K has degree 4,
then we can take any divisor H of degree 7 contained in 2K, and embed by |H| the curve
in P4 (as in the above case, |H| is certainly very ample). Hence p47,3 is not injective, by
Corollary 2.9, as the above construction assures 2K −H is effective.

(d, g) = (8, 5) : p48,5 is not injective by Corollary 2.9, applied to a canonical curve of
genus 5 in P4. ut

Remark 3.2. The same argument which we used in the case (d, g) = (6, 1) , shows that
if prd,g is not injective, with r > 3, then pr−1d,g is not injective, and we shall use this fact in
the following. We should expect that a similar property holds for the genus; indeed, once
fixed the degree, we expect that it is easier that the nodal map is not injective, as the
number of the nodes drops. At the end of our study (see table 0.1), by a direct cheking, we
shall see that if prd,g is not injective and Σrd,g+1 is nonempty then prd,g+1 is not injective.
However there exists (only) a case, where prd,g is not injective, prd,g′ is injective, but g′ > g,
precisely when r = 3, d = 12, g = 19, g′ = 21 (this is not in contradiction with the previous
assertion, as (d, g) = (12, 20) is an Halphen lacuna).

Remark 3.3. In the case (d, g) = (7, 3), as follows immediately from the construction,
there are both curves on which |2K − (d − 6)H| is effective and curve on which it not
happens; since the corresponding Hilbert scheme is irreducible, we have that the locus
where the nodal map is not injective is a proper subvariety of a component. Later, in the
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case (r, d, g) = (3, 9, 10), we shall see an example of an Hilbert scheme which this locus is
a whole proper component of.

4. Curves on a quadric surface in P3

When r = 3, there are infinitely many values of d and g satisfying the condition 1
4d

2 −
3
2d + 1 ≤ g ≤ G(r, d), of the Proposition 2.1; but, by Proposition 1.2, all of these values,
except a finite number, are relative to curves which must lie on a quadric surface. So in
this section we shall consider curves which satisfy the condition

(∗) 1

6
d2 − 1

2
d+ 1 < g ≤ G(3, d)

Remark 4.1. Notice that G(3, d) is the integer part of 1
4d

2 − d+ 1 and that, (∗) implies
d ≥ 7, g ≥ 6 (we clearly do not consider negative values); remember also that a divisor of
type (a, b) on a smooth quadric surface (see [10], III, ex. 5.6), have degree a+ b and genus
(a− 1)(b− 1).

Proposition 4.2. If C ∈ V3,d,g, with (d,g) satisfying (∗), is a divisor of type (a, b) on a
smooth quadric surface Q, and if |K| is the canonical series and |H| the plane section of
C, then |2K − (d− 6)H| is effective if and only if |a− b| ≤ 2.

Proof. Canonical divisors on C are cut on Q by divisors of type (a − 2, b − 2), while
divisors which are linearly equivalent to |(d−6)H| are cut by divisors of type (d−6, d−6);
then divisors linearly equivalent to ∆ = 2K − (d − 6)H, are cut by divisors of type
(a− b+ 2, b− a+ 2). Now, consider the exact sequence

(∗∗) 0→ OQ(2− b, 2− a)→ OQ(a− b+ 2, b− a+ 2)→ OC(∆)→ 0.

First, we can assume 2− a < 0, 2− b < 0, in fact:
If a = 2 then d = b + 2, g = b − 1, hence g = d − 3, so, by easy calculations,

d − 3 > 1
6d

2 − 1
2d + 1 if and only if d2 − 9d + 24 < 0, which is impossible on the real

numbers; then (∗) excludes a = 2. If a = 1 then g = 0, and again this is incompatible with
(∗) (see Remark 4.1). Of course the case a = 0 can not occur.

So, let 2 − a < 0, and similarly let 2 − b < 0. We have H0(OQ(2 − b, 2 − a)) =
H1(OQ(2−b, 2−a)) = 0 (see [10], III, ex. 5.6). Hence, from the cohomology exact sequence
of (∗∗) follows h0(OC(∆)) = h0(OQ(a − b + 2, b − a + 2)), and this is zero if and only if
|a− b| ≤ 2. ut

Proposition 4.3. If g ≥ 1
4d

2 − d and (∗) holds, then p3d,g is not injective.

Proof. We know that for a > 0, b > 0, there is always a smooth curve of type (a, b) on
a smooth quadric surface (see [10], III, ex. 5.6), thus we can apply Proposition 4.2 and
Corollary 2.9, indeed from the relations a + b = d and (a − 1)(b − 1) = g we have that
1
4d

2 − d ≤ g ≤ 1
4d

2 − d+ 1 is equivalent to |a− b| ≤ 2. ut
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Proposition 4.4 If 1
6d

2 − 1
2d+ 1 < g < 1

4d
2 − d then p3d,g is injective.

Proof. By Corollary 2.9, it is enough to prove that there exist no smooth, irreducible, non-
degenerate curves in P3, of degree d and genus g, with |2K− (d−6)H| effective, satisfying
the condition 1

6d
2− 1

2d+1 < g < 1
4d

2−d. Suppose the converse, and let C be such a curve.
By Proposition 1.2, C must lie on a quadric surface, which must be smooth, as curves of
degree d on a quadric cone have genus equal to the integer part of 1

4d
2 − d + 1, and g is

less than this number. Hence we can apply Proposition 4.2 and find a contradiction, since,
as above, |a− b| ≤ 2 is equivalent to 1

4d
2 − d ≤ g ≤ 1

4d
2 − d+ 1. ut

Proposition 4.5. Suppose d > 12. p3d,g is not injective if and only if 1
4d

2 − d ≤ g ≤
1
4d

2 − d+ 1.

Proof. If d > 12 then 1
6d

2 − 1
2d+ 1 < 1

4d
2 − 3

2d+ 1 < 1
4d

2 − d.
Thus, if g < 1

4d
2−d then prd,g is injective: indeed in the range 1

6d
2− 1

2d+1 < g < 1
4d

2−d
we can apply Proposition 4.4, otherwise we can apply Proposition 2.1. On the other hand,
if g > 1

4d
2 − d+ 1, Σ3

d,g is empty.

Conversely, if 1
4d

2 − d ≤ g ≤ 1
4d

2 − d+ 1 then p3d,g is not injective by Proposition 4.3.ut

5. Curves in P3 of low degree

In order to complete the table 0.1, we have to consider the cases with r = 3 and d ≤ 12.
As usual, it is enough to consider the values of d and

g satisfying 1
4d

2 − 3
2d+ 1 ≤ g ≤ G(3, d). Thus

p3d,g can be not injective for the following values only:

d = 3, g = 0
d = 4, 0 ≤ g ≤ 1
d = 5, 0 ≤ g ≤ 2
d = 6, 1 ≤ g ≤ 4
d = 7, 3 ≤ g ≤ 6
d = 8, 5 ≤ g ≤ 9
d = 9, 8 ≤ g ≤ 12
d = 10, 11 ≤ g ≤ 16
d = 11, 15 ≤ g ≤ 20
d = 12, 19 ≤ g ≤ 25

First of all, Proposition 2.7 implies p3d,g is not injective in the following cases (in which

Σ3
d,g 6= ∅; see [10], IV, 6.4.2; V, 4.13.1; V, ex. 4.14):
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d = 3, g = 0
d = 4, 0 ≤ g ≤ 1
d = 5, 0 ≤ g ≤ 2
d = 6, 2 ≤ g ≤ 4
d = 7, 4 ≤ g ≤ 6
d = 8, 7 ≤ g ≤ 9
d = 9, g = 12

The Propositions of section 4 imply that if (d, g) ∈ {(10, 15), (10, 16), (11, 20), (12, 24),
(12, 25)}, p3d,g is not injective (see Proposition 4.3), while it is injective by Proposition 4.4
if (d, g) ∈ {(9, 11), (10, 13), (10, 14), (11, 16), (11, 17), (11, 18), (11, 19), (12, 20), (12, 21),
(12, 22), (12, 23)} (really in some of these cases V3,d,g = ∅).

So, let us consider the remaining cases:

(d, g) ∈ {(6, 1), (7, 3), (8, 5)} : p3d,g is not injective by Proposition 3.1 and Remark 3.2.

(d, g) = (8, 6) : p38,6 is not injective. Indeed, take a smooth cubic surface X in P3; as we
know, this one is isomorphic to the blowing up of P2 along six points in general position.
So, let l be the divisor which corresponds to a line in P2 not passing thru any of these
points, and let e1, · · · , e6 be the exceptional divisors. Consider a smooth, irreducible curve
on X, linearly equivalent to 8l − 4e1 − 3e2 − 3e3 − 2e4 − 2e5 − 2e6 (certainly there exists
such a curve, see [10], V, 4.13), and apply Corollary 2.9. So we are done, as |2K−(d−6)H|
is cut by divisors equivalent to 4l − 4e1 − 2e2 − 2e3, which are effective.

(d, g) = (9, 8) : p39,8 is injective. Indeed, by Corollary 2.9, it is enough to show that
there are no smooth, irreducible, non-degenerate curves in P3, of degree 9 and genus 8,
with |2K − 3H| effective.

Let C be such a curve. By Proposition 1.1, we have that dim|H| = 3; furthermore letting
|L| = |K −H|, we have dim|L| = 1, by Riemann-Roch. An effective divisor equivalent to
2K − 3H is a point P , then |H| = |2L−P | and |K| = |3L−P |; hence P is a base point of
|3L|, as dim|3L| = dim|K + P | = 7 = dim|K| = dim|3L− P |, and then is a base point of
|L|. Let |L0| = |L−P |, so |H| = |2L0 +P |. Since |H| is very ample, we have that for every
point Q, dim|H − P −Q| = 1, |H − P −Q| = |2L0 −Q| and since dim|2L0| = 2, looking
at the dimensions (see e.g. [10], IV, proof of Lemma 5.5), every effective divisor of |2L0|
is a sum of a L′ and a L′′ both equivalent to L0. It follows that every effective divisor of
|2L0 −Q| contains a divisor of |L0 −Q|; but |L0| has dimension 1, so the unique effective
divisor of |L0 −Q| is formed by three base points of |H − P −Q|, so they must lie on the
line thru P and Q.

Now, project C from P : the previous discussion says that every fiber of the projection
is a group of fours points, hence the image of C is a conic. Thus C lies on a quadric cone,
but this is impossible, as curves of degree 9 on a quadric cone have genus 12.

(d, g) = (9, 9) : p39,9 is injective. Ideed, by Corollary 2.9, it is enogh to show that are no
smooth, irreducible, non-degenerate curves in P3, of degree 9 and genus 9, with |2K−3H|
effective.

Let C be such a curve, let D ∈ |2K − 3H| (deg D = 5) and L ∈ |K −H| (deg L = 7),
so |H| = |2L−D|. We have that dim|H| = 3, by Proposition 1.1, and that dim|L| = 2 by



12 Alessandro De Paris

Riemann-Roch. First note that |L−D| can not be effective, otherwise, taking an effective
divisor E ∈ |L−D| (deg E = 2), dim|H−E| = dim|L| = 2, and this is impossible because
|H| is very ample of dimension 3 . It follws that D imposes exactly two conditions to |2L|,
as dim|2L| = 14− 9 + dim|L−D|+ 1 = 5 while dim|2L−D| = dim|H| = 3.

Let P ∈ D a point of |L|, not base for |L|, and let Q ∈ D, not base for |L−P | (remember
that dim|L| = 2). Looking at the dimensions, P can not be a base point for |L−Q|. From
the above construction and from the fact that D imposes two conditions to |2L|, we have
that for all D1 ∈ |L− P | and for all D2 ∈ |L−Q|, D1 +D2 ∈ |2L− P −Q| must contain
the (three) points of D out of P and Q, say P1, P2, P3. These points will be base points
for |D1| or |D2|. Certainly P1, P2 and P3 all can not be base points of |D1| (respectively of
|D2|), otherwise we can impose |D1| (respectively |D2|) passes thru Q (respectively thru
P ) and obtain |D| ⊂ |L| (and above we have excluded this fact). So, up to a change of
indexes, we can suppose P1 and P2 are base points of |D1|, and P3 is a base point of |D2|,
and let |H1| = |D1 − P1 − P2| and |H2| = |D2 − P3|.

Now we have |H| = |H1 + H2| and dim|H1| = dim|H2| = 1, hence C lies on a smooth
quadric surface (since the immersion of C factor through an immersion of P1×P1 → P3),
and this is impossible, as a + b = 9, (a− 1)(b− 1) = 9, are incompatibles on the integers
(see Remark 4.1).

(d, g) = (9, 10) : p39,10 is not injective. It is enough to consider (see [10], II, ex. 8.4) a
smooth, irreducible, non-degenerate complete intersection of two cubic sufaces in P3, and
apply Corollary 2.9, as |K| = |2H|.

Remark 5.1. Notice that Hilb3,9,10 has a component of curves which lie on a quadric
surface too. On this component p39,10 is injective, as we can easily mimic the proof of
Proposition 4.2. So, in this case we have a caracterization of those curves which make p39,10
not injective: they are the complete intersections.

(d, g) = (10, 11) : p310,11 is not injective. Here (as usual by Corollary 2.9) it suffices to find
a 2-subcanonical curve of degree 10 in P3. We can do this using the Serre correspondence
(see [11]). Indeed if E is the bundle associated to an elliptic quintic curve, then it has
Chern classes c1 = 4 and c2 = 5; so E(1) has c1 = 2 and c2 = 10, and it is generated by
global sections, as E is. One easily see that a generic section of E(1) gives rise to a smooth,
irreducible, 2-subcanonical curve of degree 10. ut

(d, g) = (10, 12) : p310,12 is not injective. We can mimic the proof of the case (8, 6), with
the divisor 10l − 4e1 − 4e2 − 3e3 − 3e4 − 3e5 − 3e6 on the smooth cubic surface. ut

(d, g) = (11, 15) : p311,15 is injective. Indeed, by Corollary 2.9, it is enough to show that
there are no smooth, irreducible, non-degenerate curves in P3, of degree 11 and genus 15,
with |2K − 5H| effective.

Let C be such a curve, let |L| = |K − 2H| (deg L = 6), and notice that the effective
divisor of |2K − 5K| is a point, say P . So |H| = |2L− P | and |K| = |5L− 2P |.

Suppose that P is not a base point for |L|. By Riemann-Roch, dim|5L| = dim|5L −
2P | + 1, thus there are no divisors of |5L| which contain P but not 2P . Hence there are
no divisors in |2L| which contain P but not 2P , and then |H| = |2L− P | has P as a base
point, but this is impossible as |H| is very ample. Therefore P is a base point of |L|, so let
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|L0| = |L− P | and notice that |2L0| = |H − P |, which implies dim|2L0| = 2 (dim|H| = 3,
by Proposition 1.1).

Now C can not lie on a quadric surface, as in the smooth case the conditions a+b = 11,
(a− 1)(b− 1) = 15 are impossible, while in a quadric cone curves of degree 11 have genus
20. So we have dim|2H| ≥ dimP(H0(OP2(2))) = 9, which implies, by Riemann- Roch,
dim|L| ≥ 1, hence dim|L0| ≥ 1. Thus dim|2L0| = 2 implies dim|L0| = 1, so projecting C
from P , we can mimic the end of the proof of the case (d, g) = (9, 8). ut

(d, g) = (12, 19) : p312,19 is not injective. Indeed, we cas use
the same argument as in the case (9, 10), considering now a complete
intersection of a cubic and a quartic.
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