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Objective. The purpose of our study was to evaluate the diagnostic value of an imaging protocol combining dynamic contrast-
enhanced MRI (DCE-MRI) and diffusion-weighted MRI (DW-MRI) in patients with suspicious breast lesions. Materials and
Methods. A total of 31 breast lesions (15 malignant and 16 benign proved by histological examination) in 26 female patients were
included in this study. For both DCE-MRI and DW-MRI model free and model based parameters were computed pixel by pixel
on manually segmented ROIs. Statistical procedures included conventional linear analysis and more advanced techniques for
classification of lesions in benign andmalignant. Results. Our findings indicated no strong correlation betweenDCE-MRI andDW-
MRIparameters. Results of classification analysis show that combining ofDCEparameters orDW-MRI parameter, in comparison of
single feature, does not yield a dramatic improvement of sensitivity and specificity of the two techniques alone.Thebest performance
was obtained considering a full combination of all features.Moreover, the classification results combining all features are dominated
byDCE-MRI features alone.Conclusion.The combination ofDWI andDCE-MRI does not show a potential to dramatically increase
the sensitivity and specificity of breast MRI. DCE-MRI alone gave the same performance as in combination with DW-MRI.

1. Introduction

Magnetic resonance imaging (MRI) applications such as
dynamic contrast enhanced (DCE) and diffusion weighted
imaging (DWI) have the potential to provide noninvasive
digital biomarkers with good spatial resolution and repro-
ducibility suitable for early detection of breast cancer and for
therapy evaluation [1–9]. In general, DCE-MRI has shown
high sensitivity for breast cancer detection (89–100%) [1–12],
while DWI has shown utility in predicting suitable therapies
and monitoring response [13].

DCE-MRI consists in the serial acquisition of images
before and after the injection of intravenous contrast agent;
it has been shown to give information about vascular
permeability within the tumor [10, 11]. Different methods
for DCE-MRI data analysis have been proposed, ranging
from simple semiquantitative inspection of the time-intensity
curves (TICs) to more sophisticated tracer kinetics modeling
[14–18]. The different methods were designed to capture
the biologically relevant components from the dynamic MR
signal and to relate them to the underlying pathophysio-
logical processes taking place in the tissue. In principle,
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Table 1: Scan settings.

Settings DCE-MRI DW-MRI Units
TR/TE/𝛼 9, 8/4, 76/25 7700/129/90 ms/ms/deg
Pulse sequence T1-weighted 3D FLASH T2-weighted SPAIR —
Plane Coronal Axial —
FOV 185 × 370 183 × 360 mm2

Matrix size 128 × 256 120 × 236 pixel
Pixel spacing 1.44 × 1.44 1.52 × 1.52 mm2

Slice thickness 2 4 mm
Gap between slices 0 2 mm
Number of slices 80 24 —

the derivation of full-quantitative physiological data from
DCE-MRI should rely on the application of appropriate
tracer kinetics models to describe the distribution of contrast
media following its systemic administration. However, the
application of these techniques is still complex and they
could not be widely available outside specialist centers. In
response to this, many semiquantitative approaches for the
classification of TIC shapes have been described and are now
in relatively common use in clinical settings [18–26].

DW-MRI images are sensitive to water diffusion; pre-
clinical and clinical data showed that it can reflect vessels
structure [12, 13]. An approximated quantitative analysis of
DW-MRI can be performed calculating the apparent diffu-
sion coefficient (ADC) based on the relative signal intensity
change of the tissue with increasing 𝑏 values (see Section 2)
or by using intravoxel incoherent motion (IVIM) [27–29]
modeling for a more accurate quantitative analysis that has
the potential to provide information about both the cellularity
andperfusion of tumors.With the increasing awareness of the
toxicity ofMR contrast agents, DW-MRI could be considered
a favorable alternative for deriving perfusion information
without contrast agent injection [27–33].

At the time of writing only a few studies explored the
correlation between these two methods and attempted a
comparison in the case of breast cancer; moreover, it could
be useful to assess their independence or complementarity.

The objective of the present study is to evaluate the corre-
lation between DCE-MRI and DW-MRI data in breast can-
cer; moreover, we tried to establish if opportunely combining
DCE and DW-MRI features for differentiation of benign and
malignant breast lesions could improve performance.

2. Materials and Methods

2.1. Patients Characteristics. 31 breast lesions (15 malignant
and 16 benign, proved by histological examination) in 26
female patients (mean age 37.2± 10.4 years, range 14–53 years)
were included in this study. The malignant lesions included
9 infiltrating ductal carcinomas, 3 infiltrating ductal-lobular
carcinomas, 1 infiltrating lobular carcinoma, and 2 ductal
carcinomas in situ (DCIS). The benign lesions included 11
fibroadenomas and 5 fibrocystic dysplasias.

2.2. MR Protocol. Per each subject, DW-MRI and DCE-MRI
data were acquired consecutively during the same session

with a 1.5 T scanner (Magnetom Symphony, SiemensMedical
System, Erlangen, Germany) equipped with breast dedicated
coil. Scan settings are reported in Table 1.

DW-MRI data comprised 7 scans, each corresponding to
a different 𝑏 value (0, 50, 100, 150, 400, 800 and 1000 s/mm2).

DCE-MRI data comprised 10 consecutive scans acquired
with an interval between two successive scans of 56 s. The
contrast agent bolus, 0.1mL/kg body weight of Gd-DOTA
(Dotarem,Guerbet, Roissy CdG Cedex, France), was injected
at the start of the first postcontrast scan. An automatic injec-
tion system was used (Spectris Solaris EP MR, MEDRAD,
Inc., Indianola, PA). The injection flow rate was 2mL/s
followed by a flush of 10 mL saline solution at the same rate.

2.3. Volumes Coregistration. A 3D linear interpolation was
performed in order to align DCE andDWdata on a common
grid. Before alignment the voxel size of DCE and DW was
1.44 × 1.44 × 2mm3 and 1.52 × 1.52 × 6mm3, respectively.
After the alignment the common spatial resolution was 1.5 ×
1.5 × 6mm. For the subsequent analysis only voxels included
in both datasets were considered.

2.4. Region of Interest. Region of interests (ROIs) have been
manually drawn by an expert radiologist onDCE images with
virtual “fat-suppression” obtained subtracting the precontrast
from the 5th postcontrast image. Per each patient only the
slices including the lesion have been used. Voxels within
ROIs were extracted from both DCE and DW realigned
volumedata. Features fromDCEdata andDWdata have been
computed.

2.5. DCE-MRI Features. Per each voxel, 20 features were
extracted from DCE data: 17 were model free and 3 were
model based.

2.5.1. Model Based Features. The time-course of contrast
medium concentration is typically modelled using the
extended Tofts model [22, 24]:

𝐶
𝑡
(𝑡, 𝐾trans, 𝑘ep) = 𝐶𝑝 (𝑡) ⊗ 𝐾trans ⋅ 𝑒

−𝑘ep ⋅𝑡
+ V
𝑝
⋅ 𝐶
𝑝
(𝑡) , (1)

where 𝐶
𝑡
(𝑡) is the concentration of contrast medium within

the tissue (voxel) of interest; 𝐶
𝑝
(𝑡) is the concentration of

contrast medium within the plasma (also called arterial
input function (AIF)); 𝐾trans is the volume transfer constant
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Figure 1: Per each couple of features the Spearman correlation coefficient (𝑟) at a voxel-by-voxel level is reported in color code. Yellow to
red colors indicate a positive correlation; cyan to blue colors indicate negative correlation. Most of DCE features are not correlated with DW
features; a relatively strong positive correlation is observed between𝐷 and PI (𝑟 = 0.70) and between𝐷 and SOD (𝑟 = 0.60).

from plasma to extracellular-extravascular space (EES); 𝑘ep
is the diffusion rate constant from EES to plasma; V

𝑝
is the

volume fraction occupied by plasma. These parameters can
be related to the level of angiogenic activity. In particular,
𝐾trans represents the vessel permeability and 𝑘ep is linked to
the duration of the wash-out phase [21]. We assumed the
biexponential AIF proposed by Weinmann et al. [34]:

𝐶
𝑝
(𝑡) = 𝑑 (𝑎

1
exp (−𝑚

1
𝑡) + 𝑎
2
exp (−𝑚

2
𝑡)) , (2)

where 𝑑 is the administered dose (mL/kg), 𝑎
1
= 3.99 kg/L,

𝑎
2
= 4.78 kg/L, 𝑚

1
= 0.144min−1, and 𝑚

2
= 0.0111min−1.

Contrast medium concentration was calculated from the TIC
using the approach suggested by Schabel et al. [35] with a
fixed precontrast longitudinal relaxation time, 𝑇

1,0
of 820ms,

appropriate for breast parenchyma.

2.5.2. Model Free Features. For each voxel 17 TIC’s shape
descriptors were computed using an approach previously
reported in [26]: basal signal (SB), maximum signal differ-
ence (MSD), the time to peck (TTP), theWI slope (WIS), the
WO slope (WOS), the WI intercept (WII), the WO intercept
(WOI), the WOS/WIS ratio, and the WOI/WII ratio are
under curve (AUC), area under gadolinium curve in the was-
in phase (AUCWI), area under gadoliniumcurve in thewash-
out phase (AUCWO), the AUCWO/AUCWI ratio, and the
height ratio (HR).

Moreover in this study the perfusion index (PI) as
proposed by [36], the sum of intensity difference (SOD) as

proposed by [37], and variance of enhancement slope (VES)
as proposed by [38] were calculated.

2.6. DW-MRI Features. Per each voxel, 3 features were
extracted from DW data using the Intra Voxel Incoherent
Motion (IVIM) model (Figure 1 step 7) [27–29].

DW-MR signal decay is most commonly analyzed using
the monoexponential model [26, 27]:

ADC =
ln (𝑆
0
/𝑆
𝑏
)

𝑏

, (3)

where 𝑆
𝑏
is the MRI signal intensity with diffusion weighting

𝑏, 𝑆
0
is the nondiffusion-weighted signal intensity, and ADC

is the apparent diffusion coefficient.
For a voxel with a large vascular fraction, the MRI

data decay can deviate from a monoexponential form, in
particular showing a fast decay in the range of low 𝑏 values
generated by the intravoxel incoherent motion (IVIM) effect
[27, 28]. Thus, in addition to the monoexponential model, a
biexponential model was used to estimate the IVIM-related
parameters of pseudodiffusivity (𝐷

𝑝
indicated also with𝐷∗),

perfusion fraction (𝑓
𝑝
), and tissue diffusivity (𝐷):

𝑆
0

𝑆
𝑏

= 𝑓
𝑝
⋅ exp (−𝑏 ⋅ 𝐷

𝑝
) + (1 − 𝑓

𝑝
) ⋅ exp (−𝑏 ⋅ 𝐷) . (4)

The estimation of the three parameters in the biexponential
model may often be ill-conditioned because of a limited
number of samples, small perfusion fraction, and/or similar
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Table 2: Summary of DCE and DW features.

ID Symbol Description Units
1 𝑓 Perfusion fraction —
2 𝐷

∗ Pseudodiffusion coefficient mm2 s−1

3 𝐷 Tissue diffusion coefficient mm2 s−1

4 WOS/WIS Ratio between slopes of wash-out and wash-in phase (see below) —
5 WOI/WII Ratio between intercepts of wash-out and wash-in phase (see below) —
6 AUCWI Area under gadolinium curve in the wash-in phase smmol L−1

7 AUCWO Area under gadolinium curve in the wash-out phase smmol L−1

8 AUCWI/AUCWO Ratio between areas of wash-out and wash-in phase —
9 HR Height ratio —
10 TTP Time to peak s
11 MSD Maximum signal difference —
12 AUC Area under curve —
13 SB Basal signal —
14 WIS Wash-in slope s−1

15 WII Wash-in intercept —
16 WOS Wash-out slope s−1

17 WOI Wash-out intercept —
18 VES Variance of enhancement slope s−1

19 PI Perfusion Index —
20 SOD Sum of intensity difference —
21 𝐾trans Volume transfer constant from plasma to extracellular-extravascular space s−1

22 𝑘ep Diffusion rate constant from extracellular-extravascular space to plasma s−1

23 V
𝑝

Plasma volume fraction —

compartmental diffusivities, as found in other in vivo IVIM
studies [29–33]. Thus, we performed a “two steps” analysis
procedure as follows.

Typically, 𝐷
𝑝
is greater than 𝐷 [28]; therefore, when

the 𝑏 value is significantly greater than ∼1/𝐷
𝑝
(e.g., for

𝐷
𝑝
∼ 10mm2/ms, 𝑏 > 100 s/mm2), the contribution of the

pseudodiffusion term to the signal decay becomes negligible.
In this higher 𝑏 value regime, (3) can be simplified to a
monoexponential equation (4), where by𝐷 can be estimated:

𝑆high = 𝑆0 ⋅ exp (−𝑏 ⋅ 𝐷) . (5)

Therefore, 𝐷 is determined from a monoexponential fit to
data above a chosen threshold (𝑏 > 200 s/mm2, in this study).
After determining𝐷 using (5),𝐷

𝑝
, 𝑓
𝑝
can be estimated using

a nonlinear fit of (4) to the entire dataset that minimizes the
residual sum of squares.

2.7. Statistical Analysis. We performed two types of analysis:
voxel-by-voxel and lesion-by-lesion analysis. It is expected
that the results of the voxel-by-voxel analysis should quantify
the possibility to automatically segment images using a
combination of DCE and DW information. The results of
the lesion-by-lesion analysis should indicate the capability to
discriminate benign from malignant. Therefore, both voxel
features and lesion features (per each lesion the median value
along all the voxels for all features) have been calculated.
Table 2 summarizes the 23 features.

In order to assess the correlation between DCE and DWI
we made an analysis at a voxel-by-voxel level. Specifically,

we computed the Spearman (nonparametric) correlation
coefficient between each couple of features. It is expected that
strongly correlated (or inversely correlated) features should
show a high correlation coefficient (approximately 1 or −1).

Subsequently, we used both voxel-by-voxel and lesion-
by-lesion analysis in order to assess the capability of the
features to discriminate benign from malignant voxels or
lesions. We applied a Linear Discriminant Analysis (LDA)
[39] followed by a linear classifier in order to identify the best
combination of features able to produce best classification
results. ROC curves for classification were generated. The
best linear classifiers were determined by maximizing the
area under the ROC curves; best threshold was identified
considering the unbalance of benign-malignant lesions [40,
41].

Finally, the performance of a simple algorithm for lesion
classification based on voxel-by-voxel analysis was evaluated:
a lesion was classified as malignant (benign) if the majority
of voxel within that lesion is classified as malignant (benign).
Classification based on DCE alone, DW alone, and combina-
tion of DCE and DW was compared. In the three cases, the
percentage of correctly classified samples was computed for
each lesion.

3. Results

Figure 1 shows the Spearman correlation coefficient (𝑟) at a
voxel-by-voxel level between all feature couples. The num-
bering of the features is as in Table 2. It can be seen that in
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Figure 2: Continued.
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Figure 2: Receiver operating curves (ROCs) of single features in the case of voxel-by-voxel analysis. Per each feature (see Table 2) the ROC
is reported in terms of true positive rate (TPR) and false positive rate (FPR). The plots have been aligned according to the area under curve
(AUC) in row-wise descending order with the largest AUC at the top-left. The red dot indicates the best compromise between TRP/FPR
considering the unbalance between benign-malignant subjects. FPR is generally very high except for 𝑘ep and HR.

general, DCE and IVIM parameters show weak correlation
except PI &𝐷 (𝑟 = 0.70) and SOD &𝐷 (𝑟 = 0.60).

Figures 2 and 3 show the receiver operating curves
(ROCs) for single features in the case of voxel-by-voxel and
lesion-by-lesion analysis, respectively. Within a specific ROC
the best threshold is indicated by a red dot which has been
evaluated considering the unbalance between benign and
malignant lesions. The largest area under curve (AUC) with
high sensitivity and good specificity has been obtained for 𝑘ep,
𝐾trans and HR, in the case of voxel-by-voxel analysis and for
𝐷
∗, WIS, and 𝑓, in the case of lesion-by-lesion analysis (we

discarded SB because of very low sensitivity).
Figures 4 and 5 report the results of the best combination

of all features in the LDA analysis in the case of voxel-
by-voxel and lesion-by-lesion analysis respectively. The best
threshold is indicated by a red dot, which has been evaluated
considering the unbalance between benign and malignant
lesions.

Figure 6 shows the percentage of correctly classified sam-
ples by Linear Discriminant Analysis for each lesion. Using
DCE features only showed the same behavior of combined
DCE &DW.The number of misclassified patients using DCE
only andDWonlywas the same (9 patients weremisclassified
in both cases).

Tables 3 and 4 report sensitivity and specificity of the
parameters in the voxel-by-voxel analysis that provide the
maximum area under the ROC (AUROC).

4. Discussion

The purpose of our study was to evaluate the diagnostic value
of an imaging protocol that combines dynamic contrast-
enhanced MRI (DCE-MRI) and diffusion-weighted imaging
(DWI) in patients with suspicious breast lesions and to
determine if additional information provided by DWI could
improve the diagnostic value of breast MRI.
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Figure 3: Receiver operating curves (ROCs) of single features in the case of lesion-by-lesion analysis. Per each feature (see Table 2) the ROC
is reported in terms of true positive rate (TPR) and false positive rate (FPR). The plots have been aligned according to the area under curve
(AUC) in row-wise descending order with the largest AUC at the top-left (per each feature the AUC is indicated in parenthesis). The red dot
indicates the best value considering the unbalance between benign-malignant subjects.

Table 3: Sensitivity and specificity of the parameters in the pixel-
by-pixel analysis that provide the maximum area under the ROC
(AUROC).

Parameters AUROC Sensitivity Specificity
𝑘ep 0.7 0.96 0.22
𝐾trans 0.66 0.99 0.18
HR 0.65 0.94 0.35

Our findings showed that no strong correlation was
obtained betweenDCE-MRI andDW-MRI features (Figure 1).
The largest values were obtained in correspondence of the
pairs PI & 𝐷 and SOD & 𝐷, probably because PI and SOD
are the only two features that describe the whole trend of the
time intensity curve course, which allow obtaining the best
discrimination between the different types of lesion.

Table 4: Sensitivity and specificity of the parameters in the lesion-
by-lesion analysis that provide the maximum area under the ROC
(AUROC). We have discarded SB because of low sensitivity.

Parameters AUROC Sensitivity Specificity
𝐷
∗ 0.7 0.73 0.75

WIS 0.65 0.33 0.94
𝑓 0.64 0.73 0.69

The ROC analysis showed that single features (both DCE
and DW) do not have a good discriminative power (Figures
2 and 3). Moreover, the unbalance of our data does not allow
determining a good threshold with both high sensitivity and
specificity.

Results of Linear Discriminant Analysis (Figures 4 and
5) showed that the use of a combination of DCE and DW
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Figure 4: ROC analysis of the best linear combination of all features
obtained using Linear Discriminant Analysis in the case of pixel-
by-pixel analysis. The AUC is indicated in parenthesis. The red dot
indicates the best point considering the unbalance between benign-
malignant patients: the TPR is approximately 0.93 and the FPR is
about 0.35.
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Figure 5: ROC analysis of the best linear combination of all features
obtained using Linear Discriminant Analysis in the case of lesion-
by-lesion analysis. The red dot indicates the best point considering
the unbalance between benign-malignant patients. The AUC is
reported in parenthesis. The TPR is 1 with FPR less than 0.1.

features, in comparison to single features, has the potential
to improve sensitivity and specificity.

However, the potential of both the set of features cannot
be achieved using simple classification algorithms such as the
one proposed in Section 2.7. Further investigations toward
to best way to combine the information from DCE and DW
should be performed.

0 5 10 15 20 25 30 35
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Patient identifier

N
um

be
r o

f v
ox

els
 co

rr
ec

tly
 cl

as
sifi

ed
 (%

)

DCE-MRI
DW-MRI

DCE-MRI and DW-MRI

Figure 6: Result of a simple algorithm for classifying benign and
malignant lesions: the voxels within a lesion can be classified as
benign or malignant using the best combination of features in the
pixel-by-pixel analysis: a lesion is classified as malignant if it has a
percentage of malignant voxels higher than 50%. Per each patient,
the percentage of the correctly classified voxels within the ROI is
reported: if this percentage is higher than 50% than the lesion will
be correctly identified. It can be seen that using DCE alone (blue
line) only 9 lesions have been incorrectly classified. Using only DW
we have again 9 lesions misclassified, but they are different from
the previous ones. Moreover, the combination of DCE and DW
produces the same results as DCE only.

According to our knowledge, no previous study in the
literature tried to combine DCE and DW-MRI features
including model free and model based parameters evaluated
by DCE-MRI data and IVIM parameters evaluated by DW-
MRI data, after automatic registration and preprocessing of
two volumes, to assess the accuracy in differentiation of
benign and malignant breast lesions and to evaluate the
improvement of additional of DW-MRI parameters to DCE-
MRI features in breast lesion classification.

Several authors in recent literature have combined DCE
and DW-MRI data in breast cancer to different aims.
Rahbar et al. [42] developed a model incorporating DCE
and DW-MRI features, including semimodel free parame-
ters and ADC, to differentiate high-nuclear-grade (HNG)
from non-HNG ductal carcinoma in situ (DCIS) in vivo.
Those preliminary findings suggested that DCE and DW-
MR imaging features may aid in identifying patients with
high risk DCIS. Kul et al. [43] evaluated the diagnostic value
of an imaging protocol that combined DCE and DW-MRI
in patients with suspicious breast lesions and to determine
if additional information provided by DWI improves the
diagnostic value of breast MRI. They concluded that the
combination of DWI and DCE-MRI has the potential to
increase the specificity of breast MRI. Partridge et al. [44]
showed that ADC can improve the positive predictive value
of breast MRI for lesions of varied types and sizes. Jena
et al. [45] have tried to evaluate the combined effect of
capillary permeability (𝐾trans) and tissue cellularity (ADC) on
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the diagnostic accuracy for differentiating benign and malig-
nant breast lesions by incorporating these parameters in rou-
tine clinical protocol for breast MRI. Wu et al. [46] reported
in their study that the combined use of DW-MRI and CE-
MRI has the potential to improve the diagnostic performance
in monitoring neoadjuvant chemotherapy (NAC). Atuegwu
et al. [47] presented a methodology for incorporating ADC
and kinetic DCE-MRI features into a simple mathematical
model of tumor growth to predict the tumor cellularity
and early treatment response at NAC. In this contribution,
results indicate how the integration of DW- and DCE-MRI
data can improve specificity and positive predictive value to
separate responder by nonresponder patients after one cycle
of NAC. It is worth mentioning the recent work proposed
by Cai et al. [48, 49]: they proposed a machine learning
approach to combining diffusion-weighted imaging (DWI),
morphology, and kinetic features from DCE-MRI in order
to improve the discrimination power of malignant from
benign breast masses. They examined seven features divided
in four groups: morphological features, texture features,
kinetic features, and one DWI feature (apparent diffusion
coefficient). Together with the selected diagnostic features,
various classical classification schemes were used to test their
discrimination power through cross validation scheme.They
concluded that multisided variables, which characterize the
morphological, kinetic, pathological properties, and DWI
measurement of ADC, could improve the discriminatory
power of breast lesions.

However, some drawbacks must be underlined: in par-
ticular, they used a nonlinear classifier combining the seven
features with support vector machine, Bayesian classifier,
𝑘-nearest neighbours, and logistic regression model, all
approaches that determine a nonlinear manipulation of
features; this latter is not easy to understand by radiologists
with respect to a linear combination of features. Moreover,
in our study, in contrast to Cai et al. [48, 49], we combined
features including model free and model based parameters
evaluated by DCE-MRI data and DW-MRI data.

A few remarks must be made: in our study model based
parameters were used because they are more strongly related
to physiological characteristics of the tissue (perfusion). We
did not considered morphological features, as done in Cai
et al. [48, 49], because we were interested only in functional
aspects of the lesion: this could explain differences in results
between our study and cited studies that included also
morphological and textural features.

A major limitation of our study is the small size of the
population: an increase is required to increase the power of
the statistical tests and to detect statistical differences between
the two groups (benign and malignant lesions).

Although not conclusive, our results seem to suggest
that the combined use of DCE-MRI and DW-MRI does
not provide a dramatic improvement compared to the use
of DCE-MRI features alone, in the classification of breast
lesions.
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