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Abstract: The sustainable management of water resources plays a key role in Mediterranean 

viticulture, characterized by scarcity and competition of available water. This study focuses 

on estimating the evapotranspiration and crop coefficients of table grapes vineyards trained 

on overhead “tendone” systems in the Apulia region (Italy). Maximum vineyard 

transpiration was estimated by adopting the “direct” methodology for ETp proposed by the 

Food and Agriculture Organization in Irrigation and Drainage Paper No. 56, with crop 

parameters estimated from Landsat 8 and RapidEye satellite data in combination with 

ground-based meteorological data. The modeling results of two growing seasons (2013 and 

2014) indicated that canopy growth, seasonal and 10-day sums evapotranspiration values 

were strictly related to thermal requirements and rainfall events. The estimated values of 

mean seasonal daily evapotranspiration ranged between 4.2 and 4.1 mm·d−1, while 

midseason estimated values of crop coefficients ranged from 0.88 to 0.93 in 2013,  

and 1.02 to 1.04 in 2014, respectively. The experimental evapotranspiration values calculated 

represent the maximum value in absence of stress, so the resulting crop coefficients should 

be used with some caution. It is concluded that the retrieval of crop parameters and 
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evapotranspiration derived from remotely-sensed data could be helpful for downscaling to 

the field the local weather conditions and agronomic practices and thus may be the basis for 

supporting grape growers and irrigation managers. 

Keywords: evapotranspiration; crop coefficient; leaf area index; Landsat 8; RapidEye; 

remote sensing; vineyards; table grapes 
 

1. Introduction 

In semi-arid zones and in the Mediterranean environment, water scarcity and droughts are an 

increasingly frequent and widespread phenomenon, and a major limitation for viticulture productivity. 

In particular, in semi-arid regions of southern Europe, table grapes (Vitis vinifera L.) represent a key 

economic activity [1], where productivity, defined as the ratio between crop produced and water 

consumed [2,3], is directly associated with the vineyard water consumption and evapotranspiration [4]. 

In this context, the accurate monitoring of irrigation water management, such as regulated deficit 

irrigation and partial root-zone drying irrigation, has emerged as a potential way to increase water-use 

efficiency while maintaining yields of high quality [5–9], with profitable economic benefits for the grape 

growers linking water and grape prices and quality of grapes [10]. Timely and accurate estimation of 

table grapes’ water requirements are paramount for adequate irrigation scheduling and irrigation 

planning, to regulate the appropriate balance between vegetative growth, yield, and berry composition, 

and to save water. Furthermore, in dry areas the enhanced pressure on water resources with other uses 

requires an improvement of environmental sustainability of grapevine production according to future 

climate change scenarios [11]. 

In the past two decades, a large and growing strand of the literature has investigated various methods 

to calculate vineyard water requirements. Several studies were based either on measurements from 

weighing lysimeters [6,12,13], or on surface energy balance such as the Eddy Covariance and Bowen 

ratio methods [14–18]. Overall, these studies indicate significant variation on water requirements and 

more generally do not provide spatial trends of evapotranspiration, since the measured values are mostly 

restricted and influenced by a small footprint area [19]. 

The FAO-56 model is the most commonly used method for the estimation of crop water  

requirements [20,21]. Crop potential evapotranspiration (ETp) is estimated as the product of the  

reference evapotranspiration (ET0) and the crop coefficient (Kc). The ET0 value is estimated by 

meteorological data and represents the effects of weather conditions on the evapotranspiration  

process [22]. The Kc coefficient is specific to each crop and to the method used for ET0 [23], and reflects 

the canopy development and water management practices over the course of the growing season. 

Consequently, specific values of Kc are necessary to fit different climate regions and soil type conditions, 

especially considering future climate change scenarios that predict alterations in the growing season 

period and phenological stages [24,25]. 
  



Remote Sens. 2015, 7 14710 

 

 

In recent years, several attempts have been made to implement remote sensing data with the FAO-56 

model, in order to provide a reliable alternative to the indirect estimation of ETp and crop coefficient 

over large scales [4,23,26,27], allowing accurate monitoring of irrigation water management. Remote 

sensing approaches in the visible and near infrared ranges can be used to determine the crop water 

requirements in absence of stress, such as occurs for table grapes [28]. In addition, they do not require 

the development of complex physical models that work with detailed input datasets. In this case, the 

interpretation of remotely sensed data is based on the known relationships between spectral reflectance 

and biophysical crop parameters. 

A variety of approaches, both empirical and physically-based methodologies, are used for ETp and  

Kc estimations. The first type of methods commonly uses the empirical relationships between Vegetation 

Indices (VI) and field observations to estimate the energy partitioning and canopy parameters like Kc, 

while the second type of methods relies on the application of radiative transfer models and strong 

theoretical and physical relationships that reflect the plant water status, crop characteristics, and soil 

water management [4,29]. A comprehensive review of remotely-sensed Vegetation Indices used to 

estimate canopy parameters and their advantages and disadvantages was proposed by Glenn et al. and 

Allen et al. [30,31]. Although physically-based methods outperform those based on a VI approach, the 

latter methods are simple to deploy and maintain both in time and space [28]. VI widely used to estimate 

Kc are the Normalized Difference Vegetation Index (NDVI), the Soil Adjusted Vegetation Index (SAVI), 

and the Weighted Difference Vegetation Index (WDVI). A considerable amount of research has been 

conducted in recent years to estimate Kc and the temporal evolution for annual and orchard crops under 

different climate conditions [2,4,26,27,32–35]. 

However, very few studies evaluate the crop coefficients of overhead trellis system vineyards, also 

known in Italian as “tendone” (meaning “big tent”) [36], probably due to the fact that it is typical of only 

some regions in Southern Italy and Southern America. In table grapes, standard Kc values are obtained 

from the literature in vines trained on a trellis system developed under different climatic conditions. 

Nevertheless, crop coefficients primarily depend on the dynamics of canopies, light absorption by the 

canopy, and canopy roughness, which affects turbulence, crop physiology, leaf age, and surface wetness [37]. 

Moreover, factors determining the Kc of vineyards include the canopy height and architecture of the 

trellis system, the fraction of the soil covered by the crop, and the presence of mulch [38]. Thus, it is 

always recommended to adapt the Kc to the local climate, cultivars, and management practices, 

especially in orchards and vineyards, where the standard parameters may vary considerably from one 

area to another [26]. 

Although extensive research has been carried out on the retrieval of crop biophysical variables,  

there are few studies that have investigated the estimation of Kc from satellite data for vineyards in the 

Mediterranean. The main objective of this work is to determine evapotranspiration and Kc linked to the 

Growing Degree Days (GDD) and the main phenological stages of a “tendone” vineyard in the South 

Italy. The research was carried out during two growing seasons using satellite reflectance data and the 

FAO-56 single crop coefficient approach to establish a relationship between VI and Kc. The approach 

described in this paper also constitutes the basis of the irrigation advisory services using Earth 

Observation (E.O.) data, such as the “IRRISAT” service operational in Italy [39]. 
  



Remote Sens. 2015, 7 14711 

 

 

2. Material and Methods 

2.1. Study Area and Vineyard Description 

The study area is located in the Apulia region (Figure 1) in the southeastern part of the Italian 

peninsula, where over 70% of the total area is occupied by agriculture and vineyards cover about 26% 

of the crop area [40]. The regional topography is mainly flat or slightly sloping, with the exception of 

the Gargano area, situated in the northwest of the region. The climate of the study area is classified as 

Mediterranean semi-arid, characterized by moderately cold and rainy winters and dry summer seasons. 

Mean annual precipitation is about 550 mm, concentrated in the fall and winter; long-term mean air 

temperature is 15.4 °C, while the minimum and maximum yearly temperatures are 3.5 and 29.5 °C, 

respectively. The climate, rainfall in particular, exhibits a marked inter-annual variability that makes 

water availability a permanent threat to the economic development and ecosystem conservation of the 

region [41]. The soil is typical of the Capitanata region, with a well-differentiated profile, characterized 

by Quaternary marine sediments of illitic/smectitic composition that originate clay soils with vertic 

features (cambisols, entisols, vertisols) [42]. Due to its geo-climatic conditions, the region suffers from 

overall water exploitation, which exposes the water supply system to severe water scarcity events. 

  

Figure 1. Study area location with overview of LAI plot measurements. Natural color 

composition of Landsat 8 image acquired on 26 August 2014. 

The investigations have been carried within the Land Reclamation and Irrigation Consortium 

Capitanata, one of the largest agricultural irrigation districts of Southern Italy (Figure 1). This region 

mainly contains vineyards and orchards over flat terrain. In particular, field data have been collected in 

a 13 ha multiplot vineyard (41°17ʹ29ʹʹ North latitude, 16°07ʹ22ʹʹ West longitude) trained on a “tendone” 

system, with commercial table grapes (cultivars Italia, Victoria, and RedGlobe), uncovered and drip 

irrigated (Figure 2). The row and vine spacing in the vineyard was generally 2.3 × 2.3 m, about 2 m high 



Remote Sens. 2015, 7 14712 

 

 

with a plant density of 1890 plants·ha−1. Agronomic management generally maintains the vegetation 

under non-water stress conditions and soil surface free of weeds and cover crop. 

 

Figure 2. (a) Overall view of the vineyard study field displayed on a RapidEye image 

acquired on 2 August 2014 (infrared false color composition 532). Yellow borders show the 

experimental plots. (b) Canopy growth of the vineyard inter-row acquired on 24 July 2014. 

2.2. Dataset 

The dataset includes Landsat 8 and RapidEye optical images (in the visible and near infrared ranges), 

agrometeorological data, and in situ Leaf Area Index (LAI) measurements. 

2.2.1. Satellite Images 

Earth Observation images used to estimate crop coefficients were collected from the sensor OLI 

(Operational Land Imager), onboard the Landsat 8 Mission (formerly the Landsat Data Continuity 

Mission, LDCM). The data are available for download free of charge from the U.S. Geological  

Survey-USGS Earth Explorer data repository. 

In addition, several RapidEye high-resolution images at 6.5 m Ground Sample Distance at nadir 

(generally resampled to 5-m pixel size), were also acquired. The study field concerns two frames of 

Landsat 8 images (Path 188, Row 31), radiometrically calibrated and orthorectified using ground control 

points, and a set of high-resolution RapidEye images, radiometrically calibrated. Table 1 summarizes 

the cloud-free satellite data used and processed over the study area. The temporal frequency of the entire 

data set acquired allows us to monitor the vegetation development throughout the growing seasons. 
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Table 1. Overview of the imagery dataset used in the study area. 

Satellite Data GSD* (m) Processing Level Revisit Time N. of Images Acquisition Dates 

Landsat 8 OLI 30 1T 16 day 14 
from 19/05/2013 to 

26/08/2014 

RapidEye MSI 6.5 1B 1 day 10 
from 10/06/2014 to 

29/09/2014 

Note: *Ground sample distance. 

2.2.2. Agrometeorological Data and Field Data 

Agrometeorological data were acquired from five stations managed by Assocodipuglia, the 

agrometeorological service of the Apulia Region. Daily data of precipitation, evapotranspiration, 

atmospheric pressure, global radiation, air temperature, humidity, and wind speed were acquired for  

both years. Daily air temperature was used to calculate the GDD index from 1 April to 31 October, 

computed as the difference between the daily mean temperature and the base temperature (10 °C) [43]. 

In addition, other ancillary and administrative data were used to improve elaborations. 

2.2.3. In Situ LAI 

In situ LAI measurements (m2·m−2) were collected on 23 and 24 July 2014 for 38 sample plots. Field 

non-destructive measurements of LAI and leaf mean tilt angle were made with LICOR  

LAI-2000 Plant Canopy Analyzer [44], which works by comparing the intensity of diffuse incident 

illumination measured at the bottom of the canopy with that arriving at the top. In order to reduce the 

effect of multiple scattering on LAI-2000 measurements, the instrument was only operated near dusk 

and dawn (6:30–9:30 am; 6:30–8:30 pm) under diffuse radiation condition, using one sensor for both 

above and below stand measurements. In order to prevent interference caused by the operator’s presence 

and the illumination condition, the sensor field of view was limited with a 180° view-cap. Measurements 

were azimuthally oriented opposite to the sun azimuth angle. LAI measurements were taken with the 

instrument held a few centimeters above the soil, generally within three days of image data acquisition. 

A measurement of ambient light was made with the sensor extended upward and over the top of the 

canopy at arm’s length. Eight below-canopy readings were then made. This pattern has been repeated 

three times per spot, and the resulting 24 samples comprise one full set of measurements. Finally, each 

center of the LAI-2000 transects was geolocated by using GPS (Global Position System) measurements. 

This measurement protocol allowed us to determine statistically meaningful LAI values, characterized 

by a low ratio between the standard error of the LAI (SEL) and LAI (SEL/LAI ranged between ≈0.03 

and ≈0.07); thus, the actual LAI should be within 10% of the LAI sample mean (Figure 3). 

2.3. Methods 

The application of the procedure is achieved by the integration of EO techniques and meteorological 

data of the study area. The conceptualization has been developed by D’Urso [45] and implemented into 

the SIMODIS model (SImulation and Management of On-Demand Irrigation System). The estimation 

of crop evapotranspiration under standard conditions (ETp—mm/d)—disease-free, adequate 

fertilization, and soil water availability—has been carried out using the FAO’s Penman–Monteith 
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method, which requires standard meteorological data such as solar radiation (S), air temperature (Ta), air 

humidity (RH), wind speed (U), and biophysical parameters that are crop-specific, such as albedo (r), 

LAI, and crop height (hc) [20]. The value of ETp is a function of the crop parameters and meteorological 

data, and the procedure, known as the one-step approach, is computed as: 

 USRHTahcLAIrfETp ,,,|,,  (1) 

Since crop parameters (mainly r and LAI) are very difficult to obtain in the open field without specific 

instruments, ETp is calculated in the routine irrigation management by multiplying ET0 by Kc, starting 

from an ET0 assuming an ideal crop with standard parameters (hc = 0.12 m, r = 0.23, LAI = 2.88) and a 

Kc extracted from the FAO-56 table, following a single Kc approach [20]. 

 

Figure 3. Field estimates of LAI collected on 23–24 July 2014 with a LICOR LAI-2000 

Plant Canopy Analyzer. The filled circles show the average LAI with the standard error. 

It should be noted that ETp calculated in this way represents the maximum value, (i.e., minimum 

canopy resistance), so the resulting Kc values, if compared with values reported in the literature, should 

be used with caution. The comparison between the results of the proposed methodology  

and field measurements—including fluxes of latent heat by means of micrometeorological 

instrumentations—requires fully controlled conditions (especially for irrigation), which were not 

available at the current study site. However, we assume that the model can be applied to the  

studied canopy, having been validated in the course of field experiments on different fully irrigated  

crops [29,39]. Actual evapotranspiration from a well-watered crop will generally approach ETp during 

the active growing stage, but it falls below it toward the end of the growing season as the plants begin 

to dry out. Diversely from our ET0 estimates, actual evapotranspiration depends on the conditions of soil 

water availability, and is only possible to compute through complex measurements in the open field or 

by filling out a detailed hydrological balance, taking into account all the parameters  

for the simulation of water transport/flow in the Soil, Plant Atmosphere system, using numerical 

schematization. In this case, the value of ETp determined with the approach proposed here is used as an 

upper limiting condition [46]. This kind of analysis has been carried out for some perennial tree crops in 

Sicily [47], where soil water and surface energy balances with visible, near, and thermal infrared data 
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have been carried out. These previous studies support the assumption of validity, provided that the 

canopy parameters, i.e., LAI, are adequately described. Finally, crop water requirements can be  

accounted for in a simple way by subtracting the net precipitation (Pn) from ETp. 

In order to describe the amount of intercepted water from the plant surface, Pn is calculated as a 

function of the actual precipitation (P), LAI, and fractional cover. The semi-empirical model of 

interception [48] is described by the following relationship:  
























aLAI

Pf
aLAIPPn cover

1

1
1  (2) 

where P (cm·d−1) and a (cm·d−1) are empirical parameters representing the crop saturation per unit 

foliage area (~0.28 for most crops), and fcover is the fractional vegetation cover derived from LAI using 

a polynomial empirical expression where coefficients are determined from field measurements and are 

valid for a wide range of crops (LAI ≤ 5 m2·m−2). 

Kc values are extremely variable, even within the same type of crop, depending on many factors, i.e., 

date and seeding density, intake of nutrients, nature of the soil, and agronomic practices. Kc is basically 

the ratio of the ETp to the ET0, and can be computed as follows [45,49]: 
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where r*, LAI* and hc
* represent the parameters of the crop vegetation present at the time of the satellite 

overpass, which can be related to satellite observations, while K↓ represent the global incoming  

short-wave radiation flux density. The value of Kc depends both on the crop parameters (except albedo, 

which is also influenced by the degree of humidity of the soil), which can be considered relatively  

stable for a period of 1–2 weeks, and the weather conditions of the study area, which instead vary in 

time. A sensitivity analysis of the value of Kc with respect to these parameters showed that the value of 

Kc is more closely related to vegetation parameters r* and LAI*, and that the sensitivity of the change in 

the crop height is higher in autumn than in summer [45]. This is due to the fact that, at the daily scale, 

the aerodynamic component of evapotranspiration is of much less importance than the radiative.  

A flow-chart of the processing chain of this procedure can be found in Vuolo et al. [39]. The validation 

has been carried out over different crops (including vineyards), thereby fulfilling the “standard 

conditions” for ETp by means of eddy-covariance independent measurements [29,39]. Since LAI 

represents the main parameter, it can be taken as the reference variable for the calibration of this method 

to local conditions, as described later. 

Recent studies conducted in semi-arid areas confirm this trend [50]; in fact, a percentage change of 

50% in hc
* corresponds to a variation of 5% of Kc. Therefore, a constant value of hc = 0.4 m has been set 

in this study, valid for the climatic conditions of the Mediterranean area, reducing the calculation to the 

estimation of r and LAI. 
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Data Processing for Deriving EO-Based Crop Development Maps 

A total of 14 Landsat 8 images and 10 RapidEye images were used for both growing seasons.  

The pre-processing phase of satellite images was achieved in two steps. Firstly, Landsat 8 scenes were 

orthorectified by using additional Ground Control Points and a Digital Elevation Model, while RapidEye 

scenes were orthorectified using only the image’s rational functions. Secondly, the images have been 

atmospherically corrected using the ATCOR-2 software suite in ERDAS imagine, which incorporates 

the MODerate resolution atmospheric TRANsmission (MODTRAN version 4) model and uses look-up 

tables with pre-calculated model simulations for different satellite sensor types and a range of 

atmospheric conditions [51,52]. Furthermore, supervised classification of Landsat 8 images was 

performed to identify at each acquisition the plots of agricultural land cover with vegetation and areas 

with bare soil and/or urban areas. 

In order to implement the FAO-56 model, for each satellite image a set of maps of Kc were derived 

on the basis of LAI and r maps. The surface albedo, needed to derive the net radiant flux, is  

an approximation of the hemispherical and spectrally integrated surface albedo, and was extracted as 

part of the value-added products available in ATCOR-2 after the atmospheric correction [53]. LAI is  

a biophysical surface parameter defined as the total one-sided area of photosynthetic tissue per unit of 

ground area [54]. The estimate of the LAI was performed based on the simplified Clevers’ Leaf Area 

Index by Reflectance model, CLAIR [55], based on the Weighted Difference Vegetation Index (WDVI). 

The WDVI is a radiometric index calculated, for each pixel of the image, from the values of reflectance 

rsRED and rsNIR, respectively, in the bands of red (0.63–0.69 μm) and the near infrared (0.76–0.90 μm). 

The ratio of near-infrared and red soil reflectance is also known in the literature as the “soil line slope,” 

usually between 0.9 and 1.3. The effect of weighting the red band with the slope of the soil line is the 

maximization of the vegetation signal in the near-infrared band and the minimization of the effect of soil 

brightness. The LAI is related with WDVI of the observed vegetation, through the following expression, 

deduced from a simplified analysis of the radiative behavior of different types of crops [50,55,56]: 

)1ln(
1

*




WDVI

WDVI
LAI


 (4) 

where α* is an extinction coefficient (increase of WDVI for an unitary increase of LAI—an empirical 

shape parameter, mainly depending on canopy architecture  and computed from field measurement and 

considered to be 0.39 in this study, corresponding to the minimum error between the observed and 

estimated LAI), and WDVI∞ is the asymptotical value of WDVI for LAI→∞, and is calculated at each 

acquisition at the target “vegetation cover (not woody) very dense and uniform” or maximum vegetation 

(agricultural) cover (usually between 0.55 and 0.75). 

In situ LAI measurements have been used to produce LAI maps from Landsat 8 and RapidEye images 

by applying the semi-empirical CLAIR model based on an inverse relationship between the WDVI and 

LAI [55,57]. 

The CLAIR model needs to be calibrated by estimating the extinction coefficient α*. Equation (4)  

must be inverted, fixing the LAI, WDVI, and WDVI∞ values. WDVI∞ was calculated (rsNIR/rsRED = 1.35, 

WDVI∞ = 0.55) so as to create a correspondence of pixels with maximum vegetation cover. The resulted 

α* values were in the range of 0.34–0.70. The final value of α* = 0.39 corresponds to the minimum error 

between observed and estimated LAI, leading to an average error of 25% in the estimation of the LAI. 
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To test the model prediction accuracies, we used the root-mean-square error (RMSE) and the coefficient 

of determination (R2) between measured and predicted LAI. According to the FAO-56 model, the ET0 

computed from the agrometeorological variables using the Penman–Monteith equation is used to 

calculate the value of Kc (according to the analytical method), where Kc is the ratio between ETp and 

ET0 [20]. Kc incorporates and synthesizes all the effects on the evapotranspiration related to  

morpho-physiological characteristics of the different crops—phenological stage, degree of soil cover, 

soil and climate conditions—that make them different from the reference crop. 

The mean value of the ratio between ETp and ET0 over a period of about seven days around the date 

of satellite’s passage is applied twice, once with standard values of LAI, r, and crop height for a reference 

surface, and once by using the LAI, r, and crop height (this latter is fixed for tree crops) from satellite 

images. To speed up this processing in a GIS environment, we derive a polynomial expression of degree 4, 

whose coefficients are derived by calculating the Kc intervals of LAI and albedo targets (i.e., LAI in 

range 0–5 and step 0.2; albedo in range 0.05 to 0.5 and step 0.01). The coefficients mostly depend on 

meteorological data, and they are dimensionless as LAI and Kc. This procedure is not strictly needed, 

since we could directly use the FAO-56 method on a daily basis, but it has the advantage of showing the 

direct link between Kc, LAI, and albedo. Once we derive albedo and LAI from the satellite images and 

calculate the coefficients for a given time interval, in a GIS environment we derive the Kc map on a 

pixel-by-pixel basis. One important advantage of deriving canopy parameters or crop coefficients from 

spectral measurements is that their values do not depend on other variables such as planting date and 

density, but on the effective cover. 

3. Results and Discussion 

3.1. Weather Conditions, Reference ET, and Phenology 

Rainfall and temperature in 2013 and 2014 were slightly different but in accordance with climatological 

averages for the study area (Figure 4). The year 2013 has been characterized by a rainy winter and spring 

and a dry summer, with anomalously high precipitation in August and in the autumn, while 2014 

experienced a rainy spring: long-term average precipitation from April to June was 210 mm, about 35% 

of the annual amount. This situation affected the crop water requirements during the growing season. 

Annual rainfall and mean temperature were 629.2 mm and 16.2 °C for 2013, and 607.4 mm and 16.7 °C 

for 2014, respectively. Total rainfall from 1 June to 30 September was 114.4 mm (18% of the annual 

amount) in 2013 and 103 mm (27% of the annual amount) in 2014, respectively. 

Seasonal variations of ET0 are shown in Figure 5 for 2013 and 2014, respectively. The total amounts 

of ET0 in the growing season (1 June to 30 September) were similar in both years: 511 mm in 2013 and 

501.6 mm in 2014. The average daily ET0 was 4.2 mmd−1 and 4.1 mmd−1 in the first and second year, 

respectively. In the 2013 growing season the lowest daily ET0 was 1.3 mmd−1 (30 September) and the 

highest was 6.7 mmd−1 (24 June). In the 2014growing season, ET0 values ranged from 1.7 mmd−1 (1 September) 

to 6.7 mmd−1 (29 June). The transpiration values reported in this study are consistent with those reported 

by Suvocӑrev et al. [22] (4.3–4.4 mmd−1) and Teixeira et al. [2] (3.9–4.4 mmd−1) for table grapes trained 

on an overhead trellis system, although they cannot be directly compared because they were measured 

at the ground. 
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Figure 4. Seasonal trends of temperature and rainfall at an agrometeorological station in 

Andria for the years 2013 (a) and 2014 (b). 

 

Figure 5. Seasonal trends of ET0 and rainfall events during the growing season for the years 

2013 (a) and 2014 (b). 

In addition, the GDD index was calculated using the data from a weather station located near the 

sample plots. The length of four key phenological stages was also identified based on mean dates 

registered in the study area. The GDD index from 1 April to 31 October is similar for both seasons and 

ranged from 2108 GDD in 2013 to 2128 GDD in 2014 (Table 2), thus the study area was classified as  

Region IV (hot) [58]. Nevertheless, the GDD accumulation up to flowering in the 2014 growing season 

was markedly lower than in 2013. 

Table 2. Phenological stages and cumulative GDD during the 2013 and 2014 growing seasons. 

Phenology * Time GDD 2013 GDD 2014 

Bud break 1–6 April 0 0 

Flowering 20–30 May 341 279 

Veraison 16–24 July 981 1040 

Harvest 10–15 Sept. 1747 1766 

– 31 October 2018 2128 

Note: * Observed mean dates of key phenological stages were obtained from the research unit Consiglio per la 

Ricerca in Agricoltura e l’Analisi dell’Economia Agraria UTV, Turi (Tarricone L., personal communication). 

The accumulation of degree-days has important implications for the length of the growth stages and 

water availability [59]. In fact, it has been demonstrated that canopy development is highly correlated 

with GDD [12,60] and consequently the canopy cover and shaded area control the seasonal values of  
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the Kc [12]. Overall, these studies suggested that the observed Kc values should be linked to the 

cumulative GDD of specific agro-climatic locations in order to minimize the effects of year-to-year 

weather variations. Clearly, the seasonal development and length of growing stages on other study  

areas can be very different compared with those considered by the FAO-56 paper. 

Up to now, a number of studies pointed out that changes in climate led to significant impacts on the 

phenology time series, for example shifts in phenological timing of bud-burst to harvest [25,61,62]. 

These results further support the need for setting Kc values for the new climate change projections, as 

well as agronomic practices aimed at the enhancement of soil water availability (i.e., mulching, netting, 

and biochar) [11,22,63]. 

3.2. Temporal Evolution of LAI and Kc 

Consequently, the measurements made in the field were compared with the data elaborated from  

high-resolution satellite images (RapidEye). The data are an average of the pixels belonging to the same 

polygon of land cover. The scatterplot between field LAI measured and satellite LAI estimates are shown 

in Figure 6. The RMSE and R2 between measured and predicted LAI are 0.33 and 0.71, respectively. 

 

Figure 6. Scatter plots (n = 38) of field LAI estimates (23 to 24 July 2014) and satellite 

estimates of LAI (RapidEye image, 2 August 2014). RMSE: root mean square error.  

R2 = coefficient of determination. RRMSE: relative root mean square error. The broken red 

line shows the ordinary least squares linear regression fits. In black is the 1-to-1 line. 

Seasonal Kc values were obtained by dividing ETp with the reference evapotranspiration calculated 

as previously described. The time evolution of measured Kc for the growing seasons 2013 and 2014 are 

reported in Tables 3 and 4, respectively. During the 2013 growing season the Kc value moves from a 

minimum of 0.43 to a maximum of 1.23 on the date of harvest, while in 2014 the Kc moves from a 

minimum of 0.14 to a maximum of 1.42. The Kc mean values were higher in May and June in 2013, and from 

July to the beginning of September in 2014. Unfortunately, there is no data available for September 2014, 

since the month was very rainy and the cloud coverage of satellite images did not allow us to elaborate any 

data. Initial Kc in the 2013 growing season was high and constant around 0.90, with a maximum value 
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of 1.02 close to the harvest, in September. Overall, the standard deviation values of the 2014 data are 

lower than for the 2013 data, denoting good stability and fairly tight dispersion in the dataset. 

Table 3. Statistical parameters for Kc values derived from Landsat 8 satellite images from 

the year 2013 (n = 110 plots). 

Kc 
19 May 

2013 

20 June 

2013 

06 July 

2013 

22 July 

2013 

07 August 

2013 

23 August 

2013 

08 Sept 

2013 

24 Sept 

2013 

maximum 1.14 1.14 1.14 1.19 1.19 1.18 1.23 1.19 

average 0.91 0.91 0.88 0.92 0.93 0.93 1.02 0.96 

minimum 0.58 0.58 0.43 0.46 0.48 0.49 0.58 0.56 

Standard 

deviation 
0.13 0.13 0.15 0.15 0.14 0.14 0.13 0.13 

Table 4. Statistical parameters for Kc values derived from Landsat 8 satellite images from 

the year 2014 (n = 110 plots). 

Kc 
06 May 

2014 

07 June 

2014 

23 June 

2014 

09 July 

2014 

10 August 

2014 

26 August 

2014 

maximum 0.63 0.75 1.07 1.42 1.10 1.30 

average 0.32 0.43 0.82 1.02 0.93 1.04 

minimum 0.14 0.17 0.53 0.68 0.56 0.63 

Standard 

deviation 
0.08 0.10 0.11 0.16 0.10 0.12 

The review of vineyard Kc values for table grapes available in literature is described in Table 5.  

Initial Kc in 2014 growing season is 0.32–0.43, closer to the value obtained by Netzer et al. [64] in Israel 

and Lamaddalena and Caliandro [65] in the same region of our study area. Midseason Kc in our study 

area in the two growing seasons was around 0.8 and 1.02, in line with those values reported by Rana [36] in 

Apulia, and Williams and Ayars [12] in California. The peaks of 1.23 in 2013 and 1.42 in 2014 are 

consistent with those of Netzer et al. [64], Villagra et al. [66], and Williams and Ayars [12].  

All these authors estimated a Kc value equal to or greater than 1.2 for table grapevine varieties: 

“Thompson seedless” for Villagra et al. [66] and Williams and Ayars [12], and “Superior Seedless” for 

Netzer et al. [64]. 

Figure 7 shows the temporal evolution of Kc of “tendone” vineyards in 2013 and 2014 together with 

the Kc of grapes derived from the FAO-56 paper. Furthermore, arrows marked on the graph indicate the 

corresponding dates of phenological stages. Regarding the 2013growing season, it is interesting to  

note that the “usual” trend of Kc is not present, probably due to the higher vegetative growth and  

canopy cover stimulated by high temperatures from bud break up to flowering (Table 2) and regular 

precipitation. As mentioned in the FAO-56 paper [16], accurate estimates for initial Kc should consider 

the frequency with which the soil surface is wetted during the initial period. Where the soil is frequently 

wet from irrigation or rain, and consequently there is a greater amount of available water, the evaporation 

from the soil surface can be considerable and the initial Kc value will be large. 
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Figure 7. Comparison of Kc (average) estimated from remote sensing data (Landsat 8) and 

Kc from the FAO-56 table. 

On the contrary, in the 2014 growing season the trend of estimated Kc value is similar to the Kc FAO 

trend, with a lower value at the beginning of the season, probably due to low temperatures up to flowering 

(Table 2), a peak from the first 10 days of July, a slight decrease in the first 10 days of August, and a 

plateau in the middle of the season. This observation may support the hypothesis that the vegetation 

growth and Kc trend, after a slow development, was stimulated by GDD accumulation that  

at veraison surmount the values of the 2013 growing season. 

It is interesting to note that the FAO-56 Kc value underestimates the local water need of “tendone” 

vineyards at all phenological stages. These results are consistent with those of Villagra et al. [66], who 

reported a Kc value higher than suggested by the FAO-56 paper for Thompson Seedless table grapes in 

Chile, in growing season 2008–2009 by using the Eddy covariance method. On the contrary,  

Er-Raki et al. [28] reported Kc values lower than those presented in the FAO-56 paper for Perlette and 

Superior table grapes in Northwest Mexico (especially for the mid-season) by using ground-based, 

remotely-sensed data. 

However, in the latter case the authors explained their results by the fact that a “Y” open-gable trellis 

system creates large areas of unshaded bare soil where significant heat fluxes were lost and were not 

available for transpiration. A possible explanation for these results may be the lack of adequate 

consideration of vegetation cover, since FAO-56 Kc values were computed for table grapes trained on a 

trellis system. Furthermore, this critique was confirmed by Williams and Ayars [12], who suggested that 

Kc and water use are linear functions of the shaded area measured beneath the canopy. 

A significant analysis and discussion of this subject was presented by Allen and Pereira [67], who 

proposed a general procedure for estimating Kc where ground cover and height vary between orchards. 

In this study the Kc values for the initial, mid-season, and end-season periods were set to 0.30, 1.10, and 

0.85 for a ground cover of 70%, 0.30, 0.95, and 0.75 for a ground cover of 50%, and 0.30, 0.60, and 0.5 

for a ground cover of 25%. 
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Overall, these findings suggest that Kc in different crop management systems (e.g., trellising and 

canopy structure) and agro-climatic locations can vary widely and should be accurately estimated for 

better irrigation scheduling instead of using the fixed values reported in the literature [12]. 

Table 5. Kc values of table grapes reported in bibliography. 

Kc 
Trellis System Cultivar Season Country References 

Initial Middle End 

– ~1 – Tendone Italia 1997 Italy Rana et al. [36] 

0.2 0.9–1.3 – Head training system Thompson seedless 1998–1999 California Williams and Ayars [12] 

0.48 0.68 0.68 Tendone – – Italy Lamaddalena and Caliandro [65] 

0.4 1–1.2 1.3 Open-gable Superior seedless 2004–2005 Israel Netzer et al. [64] 

0.22 0.45 0.3 Open-gable 
Perlette & Superior 

seedless 
2005–2006 Mexico Er-Raki et al. [28] 

– 0.79 0.98 Open-gable* Red Globe 2007–2008 Spain Moratiel and Martinez-Cob [68] 

0.54 0.65 0.9 Overhead trellis system* Crimson seedless 2008–2009 Spain 
Suvocarev et al. [22] 

0.47 0.60 – Overhead trellis system* Autumn Royal 2009 Spain 

0.2–0.4 ~0.9–1.2 1.2 Overhead trellis system Thompson seedless 2008–2010 Chile Villagra et al. [66] 

Note: * Vineyard covered with a net made of a thread warp of high-density polyethylene. 

3.3. Temporal Evolution of Evapotranspiration 

Figure 8 provides an overview of the cumulated ETp and 10-day sums trend line during the period 

between 1 June and 30 September for both growing seasons. In addition, arrows marked on the graph 

indicate the dates of the main phenological stages. The average ETp value ranged from 294 mm in 2013 

to 299 mm in 2014. These results can be compared with those obtained by Texeira et al. [2], who reported 

a mean value ETp of 372 mm, although, as highlighted by Netzer et al. [64], the comparison between 

seasonal ETp in different regions and different practices can be misleading and might lead to 

misinterpretations of the results and incorrect inferences. 

Figure 8 is quite revealing and interesting in several ways, showing differences especially at mid-

season. Firstly, the cumulative values for the year 2013 are generally higher than those in year 2014 until 

the first 10 days of August, while the values have similar trends up to the end of September. As stated 

previously when referring to the Kc trend lines, these differences can be explained by several factors. 

First, we need to consider that the 2013 growing season was initially warmer, with enhanced canopy 

cover and evaporative demand, and consequently improved daily transpiration. Secondly, the 10-day 

sums of ETp for both seasons show a trend in line with high atmospheric demand during the summer, 

but with some peaks and decreasing values linked to rainfall events. For example, for both growing 

seasons we register the peaks of 10-day sums of ETp at the days of veraison, but shifted by about 10 

days. Furthermore, the peak on the last 20 days of August 2014 might have been influenced by a drought 

month, while decreasing ETp values experienced in August 2013 could be attributed to some rain events 

(about 52 mm in the last 12 days of the month), more abundant and larger than in 2014 (see Figures 4 

and 5), that resulted in cloudy and cool conditions. Although mean monthly air temperature was similar 

for both months (24.4 °C for 2013 and 24.6 °C for 2014), this area is very windy and evapotranspiration 

trends may also be affected by the wind. Finally, the equal values of ETp registered toward the end of 

the season and in correspondence with the harvest can be attributed to reduced evapotranspiration 
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demand and leaf senescence [69]. On the other hand, with regard to the soil water status, it is important 

to bear in mind that table grape vineyards are constantly irrigated by grape growers to maintain adequate 

soil water availability to the root-zone. 

 

Figure 8. Cumulative values and trend line evolution of ETp. 

Furthermore, crop water requirements calculated during the period June–September as the difference 

between ETp and water resulting from precipitation (114.4 mm for 2013 and 164.8 mm for 2014) show 

an average irrigation requirement of 179.5 mm for 2013 and 134.3 mm for 2014, respectively.  

The amount of water commonly applied by using drip irrigation in this study area, collected through 

semi-structured questionnaires engaging grape growers in the 2013season, was approximately 250 mm, 

close to our ETp values. Our results indicate that farmers tend to over-irrigate the crop, due to the 

unavailability of supporting information about climate and canopy development. Interestingly, a recent 

study in the same study area shows the possibility of reducing crop water requirements by applying 

seasonal water volumes, equal to 80% of ETp at the end of irrigation season (about 220–230 mm, in line 

with our values), with the best balance among grape yield, berry quality, and water use [9]. In addition, 

visual estimations of time-series in summer 2014 for the LAI, NDVI, Kc, and ETp are shown in  

Figure 9. This figure indicates that the ETp and Kc trend patterns are strictly related with VI at  

the time of the satellite overpass, but from one date to another are strongly influenced by specific  

weather conditions and soil moisture. These data show the importance of local climate conditions for 

water management and irrigation scheduling of the table grapes, and confirm the requirement of  

site-specific Kc, considering the remarkable seasonality in precipitation during the growing seasons in 

the study area. Further studies need to be carried out in order to better validate the relation among LAI, 

Kc, and soil water status. 
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Figure 9. An example of time-series maps of LAI, NDVI, Kc, and ETp for the vineyard study 

field represented in Figure 2. 

4. Conclusions 

This study evaluates the crop coefficients and evapotranspiration of table grapes trained on a 

“tendone” system under conditions of unlimited soil water availability, pest and disease-free crop, etc. 

The method is based on the FAO-56 model by using appropriate values of canopy variables such as the 

surface albedo and the LAI derived by means of multispectral satellite data, based on existing validated 

methodologies. The results for the study area in the Apulia region (Italy) indicate that the values of Kc 

are site- and year-specific and depend on local ET0 rates, rainfall frequency, cumulative thermal 

requirements, and effective canopy cover. For instance, during the 2013 growing season the Kc value 

moves from a minimum of 0.43 to a maximum of 1.23 at harvest, while in 2014 the Kc moves from a 

minimum of 0.14 to a maximum of 1.42. The obtained results showed good consistency compared with 

values retrieved from the international literature regarding table grapes in Mediterranean environments, 

although they should be used with some caution because the calculated ETp are not the actual values but 

the maximum values in absence of stress. The resulting crop water requirements are lower than the actual 

average irrigation volumes applied by farmers, thus suggesting the possibility of improving the water 

use efficiency of these crops by adopting the proposed methodology. The methodology and results of 

this research confirm the usefulness of E.O. data in supporting irrigation scheduling and agricultural 
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water management. Furthermore, the approach described in this paper also constitutes the basis for  

a potential irrigation advisory service using E.O. data as an operational service. 
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LAI Leaf area index [m2·m−2] (2.88 for reference crop) 

LAI* Leaf area index [m2·m−2] (estimated from satellite) 

MODTRAN MODerate resolution atmospheric TRANsmission 

NDVI Normalized difference vegetation index [dimensionless] 

OLI Operational Land Imager 

WDVI Weighted Difference Vegetation Index [dimensionless] 

P Actual precipitation [cm·d−1] 

Pn Net precipitation [cm·d−1] 

r Albedo [dimensionless] (0.23 for reference crop) 

r* Albedo [dimensionless] (estimated from satellite) 
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R2 Coefficient of determination 

RH Air humidity [%] 

RMSE Root-mean-square error [dimensionless] 

rsNIR Spectral reflectance in the near-nfrared channel 

rsRED Spectral reflectance in the red channel 

S Solar radiation 

SAVI Soil Adjusted Vegetation Index [dimensionless] 

SEL Standard error of the LAI 

SIMODIS SImulation and Management of On-Demand Irrigation System 

Ta Air temperature [°C] 

U Wind speed [m·s−1] 

VI Vegetation Index [dimensionless] 

a Crop saturation per unit foliage area [cm·d−1] 

α* Extinction coefficient [dimensionless] 
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