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The increase in the use of nanoparticles, as a promising tool for drug delivery or as a food additive, raises ques-
tions about their interaction with biological systems, especially in terms of evoked responses. In this work, we
evaluated the kinetics of uptake of 44 nm (NP44) and 100 nm (NP100) unmodified polystyrene nanoparticles
(PS-NPs) in gastric adenocarcinoma (AGS) cells, as well as the endocytic mechanism involved, and the effect
on cell viability and gene expression of genes involved in cell cycle regulation and inflammation processes. We
showed that NP44 accumulate rapidly and more efficiently in the cytoplasm of AGS compared to NP100; both
PS-NPs showed an energy dependent mechanism of internalization and a clathrin-mediated endocytosis path-
way. Dose response treatments revealed a non-linear curve. PS-NPs also affected cell viability, inflammatory
gene expression and cell morphology. NP44 strongly induced an up-regulation of IL-6 and IL-8 genes, two of
the most important cytokines involved in gastric pathologies. Our study suggests that parameters such as time,
size and concentration of NPsmust be taken carefully into consideration during the development of drug delivery
systems based on NPs and for the management of nanoparticles associated risk factors.

© 2015 Elsevier Ltd. All rights reserved.
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1. Introduction

Nanoparticles (NPs) are defined as materials with dimension range
between1 and 100nm(Beer et al., 2012). They are being used in several
application fields, such as electronic, cosmetic, food industry and medi-
cine (Dekkers et al., 2011; Osmond and McCall, 2010). In medicine, in
particular, they are a promising tool both in diagnosis and therapy
(Cuenca et al., 2006; Schlorf et al., 2011; Soriano et al., 2013; Wickline
and Lanza, 2003). NPs can be engineered with proteins, gene segments
or siRNA encapsulated inside them or attached to their surface (Cai and
Xu, 2011; Ferrari, 2005; Mora-Huertas et al., 2010; Panyam and
Labhasetwara, 2003). On the other side, NPs can be accumulated in
the environment and may be responsible for human pathologies when
inhaled or ingested (Boczkowski and Hoet, 2010; Boraschi et al., 2012;
Shang et al., 2014). Thus, it's clear that the first step for the use of NPs
based systems is to characterize their interaction with cells, especially
in terms of toxicity and internalization pathways.
ene nanoparticles; EIPA, 5-(N-
polystyrene nanoparticles (PS-
e nanoparticles (PS-NPs); MTT,
mide test; IL, interleukins.
4 Naples, Italy.
Molecules enter in cells through different mechanisms of internali-
zation: the most characterized are clathrin-dependent and clathrin in-
dependent pathways, such as macropinocytosis and phagocytosis
(Bareford and Swaan, 2007). Briefly, in clathrin-mediated endocytosis,
cells internalize molecules by the invagination of plasma membrane
under the control of the small GTP-ase dynamin that is required
for the budding of vesicles inside the cell. Typical size range of clathrin
coated-pits is reported to be 60–200 nm (Rejman et al., 2004;
Kirchhausen et al., 2008). Phagocytosis is mediated by Rho family
GTP-ases that trigger the polymerization of actin at the site of ingestion
to formmembrane invagination that then culminate in the formation of
phagolysosome. Although this process is typical of some cells, it is well
known that also non-specialized cells in rare situations can activate
phagocytosis (Gagnon et al., 2002). Macropinocytosis involves the in-
ternalization of various area of plasma membrane that lead to the for-
mation of vesicle of approximately 150 nm of size (dos Santos et al.,
2011). This invagination depends, in the same way of phagocytosis, by
actin rearrangements, triggered by Rho-family GTP-ase (Mercer and
Helenius, 2009).

In our studyweused polystyrene nanoparticles (PS-NPs), that repre-
sent an interesting model to study interactions between NPs and cells
for some practical reasons: first, they are commercially available and
can be obtained in core-labeled fluorescent form allowing localization
and tracking in living cells (Varela et al., 2012); second, they can be syn-
thesized in a wide range of sizes or easily modified on their surface
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(Lunov et al., 2011); third, they have a high drug loading capacity and a
colloidal stability in biological media (Holzapfel et al., 2005;
Musyanovych et al., 2007). For these characteristics, there are many
studies on the interactions between PS-NPs and cell lines; these studies
were performed in the presence or in the absence of specific pharmaco-
logical inhibitors of endocytosis pathways. PS-NPs have been reported
to enter in different cell types such as hepatocytes (Johnston et al.,
2010), macrophages (Xia et al., 2008), lung cells (Geys et al., 2006)
and glial astrocytoma cells (dos Santos et al., 2011). Results from these
studies showed that parameters that govern the in vitro mechanism of
internalization and the uptake rates of PS-NPs are the cell type, NPs
shape and size, aswell as the presence or absence of serum in the cellme-
dium (Guarnieri et al., 2011; Smith et al., 2012). In this paper, we investi-
gated the toxicity and the cellular uptake of fluorescent labeled PS-NPs of
two representative sizes (44 nmand100 nm) in human gastric adenocar-
cinoma (AGS) cell line: we chose human gastric cells since it has been ac-
cepted that for humans one of the primary route of contactwithNPs is the
ingestion of contaminated food, such as plant derivates (Nowack and
Bucheli, 2007) and that huge amounts of PS-NPs reach, through the
food chain, fish (Cedervall et al., 2012) with severe consequences on
their metabolism and behavior (Mattsson et al., 2014), thus making con-
ceivable the potential contact with human tissues through the alimenta-
tion. Both clathrin-mediated and caveolin-mediated endocytosis were
studied using the dynamin inhibitor dynasore (Macia et al., 2006) while
for clathrin independent pathways the selective Na+/H+ antiporter in-
hibitor 5-(N-ethyl-N-isopropyl) amiloride (EIPA) was used (Lagana
et al., 2000). We demonstrated the efficiency of the internalization pro-
cess, the amount of PS-NP uptake, internal cluster arrangement, the effect
on cell viability and changing of gene expression of some genes involved
in cell cycle and inflammation responses.

2. Materials and methods

2.1. Cell culture

Human gastric adenocarcinoma epithelial cells (AGS, American Type
Culture Collection CRL1739, Manassan, VA) were grown in Dulbecco's
Modified Eagle's medium (DMEM) (LONZA), supplemented with 10%
fetal bovine serum (FBS), 2 mm L-glutamine and antibiotics (100 U/ml
penicillin/streptomycin, 10 μg/ml gentamicin) in a humidified incubator
at 37 °C and 5% CO2. When confluent, the cell line was detached enzy-
matically with trypsin-ethylenediamine tetra-acetic acid (Trypsin–
EDTA) and subcultured into a new cell culture flask. The medium was
replaced every 2 days. Cells were used for experiments between pas-
sages 15–25.

2.2. Nanoparticle characterization and chemicals

100 nm rhodamine PS-NPs (NP100) and 44 nm fluorescein isothio-
cyanate PS-NPs (NP44) unmodified polystyrene nanoparticles (PS-
NPs) were purchased from Duke scientific corporation (Palo Alto, CA,
USA) and used without further modifications (Table 1). Dynamic light
scattering (DLS), made with a Zetasizer Nano-ZS (Malvern Instruments,
Worcestershire, UK), was performed to measure PS-NPs size
Table 1
Chemical features of polystyrene nanoparticles (PS-NPs).

NPs Composition Concentration Contents Diameter
(metric)
mean

Diameter
(metric)
nominal

PS-NPs44 nm Polystyrene 1% solids Dyed polystyrene
microspheres in
water

0.04 μm 0.04 μm

PS-NPs 100 nm Polystyrene 1% solids Dyed polystyrene
microspheres in
water

0.10 μm 0.10 μm
distribution, z-potential and polydispersity index (PdI) which is the
value that indicates whether the distribution in the size of NP is more
or less homogeneous. PdI values less than 0.2 indicate homogeneous
distribution of PS-NPs in the solution. Measures were conducted at
25 °C and 37 °C, without sonication, using 10 μg/ml PS-NPs in DMEM
or in H2O. The nanoparticleswere suspended inDMEMat concentration
of 5 mg/ml and after 1 h were diluted to 10 μg/ml for measurement in
the ZetaSizer (Fröhlichet al., 2012).

Determination of size and z-potential was performed in triplicate
and every value represents the mean of five measures. NP dispersions
were prepared by diluting the concentrated stock solutions into the
serum-free medium used for cell culture, at room temperature, with
or without inhibitor drugs, immediately prior to the experiments on
cells, with an identical time delay between diluting and introducing to
the cells for all experiments. The medium was kept at room tempera-
ture and not pre-warmed to 37 °C to ensure better NP dispersions.
Before sampling, NPs were vigorously mixed by vortexing. For
inhibition studies two different drugs were used in the following
final concentration: dynasore (25.8 μg/ml) for clathrin-dependent path-
ways and 5-(N-ethyl-N-isopropyl) amiloride (EIPA) (30 μg/ml) for
macropinocytosis/phagocytosis (both from Sigma). Concentration
used for inhibitor drugs refers to the work of Daunsend et al. (2008)
for HeLa cells. All experiments were performed in the dark. To assess
the efficacy of inhibitor drugs, transferrin and dextranwere used as pos-
itive control, for clathrin dependent and independent pathways, respec-
tively (data not showed).

2.3. Fluorescence microscopy

For fluorescence microscopy 5 × 104 AGS cells were allowed to at-
tach in 4-well chamber slide overnight. The following day, cellswere in-
cubated with 10 μg/ml nanoparticle dispersions in serum-free medium
(1 h at 37 °C). After the incubation time, cells were rinsed twice with
PBS, in order to eliminate non-internalized PS-NPs and then fixed for
5 min with 4% paraformaldehyde in PBS. Cell nuclei were counter-
stained with Höechst 33258 (1 μg/ml). Inhibition studies were assessed
for 1 h after pre-treatment for 30 min with dynasore and EIPA. Fluores-
cent images were taken on an Axioskop (Carl Zeiss) epi-fluorescence
microscope using a 40× (NA = 0.75) and 100× oil immersed (NA =
1.3) objectives. Axiocam MRc5 and the acquisition software Axiovision
4.7 (Carl Zeiss) were used to capture the images in three different chan-
nels: Rhodamine for NP100 (ex: 580 nm; em: 605 nm), FITC for NP44
(ex: 488 nm; em: 535 nm) and Höechst 33258 for nuclei (ex: 350 nm;
em: 461 nm). Three independent experiments were performed for
each experimental condition and different fields were randomly chosen
for data analysis.

2.4. Spectrofluorimetric assays

To evaluate the ability to internalize PS-NPs both dose and
time course were evaluated. The time course was performed using
1 × 105 cells/well seeded in white bottom 96 multiwell. At 24 h post-
seeding, cells were incubated with PS-NPs at the final concentration of
10 μg/ml in DMEM serum free for different times (1 min, 10 min,
Dye type Particle density particle size Uniformity Refractive index

Firefli™ fluorescent
green (468/508 nm)

1.05 g/cm3 0.04 μm b15% 1.59 at 589 nm
(25 °C)

Firefli™ fluorescent
red (542/612 nm)

1.05 g/cm3 0.10 μm b10% 1.59 at 589 nm
(25 °C)
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20 min, 30 min, 60 min). For the 4 °C experiments, cells were put on ice
for 15 min before adding PS-NPs. For inhibition studies, AGS cells were
pre-treated with dynasore and EIPA for 30 min and inhibition was per-
formed for a period of 1 h. After the incubation period, cells were rinsed
twicewith PBS for 5 min and then lysed with 200 μl/well of 1% Triton X-
100 (Xiao et al., 2011) in order to release internalized nanoparticles. The
dose course was performed seeding 1 × 105 cell/wells and adding 2, 5,
10, 20 and 30 μg/ml of each kind of PS-NPs. After 1 h supernatants
were removed, cells washed three times with PBS and then 1% Triton
X-100 used for cell lyses. Known amounts of PS-NPs were used to
measure the maximum fluorescence and then used to express the fluo-
rescence of samples as percentage of the corresponding amount. Fluo-
rescence intensity was measured with a Tecan Infinite 200 microplate
reader (Tecan) at excitation/emission wavelengths of 580/605 nm for
NP100 and 485/535 nm for NP44. Calibration lines (data not showed)
for both nanoparticles were performed in order to calculate the exact
concentration of internalized nanoparticles. Spectrofluorimetric assays
were performed in triplicate for each incubation time.

2.5. Image analysis of PS-NP distribution

PS-NPs detection for intracellular distribution was evaluated using
100×-oil immersed Plan-Neofluar objective with NA = 1.3 (Zeiss)
mounted on Z axis piezo stage Nano-F200 controlled by Nano-Drive
controller (Mad City Labs); images were acquired by Axiocam MRc5 at
resolution of 2584 × 1936 (binning 1 × 1). The point spread function
(PSF), calculated bymeasuring the FWHMof the profile of 100 nm fluo-
rescent beads at the end of revelation path was of 240 nm in lateral res-
olution. To permit the evaluation of either single or aggregates of PS-NPs
within AGS cells, images were acquired as z-stack and deconvolved (15
iterations) with the plug-in Deconvolution lab of ImageJ 1.48 (Vonesch
and Unser, 2008); then the difference of Gaussian method was applied
on deconvolved images, by the appropriate GDSC ImageJ plugin
(http://www.sussex.ac.uk/gdsc/intranet/microscopy/imagej/toolsets).
The σ1 and σ2 radius values applied were 5 and 1, respectively.
Binarized spots allowed the application of the analyze particle plug-in
to detect PS-NP aggregates inside cells (visualized as vertical lines
along the z-axis in the 3D inserts of images) with the following param-
eter set: circularity ranging between 0.7 to 1.00 (1.00 = perfect circle),
single pixel square size of at least of 1141 nm2, and linear pixel size of
34 nm; this latter was within the appropriate right (100 nm ×
100 nm) Nyquist sampling needed, calculated using the Nyquist Calcu-
lator (SVI, http://www.svi.nl/NyquistCalculator). The area of a single
NP44 was approximately of 1520.53 nm2 while NP100 of 7853.98 nm2

hence both larger than the single pixel area. The distribution of the
total number of NPs/μm2 and the mean number of NPs/μm2 aggregates
inside cells was then calculated.

2.6. Morphological investigation

AGS cells were plated in 4-chamber slides and incubated for 24 h.
Then PS-NPs samples with a final concentration of 10 μg/ml were
Table 2
Size, zeta potential values and PdI (polydispersity index) of 44 nm (NP44) and 100 nm (NP10

PS-NPs Medium
Temp
°C

Size
[nm]

Size
[SD]

Size ratio
[DMEM/wat

NP 44 nm

H2O 25
49.04 ± 0.5789a 1.003

0.951
DMEM 46.65 ± 0.4495a 0.7785
H2O 37

60.64 ± 0.8398a 1.455
0.899

DMEM 54.55 ± 0.8624a 1.494

NP 100 nm

H2O 25
76.31 ± 0.6340a 1.098

1.067
DMEM 81.42 ± 0.332a 0.575
H2O 37

81.47 ± 0.2949a 0.5108
1.070

DMEM 87.23 ± 0.214a 0.3707

SD: standard deviation a) Mean value ± SE, n = 3.
added in the culturemedium. Cells cultured in normal mediumwithout
PS-NPs were used as control. After 1 h, cells were washed twice
with PBS and then soaked in methanol containing 1 μg/mL Höechst at
37 °C for 15 min. The cell morphology was observed under an epi-
fluorescent microscope Axioskop (Carl Zeiss) and the ratio nucleus/
cytoplasm was evaluated by ImageJ software 1.48.

2.7. Cell viability assay

The effects of nanoparticles on AGS viability were evaluated using
the 3-[4,5-dimethylthiazol-2-yl]-3,5 diphenyltetrazolium bromide
(MTT) test (Cayman Chemicals). Cells were seeded in 200 μl of growth
medium (1 × 105 cells/well) in 96-well plates and pre-incubated for
24 h to recover. Then, 100 μl of freshly prepared nanoparticle disper-
sions in DMEMwas added immediately after dilution to an appropriate
concentration (10 μg/ml, 2 μg/ml, 1 μg/ml). After 24 h of incubation,
10 μl of a MTT solution was added to each well. After 4 h of 37 °C incu-
bation, the culture mediumwas gently aspirated and replaced by 100 μl
of Crystal dissolving solution in order to dissolve the formazan crystals.
The absorbance of the solubilized dye, which correlates with the num-
ber of living cells, was measured with a microplate reader at 570 nm.
The test was performed in triplicate.

2.8. RNA extraction, reverse transcription and real time PCR

Expression levels ofmRNA of pro-inflammatory cytokines and genes
of proliferation were analyzed using real-time PCR. Total RNA from
control AGS and treated for 1 h with NP44 and NP100 (10 μg/ml), was
extracted using the PureLink® RNA Mini Kit (Ambion, Life Technolo-
gies). Contaminating genomic DNA was removed by treatment with
the TURBO DNA-free™ Kit (Ambion, Life Technologies) and the total
amount of RNA was quantified with a NanoDrop spectrophotometer.
cDNAs were synthesized from 1 μg RNA using the High Capacity cDNA
Reverse Transcriptase (Life Technologies) and quantitative PCR was
performed by using the 7500 Real-Time PCR System and SYBR® Select
Master Mix 2X assay (Applied Biosystem, Courtaboeuf, France). All
primers used were designed according to the sequences published on
GenBank using Primer Express software version 3.0 (Table 3). The
amount of target cDNA was calculated by comparative threshold (Ct)
method and expressed by means of the 2−ΔΔCt method (Livak and
Schmittgen, 2012) using the hypoxanthine ribosyltransferase (HPRT1)
as an internal control.

2.9. Statistical analysis

Statistic analysis was performed by Graph Pad Prism 5 software.
Data are expressed as mean values ± SEM (±SD for DLS) for the indi-
cated number of independent determinations. The statistical signifi-
cance was calculated by the Student's t-test for time-response
experiments. For the MTT assay, spectrofluorimetric endocytosis and
real time PCR analysis was performed the one way ANOVA with
Bonferroni's multiple comparison test and differences were considered
0) PS-NPs.

er]
Z-potential
[mV]

Z-potential
[SD]

PdI
PdI
[SD]

−35.87 ± 0.3480a 0.6028 0.1060 ± 0.01097a 0.0190
−40.5 ± 0.9539a 1.652 0.1333 ± 0.02282a 0.03953
−24.13 ± 0.7219a 1.250 0.3047 ± 0.02325a 0.04028
−37.57 ± 0.4631a 0.8021 0.2230 ± 0.02730a 0.04729
−36.33 ± 0.2963a 0.5132 0.1850 ± 0.0050a 0.008660
−38.47 ± 0.0333a 0.005773 0.1657 ± 0.006692a 0.01159
−36.23 ± 0.8667a 1.501 0.1567 ± 0.003180a 0.005508
−34.97 ± 0.6173a 1.069 0.1853 ± 0.00441a 0.007638

http://www.sussex.ac.uk/gdsc/intranet/microscopy/imagej/toolsets
http://www.svi.nl/NyquistCalculator


Table 3
Primers used in qPCR.

Gene 5′-Forward-3′ 5′-Reverse-3′

c-Myc AGGGTCAAGTTGGACAGTGTCA TGGTGCATTTTCGGTTGTTG
ERK-1 CGCGTGGCCATCAAGAAG GCGCTGGCAGTAGGTCTGA
Ki67 CCCGTGGGAGACGTGGTA TTCCCGTGACGCTTCCA
CCNE1 GATGACCGGGTTTACCCAAA CCTCTGGATGGTGCAATAATCC
CCND1 CGTGGCCTCTAAGATGAAGGA CGGTGTAGATGCACAGCTTCTC
p38 CACCAGACCTACTGCCAGAGAA TCTCATGTCTGAAGCGCAGTAAG
p53 TCTGTCCCTTCCCAGAAAACC CAAGAAGCCCAGACGGAAAC
IL8 CTGGCCGTGGCTCTCTTG CTTGGCAAAACTGCACCTTCA
IL6 GCTGCAGGCACAGAACCA GCTGCGCAGAATGAGATGAG
IL1-β ACGATGCACCTGTACGATCACT CACCAAGCTTTTTTGCTGTGAGT
TGFβ1 GCCCACTGCTCCTGTGACA CCGGTAGTGAACCCGTTGAT
NF-kβ1 AAGTGCAGAGGAAACGTCAGAAG CTACCACCGCCGAAACTATCC
HPTR1 GACTTTGCTTTCCTTGGTCAGGCA ACAATCCGCCCAAAGGGAACTGA
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statistically significant when the P value was at least b0.05. For the
distribution of the total number of NPs/μm2 and the mean number of
NPs/μm2 aggregates inside cells the one way ANOVA Kruskal–Wallis
Fig. 1.Uptake of PS-NPs of 44 nm(NP44) by AGS cells. NP44 are labeledwith fluorescein isothio
treatedwith dynasore (b) or EIPA (c) for 30min at 37 °C. Following pre-treatmentwith inhibito
copy. Nuclei were stainedwith Höechst. The inserts on the right show the intracellular distribut
test was performed and P value was considered significant when
b0.05. All the experiments were performed in triplicate and repeated
at least three times.
3. Results

3.1. PS-NPs characterization

The size, zeta potential and PdI of PS-NPs, after 1 h of incubationwith
DMEM or H2O, were probed by DLS.

Table 2 shows that NP44, inwater or DMEMhave similar dimension;
its diameter is slightly higher at 37 °C. NP100 (as declared by the
supplier) show, by DLS, a real size of about 80 nm in water and in
DMEM for both temperatures tested. The values of PdI and zeta-
potential indicate that PS-NPs do not form aggregates in both solutions.
The only exception that we observed is relatively to NP44 in water at
37 °C that show a PdI value of 0.3 and a z-potential value of about
−24.13 mV, indicating a low level of aggregation.
cyanate. AGS cells were grown in chamber slides, incubated 1 hwith NP44 alone (a) or pre-
r drugs cells were incubated with NP44 for 1 h and analyzedwith epifluorescencemicros-
ion of single ormultiple aggregates of PS-NPs after deconvolution process. Scale bar 10 μm.
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3.2. Fluorescence microscopy

PS-NPs uptake, with or without inhibitor drugs, was monitored by
epifluorescence microscopy (Figs. 1; 2). Experiments performed after
1 h at 37 °C of incubation, without inhibitors, revealed that NP44 and
NP100 are able to accumulate in the cytoplasm, without reaching the
nucleus (Figs. 1a; 2a); nuclei appeared without any nanoparticles-
associated signal. Dynasore and EIPA were used to investigate the
endocytic pathways involved in the PS-NPs internalization. The inhibi-
tion studies were performed only for 1 h because it has been reported
that blocking one route of uptake for longer time might activate other
pathways of endocytosis (Conner and Schmid, 2003; Harush-Frenkel
et al., 2007). AGS treated with 25.9 μg/ml of dynasore showed fluores-
cent signal both for NP44 and NP100 (Figs. 1b; 2b); similarly, PS-NPs
were found in the cytoplasm of cells treated with EIPA (30 μg/ml)
(Figs. 1c; 2c).
Fig. 2.Uptake of PS-NPs of 100 nm (NP100) by AGS cells. NP100 are labeled with rhodamine. A
with dynasore (b) or EIPA (c) for 30 min at 37 °C. Following pre-treatment with inhibitor drug
Nuclei were stained with Höechst. The inserts on the right show the intracellular distribution o
3.3. Spectrofluorimetric assays

We performed a spectrofluorimetric analyses in order to evaluate
the efficiency of nanoparticles internalization by AGS. Overall the up-
take was less than 15% of the PS-NPs administered (Fig. 3). After the
cell lysis, intensity of fluorescence was indicative of PS-NPs uptake. As
shown in Fig. 3 we observed a low rate of internalization for NP100, de-
spite incubation with 10 μg/ml, with a maximum value reached after
30 min of incubation; NPs accumulate in AGS in a time dependent-
manner; however, after 1 h, we found a slight decrease of NP100 inter-
nalization. NP44 analysis revealed a fast degree of uptake, even at short
times of incubation. The peak of cellular uptake was found after 30min,
with about 1.8 μg/ml of PS-NPs internalized. As for NP100, this value de-
creased after 1 h (Fig. 3).

Quantitative analyses were performed even at 4 °C and in the
presence of inhibitor drugs (Fig. 4); data revealed that pre-incubation
GS cells were grown in chamber slides, incubated 1 h with NP100 alone (a) or pre-treated
s cells were incubated with NP100 for 1 h and analyzed with epifluorescence microscopy.
f single or multiple aggregates of PS-NPs after deconvolution process. Scale bar 10 μm.



Fig. 3. Spectrofluorimetric analysis of PS-NPs uptake kinetics in AGS cells. NP44 are faster
and more efficiently internalized by AGS (1 min) compared to NP100. Both nanoparticles
show the highest rate of uptake after 30 min and a plateau between 30 min and 1 h of in-
cubation. The calibration curve has R2=0.995 forNP100 andR2=0.996 for NP44, respec-
tively. Values are significant for P b 0.05.
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at 4 °C strongly inhibited PS-NPs internalization, both for NP100 both
for NP44; NP100 internalizationwas affected by treatmentwith both in-
hibitor drugs; however, dynasore reduced most notably NP100 uptake
if compared with EIPA (Fig. 4b). Dynasore also reduced NP44 internali-
zation. EIPA, instead, didn't affect this uptake, with values comparable
with control group (Fig. 4a).
Fig. 4. Inhibitory studies with quantitative spectrofluorimetric analysis. Effects of
dynasore, EIPA, and 4 °C treatments on NP44 (a) and NP100 (b) uptake: the cells were
30 min pre-treated with inhibitor drugs or pre-incubated at 4 °C and then 1 h incubated
with PS-NPs. **P b 0.01, ***P b 0.001 related to control group.
The dose effect experiments showed that the uptake of NP44 was
slightly dose dependent, at least for lower concentrations, with an in-
verse proportionality (Fig. 5a). The percentage of uptake for NP100
was inverse to the concentrationwith thehighest amounts at the lowest
administered dose (Fig. 5b). For both PS-NPs the dose experiments con-
firmed that the efficiency of uptake was about 10–30% but NP100
showed lower uptake efficiency (Fig. 5).
3.4. Image analysis of PS-NPs distribution

Image analyses showed that neither dynasore nor EIPA were able to
block NP44 internalization after 1 h of exposure to NP44 (Fig. 6a; c); al-
though a decrease was observed when dynasore or EIPA was used, the
total number of NP44/μm2 and the mean number of NP44/μm2 aggre-
gates inside cells did not significantly vary (Fig. 6a; c). Conversely,
NP100 internalization was blocked by dynasore of about 65% after 1 h
of exposure (Fig. 6b; d). Surprisingly, EIPA treatment increased the sin-
gle NP100 internalization during intracellular PS-NPs cluster aggrega-
tion; in particular at least doubling the internalization of single NP100
and about six times the internalization of NP100 pairs (Fig. 6b); the
mean number of NP100 internalized increased by about 3.6 times the
control (Fig. 6d). Furthermore the cluster formation was more promi-
nent in the NP44 treated cells compared to NP100 treated cells
(Fig. 6a; b), where PS-NPs formed aggregates of maximum three PS-
NPs when EIPA was used (Fig. 6b).
Fig. 5.Quantitative spectrofluorimetric assay. Concentration response of PS-NPs treatment
on AGS cells, after 1 h treatment with NP44 (a) and NP100 (b). The uptake is not depen-
dent by the administrated concentration of PS-NPs.



Fig. 6. Image analysis for intracellular detection of PS-NPs after endocytosis or macropinocytosis/phagocytosis inhibition, NPs internalization on AGS cells (n = 100 cells for each exper-
imental class). Neither dynasore (+D)nor EIPA (+E) are able to significantly blockNP44 internalization after 1 h of exposure toNP44 as reportedby the total number of NP44/μm2and the
mean number of NP44/μm2 clusters inside cells which did not vary significantly (a, c). NP100 internalization was blocked by dynasore of about 65% after 1 h of exposure (*P b 0.05) (b).
EIPA treatment increases theNP100 intracytoplasmic accumulation, in particular at least doubling the internalization of singleNP100 and about six times the internalization ofNP100 pairs
(*P b 0.05) (b); the mean number of NP100 internalized increases of about 3.6 times the control (*P b 0.05) (d).
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3.5. Morphological investigation

The potential toxic effect of PS-NPs may also be indicated by mor-
phological alteration of the cells. Hencewe investigated themorphology
of cells after exposure to PS-NPs using the fluorescence microscope and
Höechst staining.

After NPs exposure for 1 h, there was a morphological change in the
nucleus/cytoplasm area ratio, due mainly to an enlargement of cyto-
plasm in the PS-NPs treated cells (Fig. 7). No differences in nucleusmor-
phology were observed (data not showed).

3.6. Cell viability assay

NP100 and NP44 were tested for the possibility to alter the viability
of AGS. To perform the experiments, increasing concentrations of PS-
NPs were added to AGS cells and cell viability after 24 h was measured
using the MTT assay. Results from both PS-NPs were similar for lowest
concentrations (1 μg/ml and 2 μg/ml) and showed no effects (Fig. 8a;
b). However, concentration of 10 μg/ml affected cell viability; for
NP100 viability was significantly stimulated (Fig. 8b) while NP44 de-
creased the number of viable cells (Fig. 8a).

3.7. Real time PCR

Quantitative RT-PCR for AGS control and treated for 1 h with each
class of PS-NPs (NP44 and NP100) revealed that the evaluated
transcripts were expressed in all three experimental classes. The
mRNA levels were normalized against the levels of hypoxanthine
ribosyltransferase (HPRT1) housekeeping gene. For the genes involved
in proliferation pathways ERK1, CCNE1 (coding for cyclin E), CCND1
(coding for cyclin D) no significant variation of the levels of their respec-
tive transcriptswas observed. However, a down-regulation of Ki67 gene
expression was observed in AGS treated with both types of PS-NPs,
while only NP44 weakly increased c-Myc mRNA levels. Both sizes of
nanoparticles weakly changed the levels of NF-kβ1 and TGF1β mRNA.
Pro-inflammatory cytokine genes IL1β, IL6 and IL8 were up-regulated
by both PS-NPs. In particular, increasing in mRNA levels for IL6 and IL8
was about 7 fold higher than control in NP44 treated cells (Fig. 9).

4. Discussion

Nanoparticles are receivingmore and more attention from scientific
community due to their wide potential, especially in nanomedicine,
both in diagnosis and therapy. For example, it has been suggested that
the optimal NPs diameter in molecular imaging ranging between 30
and 150 nm, thus also permitting to use them as cargoes of numerous
molecules within each nanoparticle (Debbage and Jaschke, 2008).
Moreover a number of clues suggest that PS-NPs, as product of plastic
environmental degradation, may affect the food chain, rising concerns
about food safety (Mattsson et al., 2014; Shang et al., 2014). In this per-
spective, information about their interactionswith cells, in terms of tox-
icity or cellular uptake is still controversial and far from being
elucidated. For these reasons, we decided to study the effects of PS-
NPs of two different sizes (44 nm and 100 nm) on human gastric



Fig. 7. Ratio nucleus/cytoplasm (N/C) of AGS cells. Cells were treated for 1 h with PS-NPs
alone or in combinationwith inhibitor drugs (+D: dynasore;+E: EIPA). Values are signif-
icant for **P b 0.01 and ***P b 0.001 related to control group.

Fig. 8. Cell viability assay after PS-NPs incubation. AGS cells were exposed for 24 h to dif-
ferent concentrations of NP44 (a) and NP100 (b). Cell viability was determinate by MTT
assay. At the highest concentration (10 μg/ml), NP44 and NP100 inhibited and stimulated
cell viability, respectively. *P b 0.05 related to control group (0 μg/ml).
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adenocarcinoma (AGS) cells, investigating their kinetics and pathways
of internalization, viability and gene expression. The DLS analysis con-
firms the dimensions of NP44 but these NPs show a low level of aggre-
gation at 37 °C. In contrast NP100 show a diameter of about 80 nmboth
in H2O and in DMEM. PS-NPs do not aggregate in water or in the medi-
um used in the experimental conditions both at 25 and 37 °C. Our data
suggest that both PS-NPs we used are suitable for uptake studies. The
first data is that PS-NPs are internalized by AGS, althoughwith different
kinetics and different efficiencies; NP44 quickly enter in the cytoplasm
and reach the highest amount after 30 min of incubation; in contrast,
NP100 always show a lower and slower degree of internalization; this
is consistent with the thesis that smaller size facilitates cellular PS-NPs
uptake (Debbage and Jaschke, 2008). Interestingly, both NP44 and
NP100 show saturable internalization after 1 h of treatment: we hy-
pothesize that when AGS cells become saturated by NPs, a release pro-
cess may be activated, as shown in literature (Iversen et al., 2011). It is
noteworthy that the PS-NPs uptake is slightly dose dependent for small-
er PS-NPs, with an inverse proportionality; this latter feature is accentu-
ated for larger PS-NPs. This could be due to the saturable kinetic of
PS-NPs uptake and is consistent with the time dependent profile of
their internalization, suggesting that a non-passive uptake occurs. As a
consequence, we studied the endocytic pathway of PS-NPs internaliza-
tion. Although Salvati et al. (2011) demonstrated that temperature is
not a limiting factor for PS-NPs uptake, our low temperature experi-
ments demonstrate that uptake of PS-NPs is an energy dependent pro-
cess and not a mechanism of passive translocation through the cell
membrane (i.e. simple or facilitated diffusion). This is relevant to the
human gastric cell physiology and toxicology as the gastrointestinal
tract is one of the major pathways of exposure for environmental con-
taminants of food and water and for many pharmaceuticals. NPs that
are internalized by passive transport may not show a target specificity
accumulating inside cells only on the basis of size, concentration gradi-
ent, lipid solubility and electrical charge, as other environmental con-
taminants do. This may dramatically alter the cell homeostasis, with a
maximum adsorption in the cell that may be the cause of toxicity and
deleterious effects (Kent, 1998). Hence, the absence of internalization
at 4 °C suggests that othermechanisms are involved in the PS-NPs inter-
nalization. Inhibition studies were performed for 1 h as mentioned
above, with dynasore and EIPA, in order to inhibit clathrin dependent
endocytosis and macropinocytosis/phagocytosis, respectively. The
high inhibitory effect of dynasore on PS-NPs uptake demonstrates that
PS-NPs of both sizes are internalized predominantly through the
endocytic/caveolin compartments. Conversely, the lack of inhibition of
the treatment with EIPA shows that macropinocytosis/phagocytosis is
not involved in the internalization of PS-NPs, thus confirming the
time- and dose-dependent PS-NPs uptake profile. Performing the fluo-
rescence image analysis we determined the number of PS-NPs clusters
in the fluorescent portion of the AGS cells; we showed that NP44 are ac-
cumulated in the AGS cytoplasm in higher amounts than NP100. We
also demonstrated that the accumulation of NP44 in the cytoplasm is
carried out in single or low number without any preference (maximum
6nanoparticles/cluster). ConsideringNP100, our data show that the low
amount of NP100 is internalized preferably in low number of PS-NPs for
each cluster (1–2 nanoparticle/cluster). Moreover, the treatment with
dynasore or EIPA alters the internalization pathway of both sizes of
PS-NPs, roughly confirming the bulk of spectrofluorimetry results, al-
though, surprisingly, EIPA seems to enhance the clusterization of
NP100. Notwithstanding the cause of this result remains to be establish,
thismay be speculatively explained in severalways: the size of internal-
ized PS-NPs clusters can be linked to the endocytic vesicles which are
about 200 nm large thus EIPA treatment can improve different internal-
ization processes like endocytosis; otherwise the previously reported
action of EIPA on actin filaments disarrangementmay be an explanation
(Ivanov, 2003). Thus our results confirm that clathrinmediated endocy-
tosis is the privileged endocytic pathway during internalization as



Fig. 9.Gene expression analysiswith qPCR. PS-NPs administration determines alteration of gene expression inAGS cells, as shownby logarithmic chart of qPCRexperiments. NP44 increase
the expression of the inflammatory pathway. The distance from the first circular line indicates the fold-change from the control which is normalized to 1 (Significant values: NP44:
P b 0.001 IL1β, TGFβ1, IL8, cMyc, Ki67; P b 0.01 NF-kβ1, IL6; P b 0.05 p38; NP100: P b 0.001 TGFβ1, Ki67; P b 0.01 NF-κβ1; P b 0.05 p38).
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reported in literature for other NPs of the same dimension range (Lai
et al., 2007; Rejmanet al., 2004) and in addition suggest that other path-
ways are involved. After demonstrating the cellular uptake, we investi-
gated the biological effects caused by PS-NPs in AGS cells. The
cytomorphologic investigation evidenced changes in the nucleus/cyto-
plasm ratio after PS-NPs treatment; PS-NPs treated cells appear with
engulfed and enlarged cytoplasm compared to controls, resulting in a
consistent decrease of the nucleus/cytoplasm ratio. The alteration of
the nucleus to cytoplasmic ratio is often reported as a clear signal of car-
cinoma abnormalities (Idowu and Powers, 2010) and as the effect of the
accumulation of exogenous material in the cytoplasm (Savagner and
Landes, 2005). Furthermore, during the Helicobacter pylori infection of
AGS, the spreading of cell contours had previously been reported
(Segal et al., 1999). Hence, cytomorphological features of PS-NPs-
treated AGS cells may suggest that PS-NPs can alter the phenotype of
gastric cancer cells as other in vivo tumor or inflammatory agents do.
Using different concentrations of PS-NPs we demonstrated that at
lower concentration, PS-NPs do not affect cell viability, while at the
highest concentration the cell viability is affected in a size dependent
manner; NP44 inhibit cell viability and NP 100 stimulate cell viability;
about cell viability, other studies reported size-dependent effects on
both for non-polystyrene nanoparticles and for PS-NPs (Oh et al.,
2010; Jin et al., 2008). This size-dependent opposite effect on AGS cell
viability is possibly due to the higher and faster uptake of smaller PS-
NPs which correspond to a pervasive internalization. Our data demon-
strate that not every size of PS-NPs is suitable for medical application,
suggesting that size is a basic parameter to consider for toxicology strat-
egy against cancer, with smaller size PS-NPs possibly useful in anti-
proliferative cancer treatment. Through qPCR analysis we investigated
several genes involved in inflammation and proliferation processes.
Our data revealed that in NP44 AGS treated cells pro-inflammatory cy-
tokines IL6, IL8 and IL1β genes are up-regulated, IL6 and IL8 showing
the highest fold-change in mRNA levels. IL6 and IL8, as well as IL1β
are well known pro-inflammatory cytokines involved in gastric pathol-
ogy, including gastric carcinogenesis (Kinoshita et al., 2013;Macrì et al.,
2006; Yamada et al., 2013). In literature, IL6 and IL8 are reported to be
over-expressed in H. pilori infection (Alzahrani et al., 2014; Lee et al.,
2013) and their over-expression is considered as the first step for the
development of gastric cancer, both H. pilori dependent and not
(Asfaha et al., 2013; Kido et al., 2001; Kim et al., 2003; Lee et al.,
2004). Moreover, both PS-NPs increase TGF1β mRNA levels which
evokes both pro-inflammatory and anti-inflammatory responses in gas-
tric cells (Hong et al., 2010). Thus, NP44 act as an inflammatory agent.
This response seems to be linked to an anti-proliferative effect and is
in accordance with our results of MTT assay and Ki67 and NF-kβ1
down-regulation. The induction of c-Myc does not seem to balance
this anti-proliferative effect. However, since the expression of p53
does not change and nuclear appearance is normal and not fragmented,
apoptosis may be excluded, suggesting a fast onset of a stress response.
Considering NP100, they weakly affect proliferation genes (increasing
p38 and decreasing p53 and Ki67), with a null effect on interleukins,
but produce an increase of TGF1β and a decrease of NF-kβ1. However,
NP100 increase cell viability but concomitantly Ki67 mRNA decreases
thus suggesting that the NP100 induced-metabolic activation is not as-
sociated to an increase in proliferation. This is consistent with a general
lower effect of NP100 on AGS cells compared to NP44, as showed by
their uptake profile and kinetic of internalization. In conclusion, in this
study we have shown that AGS cells internalize PS-NPs in size, concen-
tration and time-dependent manner; PS-NPs are internalized by pre-
dominantly clathrin-mediated endocytosis, although other pathways
may be involved; PS-NPs undergo a release process after 1 h of interac-
tion with cells. Moreover, when internalized, PS-NPs are able to affect
gene expression, resulting in inflammatory responses and morphologi-
cal alterations, especially when those of smaller size were used. Even if
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other studies are necessary to determine the risk factors associated to
PS-NPs uptake, our data suggest that the NPs use is a double side
story:while smaller PS-NPsmay be useful in anticancer treatment, care-
ful attention must be taken when larger NPs are chosen as cargoes for
nanomedicine, also rising concerns about their safety for human gastric
adsorption through the food chain.
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