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The polycyclic aromatic hydrocarbons (PAHs) pollution in the Sarno River and its environmental impact
on the Gulf of Naples (Tyrrhenian Sea, Central Mediterranean Sea) were estimated. The 16 PAHs identified
by the USEPA as priority pollutants and perylene were determined in the water dissolved phase (DP), sus-
pended particulate matter (SPM) and sediments. Total PAHs concentrations ranged from 23.1 to
2670.4 ng L�1 in water (sum of DP and SPM) and from 5.3 to 678.6 ng g�1 in sediment samples. Source
analysis revealed that PAHs mainly came from combustion process. Contaminant discharges of PAHs into
the sea were calculated in about 8530 g d�1 showing that this river should account as one of the main
contribution sources of PAHs to the Tyrrhenian Sea.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Defined as ‘‘the most polluted river in Europe’’, the Sarno River
originates in south-western Italy and has a watershed of about
715 km2. It flows through the Sarno flatland, is delimited in the
west by Mt. Vesuvius and in the east by the Lattari Mountains,
and reaches the sea in the Gulf of Naples (Tyrrhenian Sea), flowing
through the city of Pompei (Fig. 1). The Sarno watershed collects
water from two important effluents, the Cavaiola and Solofrana
torrents.

The Sarno flatland is one of the most fertile in Italy due to the
high quality of the soil, constituted by layers of volcanic and alluvial
origins. The high population density, the massive use of fertilisers
and pesticides in agriculture and the industrial development repre-
sent the main causes of pollution of the Sarno River (Arienzo et al.,
2001). The main agricultural activity is based on tomato production
in the San Marzano area. In terms of industrial development, Solo-
fra, a city on the Solofrana River, has a long-standing tradition in
leather tannery that currently counts about 400 productive units
and 3500 workers. The pharmaceutical industry is represented prin-
cipally by Novartis Pharma, whose plant is located at exactly 200 m
from the river mouth and covers an area of about 201,000 m2. This
plant is one of the largest facilities of Novartis Pharma and one of
the most important in the world. Another source of environmental
pollution can be attributed to urban agglomerations and their
wastewaters. Regarding the sewer system of the 39 towns of the
Sarno area basin (with a population of about 1,300,635 and an aver-
age density of 1.818 inhabitants/km2), the wastewater collection
All rights reserved.
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and treatment in the area is inadequate. Nineteen of the 39 towns
collect between 0% and 33% of the wastewater generated, 7 towns
between 34% and 66% and only 13 have a net which collects be-
tween 67% and 100% of it. However, at present the administrations
are trying to recover this heavily impacted area by means of invest-
ment policies aimed to improve the wastewater treatment systems
(De Pippo et al., 2006; Legambiente, 2001; Novartis Pharma, 2002;
ISTAT, 2007).

This study is part of a large project aimed to contribute to the
knowledge of the pollution affecting the Sarno River and its envi-
ronmental impact on the Gulf of Naples. The objective of this pro-
ject is to assess the pollution due to effluents from local industries,
agriculture and the urban impact by identifying several groups of
organic and inorganic chemical and some indicators of microbial
pollution in water and sediments. This paper reports the data on
the contamination caused by the polycyclic aromatic hydrocarbons
(PAHs) drained into the Sarno River and its environmental impact
on the Gulf of Naples (Tyrrhenian Sea, Central Mediterranean Sea).

Polycyclic aromatic hydrocarbons (PAHs) are a well known
group of environmental pollutants (Baek et al., 1991; Dominguez
et al., 2010). The evidence of their genotoxicity and carcinogenicity
for animal species is already available, and epidemiological studies
have demonstrated a correlation between PAHs exposure and can-
cer incidence for various human tissues (Brender et al., 2003;
Brody and Rudel, 2003). PAHs are produced by both natural and
anthropogenic processes and can be introduced into the environ-
ment through various routes. Anthropogenic inputs can originate
from incomplete combustion, oil spills, domestic and industrial
wastewater discharges, as well as atmospheric fallout of vehicle
exhaust and industrial stack emission. In the aquatic media, PAHs
can be degradated by photooxidation in the water surface (Guitart
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Fig. 1. Map of the study areas and sampling sites in the Sarno River and Estuary, Southern Italy (from Google earth).
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et al., 2007), and by microbial action in the water column and in
sediments (Cerniglia and Heitkamp, 1989). Thus, the assessment
of PAHs in coastal environments is of great importance as these
areas could receive considerable amounts of pollutant inputs from
land-based sources through coastal discharges, which could poten-
tially threaten the biological resources.
2. Materials and methods

2.1. Sampling points and sample collection

Considering the seasonal variations of the Sarno flow, four
intensive sampling campaigns have been conducted in the winter,
spring, summer and autumn of 2008. In each campaign four loca-
tions were sampled (near the source of the Sarno River, just before
and after the junction with Alveo Comune and at the river mouth)
in order to have a proper idea of the evolution of the contamination
along the river (Fig. 1). Also nine points in the continental shelf
around the Sarno mouth were sampled in each campaign to assess
the environmental impact of the Sarno River on the Gulf of Naples
(Fig. 1). Three points were sampled 50 m from the Sarno River
mouth, another three points 150 m away and, finally, another three
points 500 m from the river mouth.

Precleaned 2.5 L glass amber bottles were deployed closed with
a homemade device as described previously (IOC, 1984; Gómez-
Gutiérrez et al., 2006). This device consists in a stainless steel cage
holding the sampling bottle, which is submerged sealed with a
PTFE stopper that can be remotely opened at the desired sampling
depth (in this case at about 0.5 m depth). In each sampling point
2.5 L of water (one amber bottles) were collected and transported
refrigerated to the laboratory. Water samples were filtered through
a previously kiln-fired (400 �C overnight) GF/F glass fibre filter
(47 mm � 0.7 lm; Whatman, Maidstone, UK). Filters (suspended
particulate matter, SPM) were kept in the dark at �20 �C until anal-
ysis. Dissolved phase refers to the fraction of contaminants passing
through the filter. This includes the compounds that are both truly
dissolved as well as those associated with colloidal organic matter.
These filtrates were kept in the dark at 4 �C and extracted within
the same day of sampling (3–6 h from sampling).

Surface sediment (0–20 cm) samples were collected by using a
grab sampler (Van Veen Bodemhappe 2 L) and put in aluminium
containers. The sediments were transported refrigerated to the lab-
oratory and kept at �20 �C before analysis. In each sampling point
were collected 2 L of water and an adequate quantity of surface
sediment.

2.2. PAHs extraction and analyses

2.2.1. Suspended particulate phase
SPM content was determined by gravimetry, after drying the fil-

ter in an air-heated oven (55 �C until constant weight) and equili-
brated at room temperature in a desiccator. Filters were spiked
with the surrogate (10 ng of anthracene-d10, pyrene-d10 and pery-
lene-d12) and extracted three times by sonication with 10 mL of
dichloromethane-methanol (1:1) (Carlo Erba, Milano, Italy) for
15 min. The recovered extracts were combined and dried with
anhydrous sodium sulphate (Carlo Erba). Then they were concen-
trated in a rotary evaporator to 0.5 mL and solvent-exchanged to
hexane (Carlo Erba). Extract fractionation was carried out by open
column chromatography (3 g of neutral alumina Carlo Erba, deac-
tivated with 3% (w/w) Milli-Q water). Three fractions were col-
lected: fraction I with 5.5 mL of hexane (Carlo Erba), fraction II
with 6 mL of hexane:ethylacetate (9:1) (Carlo Erba) and, finally,
fraction III with 12 mL of ethylacetate (fraction III or F3). PAHs
were eluted in fraction II, while fractions I and III contained other
organic pollutants which were also determined in the samples.

2.2.2. Dissolved phase
The dissolved phase was spiked with a surrogate solution of

deuterated pyrene, anthracene and perylene in methanol achieving
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a final concentration in water of 10 ng L�1. Two litres of previously
filtered water (DP, dissolved phase) were preconcentrated by solid-
phase extraction (SPE) using a 100 mg polymeric phase cartridge
Strata XTM from Phenomenex (Torrance, CA, USA). After eluting
with 10 mL ethylacetate-hexane (1:1), the extract was rotaevapo-
rated to roughly 0.5 mL. The sample was fractionated using an alu-
mina open column chromatography as indicated above for the
particulate phase.

2.2.3. Sediment
Sediments were oven dried at 60 �C and sieved at 250 lm. Then,

5 g of sediment were spiked with the surrogate mixture (10 ng of
anthracene-d10, pyrene-d10 and peylene-d12) and extracted three
times by sonication using 15 mL of DCM/methanol (1:1) for
15 min. After centrifuging, the organic extract were concentrated
and fractionated in the same way than the water samples. The total
organic carbon (TOC) of sediment samples was determined by TOC
analyzer (TOC-VCPH, Shimadzu Corp., Japan).

2.2.4. Analytical determination of PAHs
Cleaned extracts of fractions II were analysed on a GC–MS

QP5050A Shimadzu (Kyoto, Japan) working in the electron impact
mode at 70 eV. A SPB 20 chromatographic column (20% diphenyl
80% dimethylpolysiloxane) (60 m, 0.25 mm ID and 0.25 lm of
film thickness) was used. The initial oven temperature was tem-
perature programmed at 50 �C (2 min) to 250 �C at 10 �C min�1,
holding for 30 min. The MS transfer line and ion source were kept
at 250 �C. Acquisition was carried out in the single ion monitoring
mode (SIM) using two characteristic ions for each target analyte.
Compound identification was carried out by comparing retention
times with standards and using the characteristic ions and their
ratio for each target analyte. Furthermore, for the higher concen-
trated samples, the identification of target analytes was con-
firmed in full-scan mode (m/z range from 60 to 350). The
concentration were calculated from the calibration curves for
the 17 PAHs (Dr. Ehrenstorfer GmbH, Augsburg, Germany)
(r2 > 0.98). Triphenylamine was used as internal standard to com-
pensate for the sensitivity variation of the MS detector. In each
sample the concentration of following sixteen selected PAHs
monitored by the US Environmental Protection Agency (USEPA)
as priority pollutants were measured: naphthalene (Nap), ace-
naphthalene (Acy), acenaphthene (Ace), fluorene (Flu), phenan-
threne (Phe), anthracene (An), fluoranthene (Fl), pyrene (Pyr),
benzo[a]anthracene (BaA), chrysene (Chr), benzo[b]fluoranthene
(BbF), benzo[k]fluoranthene (BkF), benzo[a]pyrene (BaP),
dibenzo[a,h]anthracene (DahA), benzo[ghi]perylene (BghiP) and
indeno[1,2,3-cd]pyrene (InD). Moreover, perylene, not included
in this list, also were monitored. Total PAHs concentration were
calculated as the sum of the concentrations of the 16 PAHs com-
pounds (

P
PAHs) selected by the USEPA as priority pollutants.
2.3. Quality assurance and quality control

The limit of detection (LOD) and limit of quantification (LOQ)
were calculated as having signal-to-noise ratios of above 3 and
10, respectively, by five replicate analyses. The surrogate aver-
aged recoveries in the dissolved phase were 88.2 ± 4.9% for
anthracene-d10, 94.6 ± 8.2% for pyrene-d10 and 97.1 ± 9.6% for
peylene-d12. In the SPM samples, recoveries were 82.8 ± 6.9% for
anthracene-d10, 93.1 ± 9.7% for pyrene-d10 and 98.8 ± 10.1% for
peylene-d12. Finally, in the sediment samples the averaged recov-
eries were the following: 84.8 ± 7.8% for anthracene-d10,
91.1 ± 8.5% for pyrene-d10 and 102 ± 11.8% for peylene-d12. Blank
assays were carried out and used for the calculation of LODs and
LOQs. In the dissolved phase, LODS ranged from 0.01 ng L�1 for
pyrene to 0.1 ng L�1 for indeno(1,2,3-cd)pyrene while, in SPM
(1 L) and sediments (5 g) samples, from 0.03 to 0.2 ng L�1 and
from 0.01 to 0.15 ng g�1 respectively. The quantification limits
(LOQ) ranged from 0.02 ng L�1 for pyrene to 0.15 ng L�1 for inde-
no(1,2,3-cd)pyrene in dissolved water samples, from 0.06 to
0.3 ng L�1 in SPM samples and from 0.03 to 0.2 ng g�1 in sedi-
ments samples. The reported results were corrected for surro-
gates recoveries.
2.4. Statistical analysis and calculation of PAHs inputs

Data analysis was performed with the statistical software SPSS,
version 14.01 for Windows (SPSS Inc., Chicago, IL, USA). All data
was presented as the mean ± SD. The level of significance was set
at p 6 0.05.

The method used to estimate the annual contaminant dis-
charges (Fannual) was based on the UNEP guidelines (UNEP/MAP,
2004b) and has been widely accepted (Walling and Webb, 1985;
HELCOM, 1993; Steen et al., 2001). A flow-averaged mean concen-
tration (Caw) was calculated for the available data, which was cor-
rected by the total water discharge in the sampled period. The
equations used were the following:

Caw ¼
Pn

i¼1CiQiPn
i¼1Q i

ð1Þ

Fannual ¼ CawQ T ð2Þ

where Ci and Qi are the instantaneous concentration and the daily
averaged water flow discharge, respectively for each sampling event
(flow discharge, section and bed elevation of river mouth were mea-
sured by manual probes). QT represents the total river discharge for
the period considered (February 04–November 04), calculated by
adding the monthly averaged water flow. River flow data was col-
lected from the register of the Autorità di Bacino del Sarno to
http://www.autoritabacinosarno.it (Campania Government for the
Environment). Furthermore, to study the temporal contaminant dis-
charge variation, Ci and Qi were considered for each campaign and
expressed as g d�1.
3. Results

3.1. PAHs concentrations in water dissolved phase

As shown in Table 1, the concentrations of total PAHs obtained
in the dissolved phase (DP) ranged from 12.4 (site 1) to 2321.1
(site 8) ng L�1 with a mean value of 739 ng L�1. In detail, they
ranged from 0.9 to 175.2 ng L�1 with a mean value of 65.2 ng L�1

for 2-ring PAHs (Nap), from 0.6 to 149.1 ng L�1 for 3-ring PAHs
(Acy, Ace, Flu, Phe, An), from 0.5 to 181.8 ng L�1 for 4-ring PAHs
(Fl, Pyr, BaA, Chr), from 0.4 to 156.1 ng L�1 for 5-ring PAHs
(BbF, BkF, BaP, DahA) and from 0.5 to 127.2 ng L�1 for 6-ring PAHs
(BghiP, InD). The compositional profiles of PAH in the dissolved
phase are illustrated in Fig. 2, which indicates that 2- and 3-ring
PAHs were abundant in all sampling sites, representing on aver-
age over 58% of all PAHs. In addition, the suspected carcinogenic
5–6-ring PAHs was present in low concentrations, accounting for
only 11% of total PAHs. The prevalence of low molecular weight
PAHs (2–3-ring) in the water could be explained by their high
water solubility (Mackay et al., 1992).

Compared with other polluted rivers in the world (Fig. 3), the
concentrations of

P
PAHs in the dissolved phase from the Sarno

River (12.4–1105.9 ng L�1) were much higher than those found in
the Gaoping River (Taiwan) by Doong and Lin (2004), in the Middle
and Lower Yellow River (China) by Li et al. (2006), in the Qiantang

http://www.autoritabacinosarno.it


Table 1
Description of the sampling sites and concentration of PAHs in the water dissolved phase (DP), the suspended particulate matter (SPM) and the sediments of the Sarno River and
the continental shelf, Southern Italy.

Sampling location RPAHs

Site number
identification

Site characteristics Site location Dissolved phase (ng L�1) Particulate phase (ng L�1) (ng g�1 dry wt.) Sediments
(ng g�1 dry wt.)

May August November February May August November February May

1 (River water) Sarno River Source 40�48054.0300N 21 27 12 23 10 6 11 9 6
14�36045.3600E (1783) (833) (1637) (1435)

2 (River water) Upstream Alveo
Comune

40�46042.7300N 433 461 242 378 116 82 170 75 100
14�34000.4800E (16325) (9504) (15841) (11925)

3 (River water) After Alveo Comune 40�46000.3400N 893 905 396 751 223 106 234 208 205
14�33010.6800E (5159) (2240) (12331) (9612)

4 (River water) Sarno River Mouth 40�43042.6200N 945 1105 530 916 372 253 454 360 352
14�28007.8900E (8662) (1848) (5879) (6672)

5 (Sea water) River Mouth at
50mt South

40�43040.1100N 1159 1851 599 1126 526 247 635 493 446
14�28006.4500E (7919) (1952) (6409) (5607)

6 (Sea water) River Mouth at
50mt Central

40�43042.4600N 1591 2321 871 1336 549 229 580 543 502
14�28005.0300E (10374) (1430) (4601) (6374)

7 (Sea water) River Mouth at
50mt North

40�43045.0900N 482 527 327 378 185 88 223 171 180
14�28005.1700E (3708) (985) (2173) (1885)

8 (Sea water) River Mouth at
150mt South

40�43035.6800N 1815 2096 809 1477 668 257 735 667 651
14�28002.9400E (8339) (2724) (12938) (7252)

9 (Sea water) River Mouth at
150mt Central

40�43042.2500N 1977 2165 820 1528 694 357 779 691 679
14�27059.9700E (10943) (2768) (8092) (8780)

10 (Sea water) River Mouth at
150mt North

40�43049.2600N 616 819 438 503 173 43 180 148 162
14�27059.8200E (2706) (304) (2137) (1627)

11 (Sea water) River Mouth at
500mt South

40�43030.3100N 319 366 188 275 75 37 87 68 66
14�27058.9300E (1148) (388) (1921) (828)

12 (Sea water) River Mouth at
500mt Central

40�43042.2900N 241 333 178 231 69 46 82 61 87
14�27046.4100E (1101) (502) (1674) (399)

13 (Sea water) River Mouth at
500mt North

40�43057.8500N 220 211 77 147 49 25 59 35 40
14�27048.6800E (729) (271) (1356) (571)
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Fig. 2. Relative abundance of 2-, 3-, 4-, 5-, 6-ring PAHs in water dissolved phase (DP) samples, suspended particulate matter (SPM) and sediments of the Sarno, Southern Italy.
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River (China) by Chen et al. (2007), in the Xijiang River (China) by
Deng et al. (2006), in the Lower Brisbane River (Australia) by Shaw
et al. (2004), in the Susqueahanna River (USA) by Ko et al. (2007),
in the Mississipi River (USA) by Mitra and Bianchi, 2003 and in the
Elbe River (Hamburg, Germany) by Götz et al. (1998); these levels
were however lower than those found in China in the Daliao River
watershed (Guo et al., 2009) and in the Wuhan Section of Yangtze
(Feng et al., 2007). Based on these results, the levels of PAHs in the
dissolved phase in the Sarno River are comparable to those found
in China in the Heman Reach of the Yellow River, by Sun et al.
(2009), in the Tianjing River by Shi et al. (2005) and in the Tonghui
River by Zhang et al. (2004a,b). As shown in Fig. 3, the concentra-
tions of

P
PAHs in the water-dissolved phase from the continental

shelf of the Sarno River (77.2–2321.1 ng L�1) were much higher
than those found in the Mediterranean Sea by Maldonado et al.
(1999), Bihari et al. (2006), Manoli et al. (2000), El Nemr and
Abd-Allah, 2003 and Manodori et al. (2005), but lower than those
reported in the seawater around England and Wales by Law et al.
(1997).
3.2. PAHs concentrations in water suspended particulate matter

The concentrations of PAHs in the suspended particulate mat-
ter (SPM) samples range from 6.1 ng L�1 (833.1 ng g�1 dry
weight) in site 1 to 778.9 ng L�1 (8091.9 ng g�1 dry weight) in site
9 (mean value of 254.9 ng L�1), as shown in Table 1. The concen-
trations of PAHs detected ranged from 0.4 to 69.2 ng L�1 with a
mean value of 18.2 ng L�1 for 2-ring PAHs (Nap), from 0.3 to
200.4 ng L�1 for 3-ring PAHs (Acy, Ace, Flu, Phe, An), from 0.4 to
71.8 ng L�1 for 4-ring PAHs (Fl, Pyr, BaA, Chr), from 0.4 to
128.2 ng L�1 for 5-ring PAHs (BbF, BkF, BaP, DahA) and from 0.4
to 72.9 ng L�1 for 6-ring PAHs (BghiP, InD). The compositional
proflles of PAHs in SPMs are illustrated in Fig. 2; this figure shows
that 2-, 3-, 4-ring PAHs were abundant at most sampling sites,
accounting for 8%, 31%, and 25% of

P
PAHs in SPMs, respectively.

Although low molecular weight PAHs were still abundant in
SPMs, the proportion of high molecular weight PAHs increased
to 36%, much above than in dissolved samples, where it was
19%. The results indicated that high molecular weight PAHs were



Fig. 3. Concentration ranges and mean value (") of PAHs in water dissolved phase (DP, ng L�1), water suspended particulate matter (SPM, ng L�1) and sediment (ng g�1 dry
wt.) from different rivers, estuaries and coasts in the world.
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preferentially sorbed by the particulate matter due to its high
hydrophobicity, in agreement with the PAHs partition theory
(Mackay et al., 1992; Zhou et al., 2000). In fact, the partition coef-
ficients (Kp, defined as the ratio of the concentration of a chem-
ical associated with SPM to that in the DP: Kp = CSPM/CDP)
showed an increasing trend in their SPM partitioning from
low-ring compounds to high-ring compounds (average value of
0.77, 0.73, 1.04, 1.24 and 1.31 respectively for 2-, 3-, 4-, 5-, 6-ring
PAHs).

Compared with other polluted rivers in the world (Fig. 3), PAHs
in SPMs from the Sarno River were in the medium range. Fig. 3
shows that concentrations of

P
PAHs in SPMs from the Sarno River
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Fig. 4. Spatial and temporal concentration of total PAHs in water dissolved phase
(DP, ng L�1), water suspended particulate matter (SPM, ng L�1) and sediment
(ng g�1 dry wt.) samples of the Sarno, Southern Italy.
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were close to those found in the Xijiang River, China (Deng et al.,
2006). The concentrations were much higher than those presented
in the Middle and Lower Yellow River, China (Li et al., 2006) and
in the Mississipi River, USA (Mitra and Bianchi, 2003), but lower
than those found in China in the Henan Reach of the Yellow River
(Sun et al., 2009), in the Tianjing River, (Shi et al., 2005) and in the
Daliao River watershed (Guo et al., 2009).

P
PAHs in SPMs from

the continental shelf of the Sarno River (25.1–779.6 ng L�1) were
much higher than those found in the Aegean Sea (Maldonado
et al., 1999) and in the Venice Lagoon (Manodori et al., 2005), but
lower than those found in China in the Pearl River Estuary (Luo
et al., 2006).

3.3. PAHs concentrations in sediment

The concentrations of total PAHs in sediment samples are illus-
trated in Table 1. Results range from 5.2 (site 1) to 678.6 (site 9)
ng g�1 with a mean value of 266.9 ng g�1. The concentrations de-
tected ranged from 0.2 to 31.6 ng g�1 with a mean value of
9.7 ng g�1 for 2-ring PAHs (Nap), from 0.2 to 46.3 ng g�1 for 3-ring
PAHs (Acy, Ace, Flu, Phe, An), from 0.3 to 47.2 ng g�1 for 4-ring
PAHs (Fl, Pyr, BaA, Chr), from 0.2 to 46.6 ng g�1 for 5-ring PAHs
(BbF, BkF, BaP, DahA) and from 0.5 to 46.7 ng g�1 for 6-ring PAHs
(BghiP, InD). As to the compositional profiles of PAH in sediments
at each sampling sites, 3- and 4-ring PAHs were abundant at most
sites, accounting for 27% and 23% of

P
PAHs in sediments, respec-

tively (Fig. 2). The proportion of high molecular weight PAHs in-
creased to 47% in sediments, 12% more than in SPM samples.
Low molecular weight PAHs are gradually carried away from the
environment due to their relatively high water solubility and easier
degradation. Therefore, high molecular weight PAHs could easily
reach the sediment due to their low vapour pressure, low water
solubility and more refractory behaviour.

Compared with other polluted rivers in the world (Fig. 3), the
concentrations of

P
PAHs in sediment samples from the Sarno River

(5.6–352.4 ng g�1) were close to those found in China in the Daliao
River watershed (Guo et al., 2009) and in the Qiantang River (Chen
et al., 2007). Values slightly higher than those found in the Sarno
were found in the Tiber River (Italy) by Minissi et al. (1998) and in
the Tonghui River (China) by Zhang et al. (2004a,b), while much
higher concentrations were encountered in the Tianjing River (Chi-
na) by Shi et al. (2005), in the Lanzhou Reach of Yellow River (China)
by Xu et al. (2007), in the Zhujiang River (China) by Mai et al. (2002),
in the Susqueahanna River (USA) by Ko et al. (2007) and in the Ath-
abasca River (Canada) by Headley et al. (2001). The concentrations
of
P

PAHs in sediment samples from the Sarno were higher than
those found in the Heman Reach of Yellow River, China (Sun et al.,
2009), in the Gaoping River, Taiwan (Doong and Lin, 2004), in the
Middle and Lower Yellow River, China (Li et al., 2006), and in the Kis-
hon River, Israel (Oren et al., 2006).

P
PAHs in sediment samples

from the continental shelf of the Sarno River (40.3–678.6 ng g�1)
were close to those found in the Pearl River Estuary (China) by
Luo et al. (2006), in the Deep Bay, China (Zhang et al., 2004a,b), in
the Gulf of Rijeka, Croatia (Bihari et al., 2006) and in the Gulf of Trie-
ste, Italy (Notar et al., 2001). The concentrations of

P
PAHs in sedi-

ment samples from the continental shelf of the Sarno River were
higher than those found in Xiamen Harbour, China (Zhou et al.,
2000), in the South China Sea (Yang, 2000), in Sydney Harbour, Aus-
tralia (McCready et al., 2000), along the Washington Coast, USA
(Prahl and Carpenter, 1983), in Todos Santos Bay, Mexico (Macias-
Zamora et al., 2002), in the White Sea, Russia (Savinov et al.,
2000), in Izmir Bay, Turkey (Darilmaz and Kucuksezgin, 2007), in
the Eastern Aegean Sea, Turkey (Tolga Gonul and Kucuksezgin,
2011) and in the Adriatic Sea, Italy (Guzzella and De Paolis, 1994;
Caricchia et al., 1993; Magi et al., 2002). The concentrations of
P

PAHs in sediment samples from the continental shelf of the Sarno
River were lower than those found in the Venice Lagoon by Manodo-
ri et al. (2005).

4. Discussion

4.1. Relationship between PAHs in the water dissolved phase,
suspended particulate matter and sediment samples in different
seasons

The concentrations of total PAHs in DP, SPM and sediment sam-
ples of the Sarno at different sampling sites are illustrated in Table
1 and Fig. 4. The results show that the ratio of the concentration of
P

PAHs in SPM samples (expressed in ng L�1) to that in DP (ng L�1)
was less than one in all sites (average 0.384; range 0.005–0.993;
SD ± 0.237). These results lead us to consider that the total amount
of PAHs in DP samples was more abundant than in SPM samples for
each site and season. With the exception of August, even the total
amount of PAHs in SPM samples was more abundant than in sed-
iment samples for each sampling site and season. In fact, with the
exception of August (1.181), the ratio of the concentration of
P

PAHs in sediment samples (ng g�1) to that in the SPM samples
(expressed in ng g�1) was less than 1 in all sampling sites and for
each season (average 0.179; range 0.002–1.181; SD ± 0. 119).

These results indicate that PAHs concentrations in DP were low
during the flooding event (February) and high during the dry sea-
son (August). The seasonal variation of PAHs concentrations was
attributed to the variation of hydrological conditions, which could
cause dilution ratio variations. Therefore, a high river flow rate re-
sulted in a higher dilution ratio in the flooding season that led to a
decrease in the PAHs concentration in both the Sarno River and its
estuary. In August, instead, the concentrations of

P
PAHs in SPM

samples were lowest in all sampling sites. The results could be ex-
plained by the fact that the decrease of the flow during the dry sea-
son induces the mobilization of a smaller amount of SPM and
PAHs; in addition, a greater stagnation of SPM due to a reduced
flow during the dry season can presumably determine the transfer
of the more polar PAHs from SPM to DP. Based on these results, it
can be concluded that the load and relocate of PAHs between dif-
ferent phases in each sampling site of the Sarno were related to a
variation in the flow of water during rainy and dry seasons.
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The concentrations of
P

PAHs in sediments were below
180 ng g�1 in most sampling sites of the Sarno and were relatively
lower than those present in other rivers and coasts. The low
concentrations of PAHs in sediments may be due to the high sand
and low TOC contents (0.68–12.59 mg g�1, mean 4.61). It was be-
lieved that the environmental fate and behaviour of hydrophobic
organic compounds was ultimately determined by the physico-
chemical properties of each compound and sediment. In fact, a po-
sitive linear regression exists between total PAH concentration and
TOC data in sediments (r = 0.89, p < 0.01) as indicated by many
other studies (El Nemr et al., 2007; Feng et al., 2007; Liu et al.,
2008; Sun et al., 2009).

4.2. Spatial distribution of PAHs and loads into the Tyrrhenian Sea

The spatial distribution of PAHs in DP, SPM and sediment sam-
ples from the Sarno River and its estuary were studied by compar-
ing the concentrations of

P
PAHs in different sampling sites in dry

and rainy seasons, respectively. The results are summarized in
Fig. 4. The level of contamination of PAHs in the water clearly in-
creases from location 1–4. In general, the upland part of the Sarno
River was less contaminated by PAHs. Where the river flows
through the Sarno flatland and through different urban agglomer-
ations, the concentration of total PAHs increased to 489 ng L�1

(DP + SPM mean value of four seasons) at location 2 (Upstream Al-
veo Comune). The concentration then increased to 929 ng L�1

(DP + SPM mean value of four seasons) at location 3 (after Alveo
Comune). This increase in total PAHs concentrations resulted from
the inflow from the Alveo Comune (30–50 m3 s�1), which carries
the discharge of another industrial district. In the lower part of
the Sarno River (location 4, Sarno Estuary), the concentration in-
creased again, reaching 1234 ng L�1 (Figs. 1 and 4 and Table 1).
Although compliance with EC-EQS in surface waters is checked
using an annual average of monthly whole water (dissolved + SPM)
concentrations (European Commission, 2009; Common Implemen-
tation Strategy for the Water Framework Directive, 2005), our data
show that the mean BaP concentration in the River Sarno
(63.9 ng L�1) was higher than the EQS value of 50 ng L�1, whereas
the BkF + BbF and BghiP + InD values, of 98.1 and 126.8 ng L�1,
respectively, were significantly higher than those set by the EQS
(30 and 2 ng L�1, respectively), showing that the ecological integ-
rity of the river watercourse is possibly at risk.

The PAHs loading into the Tyrrhenian Sea occurs through vari-
ous transport pathways including storm water runoff, tributary in-
flow, wastewater treatment plant and industrial effluent discharge,
atmospheric deposition, and dredged material disposal. The total
PAHs loads contribution to the Tyrrhenian Sea from the Sarno River
is calculated in about 8530 g d�1. Although PAHs input from other
transport pathways are possible (e.g., acute events such as oil
spills), these are generally infrequent and rarely visible in monitor-
ing data. Storm water runoff is a major transport pathway for PAHs
into the bay, especially during the rainy season when the river
water flow is highest.

In the Tyrrhenian Sea, around the Sarno plume, total PAH con-
centrations range in general from very low in offshore areas to very
high in the vicinity of the river outflows (Figs. 1 and 4 and Table 1).
As shown in Fig. 4, relatively high concentrations of total PAHs
were detected from sampling sites at 150 m of river outflows. At
50 m of river outflow, the concentration of total PAHs were close
to those of the Sarno estuary. The concentrations at the sampling
sites then increased at 150 m and decreased at 500 m of river out-
flows. The higher PAHs concentrations found at 150 m may be due
to coagulation processes related to river water and sea water mix.
The increased concentrations of PAHs found in sediment samples
at 150 m suggest that the stagnation of SPM and the gravitational
sedimentation and/or coagulation are mainly in this area. Simi-
larly, high concentrations of PAHs found in the DP samples taken
at 150 m can be explained by a greater stagnation of SPM in this
area with subsequent transfer of the more polar PAHs from SPM
to DP. Certainly, the river-water discharge and SPM load, the pri-
mary biomass production, the wind fetch and currents also con-
tribute to increase PAHs concentrations at these sampling sites.
Moreover, Fig. 4 shows that the concentration of total PAHs at
the central estuary were close to those at the southern estuary,
decreasing northward. These results allow us to conclude that
although some of the PAHs loads from the Sarno inputs are headed
northwards, most of them move into the Tyrrhenian Sea
southward.

4.3. Source of PAHs in the Sarno

PAHs can derive from anthropogenic inputs and can be the re-
sult of the incomplete combustion of organic matter (pyrolytic)
and the discharge of crude oil-related material (petrogenic). The
pyrogenic origin includes combustion of fossil fuels, waste inciner-
ation and coke production, carbon black, coal tar pitch, asphalt and
petroleum cracking (McCready et al., 2000). Spillage of fossil fuels
can be accidental or intentional (e.g., deballasting water dis-
charges). PAHs can also originate from natural processes such as
short-term diagenetic degradation of biogenic precursors (diagen-
esis). Direct PAH biosynthesis by organisms such as bacteria, fun-
gus, and algae has not yet been clarified. Each source (i.e.
pyrolytic, petrogenic and diagenetic) gives rise to typical PAH pat-
terns. In general, combustion products are dominated by relatively
high molecular weight (HMW) compounds with four or more con-
densed aromatic rings, whereas bi- and tricyclic aromatic com-
pounds (LMW) are more abundant in fossil fuels, which are,
moreover, dominated by alkylated derivatives (Prahl and Carpen-
ter, 1983). Diagenetic PAHs are represented by some characteristic
species (e.g., perylene). Using chemical profiling and particular
compound ratios, it is possible to recognize the processes that gen-
erate these com-pounds (Budzinski et al., 1997; Yunker et al.,
2002; De Luca et al., 2004). The ratios of phenanthrene to anthra-
cene (Phe/An) and fluoranthene to pyrene (Fl/Pyr) have been used
to assess the contribution of petroleum or combustion sources of
PAHs in costal environments. A Phe/An ratio lower than 10 and a
Fl/Pyr ratio higher than 1 have been shown in most cases, strongly
supporting the pyrogenic origin of PAHs (Baumard et al., 1998). In
addition to this, when the ratio of chrysene to benzo[a]anthracene
(Chr/BaA) is lower than 0.1 it is usually an indication of a pyrolitic
origin, while a fluorene to fluorene + pyrene (Flu/(Flu + Pyr) ratio
below 0.5 is typical of a petrogenic source. However, difficulties ex-
ist in identifying these origins due to the possible co-existence of
several sources.

The ratio study reflected a prevailing pattern of pyrolytic inputs
of PAHs in the Sarno River and its estuary. In fact, the results
showed that the Phe/An ratio was <10 at all sites (mean 1.73; range
0.43–4.14), and Flu/Pyr was >1 at most sites (mean 1.21; range
0.65–4.01). Chr/BaA and Flu/Flu + Pyr varied within a range of
0.12–2.39 (mean 0.91) and 0.29–1.44 (mean 0.78), respectively.
Thus, the LMW/HMW ratio was relatively low (<1 for most sites),
suggesting a pyrolytic origin of PAHs at these sites (mean 0.88;
range 0.19–3.99). These results, obtained by different molecular ra-
tios, were correlated with the specific pollution conditions in the
Sarno flatland. The Sarno flatland is a heavy industrial area, with
many heavily polluting factories. The industrial wastes enriched
with combustion-derived PAHs are directly discharged into the
Sarno River. The emission of atmospheric particles from factories
and from the whole Naples urban area also cause serious air pollu-
tion, and the particulate-associated PAHs may transport and de-
posit into the river. In addition to these inputs, some other
sources such as the roads on both sides of the river and along
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the coast, the runoff containing street dust, and municipal waste-
water, result in the pattern of pyrolytic origins of PAHs contamina-
tion in the area.

In addition to pyrolytic and petrogenic sources, perylene is also
produced by in situ degradation of biogenic precursors (Venkatesan,
1988; Baumard et al., 1998). Indeed, perylene is probably the most
important diagenetic PAH encountered in sedimentary environ-
ments and, thus, a high abundance of perylene relative to other PAHs
can indicate an important natural origin of the compound. The high-
est concentrations of perylene were observed at location 3 (After Al-
veo Comune) and between the Sarno and its estuaries. The clearly
seaward-decreasing trends of perylene concentrations suggest that
perylene originates mainly from terrestrial inputs. Perylene has
been frequently associated with inputs from rivers and estuaries
(LaFlamme and Hites, 1978; Baumard et al., 1998). In fact, it has been
suggested that concentrations of perylene above 10% of the total
penta-aromatic isomers indicate a probable diagenetic input,
whereas those in which perylene accounts for less than 10% indicate
a probable pyro-lytic origin of the compound. In the present study
perylene was studied in all sediment samples, and concentrations
of this compound ranged from 0.12 to 30.3 ng g�1. The concentra-
tions of perylene rela-tive to the penta-aromatic isomers indicated
that the relative abundance of some of them was lower than 10%,
indicating a pyrolytic origin of the compounds that could reach the
river from different sources in this area.
4.4. Eco-toxicity assessment of PAHs in sediment

In order to assess whether PAH in the Sarno River and its estu-
ary will cause toxic effects, we compared the PAHs levels in sedi-
ment against effects-based guideline values such as the effect
range-low (ER-L), effect range-median (ER-M) and apparent effects
threshold values developed by the US Natural Oceanic and Atmo-
spheric Administration (Long et al., 1995; Witt, 1995). ER-L and
ER-M values are useful in assessing sediment quality and provide
qualitative guidelines on what needs to be done to effectively pro-
tect the aquatic environment (Kim et al., 1999; Mai et al., 2002). In
the Sarno, the total PAH concentrations in sediment samples were
below the ER-L value (4000 ng g�1) and significantly lower than
the ER-M (44,792 ng g�1). In relation to the individual compounds,
also the mean concentrations of Acy, Ace, Fle, An and DahA were
lower than their respective ER-L values (44, 16, 19, 85 and
63 ng g�1) and ER-M values (640, 500, 540, 1100 and 260 ng g�1).
The concentrations of other PAHs in these sediment samples were
lower than their respective ER-L and ER-M values. Apart from this,
several individual PAHs such as BbF and BkF do not have a lowest
safe value. In the Sarno River and its estuary, some of these PAHs
were also detected at many sampling sites.
5. Conclusions

This study is the first to document a comprehensive analysis of
PAHs in the Sarno River and its estuary; it has provided very useful
information for the evaluation of trace PAHs and probable sources
of PAHs in this river and its input into the Tyrrhenian Sea, which is
part of the Mediterranean Sea. The results show that PAH concen-
trations in DP, SPM and sediment phases varied significantly
among sampling locations. Two- and three-ring PAHs were abun-
dant in water samples, whereas, high-ring PAHs were major spe-
cies in sediment samples. In SPM samples, more kinds of PAHs
were detected including low- and high-ring PAHs. Source analysis
revealed that PAHs derive mainly from combustion processes. The
results show that these areas are the main contribution sources of
PAHs into the Tyrrhenian Sea and, although some of the PAHs from
the Sarno River inputs move northwards, the majority of it moves
into the Tyrrhenian Sea southward. In relation to the eco-toxico-
logical assessment, the concentrations of most PAHs in the sedi-
ments from the Sarno River and its estuary were much lower
than guideline values regarding the effect range-low (ER-L) and ef-
fect range-median (ER-M). In conclusion, PAHs do not seem to
cause immediate biological effects on the sedimentary environ-
ment in the Sarno River and its estuary.
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