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ABSTRACT

Background. Cyclosporine A (CsA) is one of the most fre-
quently used anticalcineurinic drugs for preventing graft rejec-
tion and autoimmune disease. Its use is hampered by
nephrotoxic effects, namely an impairment of the glomerular
filtration rate (GFR) and hypertension. Evidence suggests that
reactive oxygen species (ROS) play a causal role in the nephro-
toxicity. The present study aims to investigate in vivo the

effects of a new recombinant mitochondrial manganese-con-
taining superoxide dismutase (rMnSOD), a strong antioxi-
dant, on the CsA-induced nephotoxicity.
Methods. Rats were treated with CsA (25 mg/kg/day) alone or
in combination with rMnSOD (10 µg/kg/day) for 7 days. At
the end of the treatment, GFR was estimated by inulin clear-
ance (mL/min/100 g b.w.) and the mean arterial pressure
(MAP) was recorded through a catheter inserted in the carotid
artery. Superoxide concentration within the cells of the
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abdominal aorta was quantified from the oxidation of dihy-
droethidium (DHE). In kidney tissues, ROS levels were
measured by the 2070 dichloroflurescin diacetate assay. Renal
morphology was examined at the histochemistry level.
Results. CsA-treated rats showed a severe decrease in GFR
(0.34 ± 0.17 versus 0.94 ± 0.10 in control, P < 0.001) which was
prevented by rMnSOD co-administration (0.77 ± 0.10). CsA-
injected animals presented with higher blood pressure which
was unaffected by rMnSOD. ROS levels both in the aorta and
in renal tissue were significantly increased by CsA treatment,
and normalized by the co-administration with rMnSOD. This
effect was, partly, paralleled by the recovery from CsA-induced
morphological lesions.
Conclusions. Administration of rMnSOD prevents CsA-
mediated impairment of the GFR along with morphological
alteration. This effect could be related to the inhibition
of ROS.

INTRODUCTION

Cyclosporine A (CsA) is one of the most frequently used an-
ticalcineurinic drugs for preventing graft rejection and auto-
immune disease. CsA administration significantly improved
long-term survival in the case of solid organ transplantation
[1]. Unfortunately, its use is hampered by the nephrotoxic
effects, including impairment of the glomerular filtration rate
(GFR) and hypertension [1]. The pathogenesis of hyperten-
sion is not completely clear. There is evidence to suggest that
CsA-induced hypertension is associated with sodium and
water retention [1], and involvement of reactive oxygen
species (ROS) has been postulated [1, 2].

Several lines of proof suggest that CsA treatment stimulates
ROS production. For example, the administration of CsA
markedly increased renal cortical lipid peroxidation
and urinary excretion of ROS that were trapped by the spin-
trapping agent α-(4-pyridyl-1-oxide)-N-tert-butylnitrone [3].
Clinical studies showed that plasma hydroperoxide levels were
markedly raised in kidney and heart transplant patients treated
with CsA [4]. In addition, treatment with CsA significantly in-
creases superoxide release from isolated rat aortic rings incu-
bation [5], whereas pre-treatment with a superoxide dismutase
(SOD) restored the normal tone in arteries of rats treated with
CsA [6]. These observations suggest that an increased ROS
production contributes to CsA-induced endothelial dysfunc-
tion which might be responsible for the development of hyper-
tension. Finally, it has been recently demonstrated that CsA-
induced hypertension and increased ROS production are
associated with elevated Ang II levels [7].

MnSOD is a member of a family of structurally unrelated
SODs encoded by different genes; it is found exclusively in the
mitochondrial matrix [8]. Overexpression studies show the
capacity of MnSOD to alter many properties typical of cancer
cells (growth rate, invasiveness, anchorage-independent
growth, etc.) both in vitro and in vivo [9].

We have recently isolated a new recombinant MnSOD
(rMnSOD) from a human pleiomorphic liposarcoma cell line
[10]. This rMnSOD is not localized in the mitochondrial

matrix, but it is secreted in the media. Given its antioxidant
activity, we set out to determine whether rMnSOD treatment
could prevent the nephrotoxic side effects caused by CsA.
Data will be shown demonstrating that rMnSOD is able to
completely prevent CsA-induced impairment of the GFR.
This effect is associated with improvement of the CsA-
induced renal morphological alterations and vascular ROS
damage.

MATERIALS AND METHODS

Experiments were performed on rats treated with humane
care, in compliance with the indications of the Guide to the
Care and Use of Experimental Animals. A total of 48 Sprague–
Dawley rats were used, with weights ranging from 200 to 230
g. They were housed under controlled environmental con-
ditions (temperature 22°C and a 12-h light–dark cycle).
Animals were fed a standard diet; food and water were given
ad libitum. The rats, randomly divided into four groups, were
treated as follows: Group 1: 12 rats injected i.p. with CsA
vehicle for 9 days; Group 2: 12 rats treated i.p. with 25 mg/kg
of b.w./day CsA, Sandimmune Neoral®, i.v. preparation, con-
taining Cremophore EL and alcohol as vehicle 2:1, from No-
vartis (Basel, Switzerland) for 7 days; Group 3: 12 rats pre-
treated i.p. for 2 days with rMnSOD (10 μg/kg) and then re-
ceiving for 7 days both rMnSOD (10 μg/kg) and CsA (25 mg/
kg) administered simultaneously; Group 4: 12 rats treated i.p.
with rMnSOD (10 mg/kg) for 9 days. The dose and length of
CsA and rMnSOD administration was chosen according to
previous experiments [11]. An additional set of rats (five per
each group) was used for blood CsA and Hb determination
and to evaluate the interstitial fibrosis.

Whole kidney clearance

Glomerular filtration rate was measured at the end of the
experimental treatment. The rats were anaesthetized with an i.
p. injection of Inactin (Sigma-Aldrich, St Louis, MO, USA),
120 mg kg−1 b.w., tracheostomized, placed on a thermo-regu-
lated table (37°C) and prepared for renal clearance evaluation
as previously described [12]. In brief, the right carotid artery
was catheterized to monitor blood pressure through a blood
pressure recorder (BP1 by WPI, USA) and to take blood
samples for inulin concentration measurements. The left
jugular vein was cannulated with polyethylene PE-50 tubing
and used for i.v. infusion via a syringe pump (Braun, Melsun-
gen) of 0.74 mg · 100 g b.w./min inulin in 10% saline solution.
The surgical procedure also included bladder catheterization
with PE-50 tubing. After a 60-min equilibration period, the
first of four 30-min urine collections began. Arterial blood
samples (100 μL) were taken at the start and end of each col-
lection period. Inulin concentrations in plasma and urine were
measured by the colorimetric method. Glomerular filtration
rate was calculated using the standard clearance formula [13].
Determination of the Hb was performed by an instant
measurement of arterial blood from the aorta by the
HemoCue® system. Measurement of the level of CsA in the
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serum was performed by a chemiluminescent microparticle
immunoassay, Architect i 2000 (Abbot diagnostic).

ROS measurement assay

To measure the level of ROS in the kidney, we performed a
2070 dichloroflurescin diacetate assay.

At the end of the in vivo treatment, rats were anaesthetized
and then sacrificed by exsanguinations and the right kidney
was quickly stored at −80°C. Later, the kidneys were thawed
on ice and weighed. Kidneys were homogenized in 5 mL of
Tris–Hcl 40 mM (pH 7.4) with Ultraturrax. Protein concen-
tration was assessed by the Bio-Rad protein assay.

2070 dichloroflurescin diacetate 5 µM (Molecular Probes)
was utilized for the assay from a 500 µM stock. The tissue
samples were diluted in a range from 10 000 to 2500 times.
The spectrum was analysed from 480 to 525 nm at different
times (T0, T10, T30) using a spectrophotometer Jasco FP-777.
The levels of ROS were expressed as intensity fluorescence (IF)
normalized for grams of tissue and micrograms of proteins.

Superoxide assay in the dissected aorta

Superoxide concentrations within the cells of the abdomi-
nal aorta were evaluated by the oxidation of dihydroethidium
(DHE; Molecular Probes). DHE can enter the cell and be oxi-
dized by superoxide to yield ethidium (Eth), which binds
DNA producing bright red fluorescence. The increase in
Eth-DNA fluorescence indicates peroxide production within
cells [14].

The paraformaldehyde (PFA)-perfused aorta was dissected
and frozen at −80°C. Sections (10-µm thick) were cut at the
cryostat (Leica CM 1850) and then incubated with a 10 μM
DHE solution for 30 min at room temperature. Cover slips
were mounted with Dako Fluorescence Mounting Medium.
Pictures were acquired at the Leica DMI6000 B inverted
microscope. Fluorescence intensity was quantified by Image-j
software. Briefly, average pixel intensity was quantified from
three equal random areas from each sample. The average pixel
intensity was compared among groups.

Renal histology

Rats were anaesthetized by inactin (120 mg kg−1 b.w.). The
left kidney was washed by retrograde perfusion via the
abdominal aorta by 0.01 M PBS (pH 7.4) for 30 s and then

fixed with 4% PFA for an additional 3 min. All procedures
have been described in detail previously [12]. Briefly, the
kidney was embedded in paraffin, and 4-µm thick sections
were then cut at Leica Reichert-Jung 2030 BIOCUT Micro-
tome. After overnight immersion in xylene, sections were de-
hydrated in ethanol, then washed in milli Q-water and
stained with haematoxylin and eosin. Cover slip was
mounted with Bio-optica O. Kindler GmbH EUKITT.
Masson’s trichrome staining and the semi-quantitative fibro-
sis evaluation were performed as previously described [12].
Briefly, two blinded investigators independently scored ran-
domized pictures of the renal cortex taken by an external
investigator. The pictures were taken at a ×200 magnification
(n = 5/section was examined). Interstitial fibrosis was scored
as zero if there were no signs of fibrosis, 1, if <25%, or 2, if
26–50%, or 3, if 51–75%, or 4, if > 76% of the observed field
was affected, respectively. Images were acquired at Leica
DM16000 inverted microscope.

Statistical analysis

All data are mean ± SD. Statistical analysis was performed
by an unpaired t-test or one-way ANOVA followed by the un-
paired t-test. A value of P < 0.05 was considered statistically
significant.

RESULTS

Physiological parameters

CsA-treated rats showed a loss of weight that was prevented
by rMnSOD co-treatment (Table 1). Equal treatment among
the CsA and the CsA + rMnSOD groups has been validated by
similar serum concentration of CsA (Table 1). The adminis-
tration of CsA induced a significant increase in the mean ar-
terial pressure (MAP), measured at the time of the clearance
study by carotid catheterization (Table 1). rMnSOD did not
affect this haemodynamic parameter neither alone nor when
administered in combination with CsA. The urinary flow rate
was significantly decreased in rats treated with CsAwhen com-
pared with control rats (P < 0.01) and rMnSOD co-treatment
did not reverse it. No differences in the level of Hb were seen
among the studied groups (Table 1).

Table 1. Physiological parameters

Parameter Control rMnSOD CsA CsA + rMnSOD

Body weight gain (g) 48 ± 7 45 ± 8 −37 ± 15** 47 ± 100

MAP (mmHg) 96 ± 3 101 ± 2 141 ± 5** 139 ± 4**

Urinary flow (μL/min) 14 ± 5 9 ± 5 5 ± 2** 7 ± 3**

Hb (g/dL) 15 ± 0.6 14.5 ± 0.6 16 ± 0.3 15 ± 0.5

Serum CsA (ng/mL) ND ND 4442 ± 29 4106 ± 375

Values are mean ± SD (** is for P < 0.01 compared with the control group), n = 5 in all the groups. For Hb analysis in CsA and
CsA + rMnSOD group n = 4.
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rMnSOD prevents the CsA-induced GFR impairment

To evaluate the effect of CsA on renal haemodynamics,
GFR was measured by the clearance of inulin. CsA treatment
significantly decreased GFR compared with control animals
(0.34 ± 0.17 versus 0.96 ± 0.10 mL/min, P < 0.001 n = 6:6,
respectively) (Figure 1). When CsA was co-administered with
rMnSOD, the GFR value improved significantly when com-
pared with the CsA-treated rats (0.77 ± 0.10 versus 0.34 ± 0.17
mL/min, n = 6:6, P-value < 0.001) and only partially reduced
when compared with the control group (0.77 ± 0.10 versus
0.96 ± 0.10 mL/min, P < 0.01 n = 6:6, respectively). Single
treatment with rMnSOD caused a slight decrease in the GFR
compared with the control group (0.78 ± 0.18 mL/min versus
0.96 ± 0.10 mL/min, P = 0.0781, n = 5:6, respectively)
(Figure 1).

rMnSOD prevents the CsA-induced ROS production

The production of ROS in the kidneys has been evaluated
with the trichloroflurescin diacetate assay. The novel rMnSOD
significantly reduces the ROS production compared with the
control group (482 ± 300 versus 1459 ± 500 IF/g of tissue × μg
of proteins; P < 0.01, n = 5:6, respectively) (Figure 2). As ex-
pected, CsA-treated rats presented with a larger ROS pro-
duction than controls (3970 ± 500; P < 0.001 n = 6), whereas
co-administration of both CsA and rMnSOD (1322 ± 600;
P < 0.001 n = 6) reversed the ROS production to the control
level.

Effects of rMnSOD on CsA-induced oxidative stress

The red fluorescence generated by the binding of the Eth–
DNA complex showed that the abdominal aorta of CsA-
treated animals present a red fluorescent signal significantly
brighter than control (44 250 ± 4614 versus 25 306 ± 15 715
P < 0.05 n = 5:4, respectively) (Figure 3A, B and E). When the
rats were treated with CsA plus rMnSOD, the fluorescence in-
tensity was significantly lower than the CsA-treated group
(36 463 ± 5322 versus 44 250 ± 4614, P < 0.05 n = 5:5 respect-
ively) (Figure 3D), indicating that rMnSOD was able to com-
pletely prevent the production of superoxide induced by CsA.
Analysis of samples from rats receiving only rMnSOD treat-
ment indicates that the antioxidant administration had no
effect (Figure 3C).

Morphology

As demonstrated previously [12], we confirm that CsA
treatment induces severe alteration in the renal morphology.
Tubular vacuolization associated with a reduction in the
height of the tubular epithelium and interstitial infiltrate is the
predominant histological pattern in CsA-treated rats
(Figure 4). These morphological alterations are mainly located
in the cortex and outer stripe of outer medulla and they are
common both to proximal and distal tubules. rMnSOD co-
treatment reduces CsA-related morphological alteration;
indeed tissue slices from rats receiving rMnSOD and CsA
present few and less extensive areas of tubular vacuolization
and interstitial infiltrates (Figure 4). rMnSOD treatment alone
is not associated with significant morphological alteration,
compared with the control group (Figure 4). Interstitial fibro-
sis has been evaluated by Masson’s trichrome staining. CsA
treatment induces a more severe interstitial fibrosis compared
with the control group. Co-administration of rMnSOD and
CsA is associated with a tendency towards a fibrosis score
lower than the CsA group alone (Figure 5).

DISCUSSION

Previous studies have indicated that oxidative stress could be
implicated in CsA-induced toxicity [15]. In the present investi-
gation, we show that chronic treatment with CsA significantly
boosts ROS formation in the kidney as revealed by the dichloro-
flurescin diacetate assay (Figure 2). In addition, the synthesis of
ROS, following CsA administration, also occurs in other tissues,
as demonstrated by directly measuring ROS formation in the
aorta (DHE experiments) (Figure 3B) in agreement with the
report of Galle et al. [5]. Since it has been shown that antioxi-
dants may protect from CsA side effects, we have tested new re-
combinant mitochondrial manganese-containing superoxide
dismutase (rMnSOD), a strong antioxidant, on an in vivo
model of CsA-induced nephrotoxicity [10].

Our data show that rMnSOD completely counteracts
CsA-induced oxidative stress in the kidney as indicated by the

F IGURE 2 : Effects of rMnSOD on CsA-induced ROS production
(trichloroflurescin diacetate assay). CsA-treated rats showed a signifi-
cant increase in ROS production compared with the control.
rMnSOD + CsA co-treatment prevents CsA-induced ROS pro-
duction. rMnSOD significantly reduces ROS production compared
with the control group. (values are mean ± SD; *is versus the control
group; # is versus the CsA-rMnSOD; **P < 0.01, ***P < 0.001,
###P < 0.001)

F IGURE 1 : Effects of CsA on GFR measured by the clearance of
inulin. CsA treatment significantly decreased GFR, while co-adminis-
tration with rMnSOD partially reverses this effect. (values are mean ±
SD; * is versus the control group; # is versus the CsA-rMnSOD;
**P < 0.01, ***P < 0.001, ###P < 0.001)
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dichloroflurescin diacetate assay (Figure 2). Moreover, DHE
experiments confirm that rMnSOD is able to quench
CsA-induced ROS production in the aorta (Figure 3). The
molecular mechanism responsible for these findings is most
likely related to rMnSOD’s remarkable ability to scavenge
most of the radical species. It is very likely that this property
may be related to the presence of a leader peptide that allows
rMnSOD to enter the cells thus preventing its degradation by
circulating proteases [10].

It has also been shown that CsA administration provokes
extensive alterations in renal morphology; the lesions are
mainly interstitial and tubular. In the present experiments, we
have found the typical alterations of the CsA-induced kidney
injures. In particular, at the tubular level, we have observed cel-
lular vacuolization associated with a reduction in the height of
the tubular epithelium and interstitial infiltrate. The co-

administration of rMnSOD with CsA prevented the documen-
ted lesions (Figure 4).

Clinical observations [16] and experimental evidence [17]
indicate that CsA administration is associated with other
major side effects, including hypertension. In our experiments,
although we have measured BP in anaesthetized animals, there
was an increase of ∼15 mmHg in BP values and the co-treat-
ment with rMnSOD was not able to modify this parameter

F IGURE 5 : rMnSOD has a tendency to reduce the CsA-induced in-
terstitial fibrosis. Representative pictures of Masson’s trichrome stain-
ing from the renal cortex. CsA treatment is associated with an
extensive degree of interstitial fibrosis (blue stripes). This pattern is
almost absent in the control and rMnSOD. Co-treatment with
rMnSOD and CsA leads to a tendency to a lower interstitial fibrosis.
Magnification ×400. In the bottom, the fibrosis score reports a semi-
quantitative evaluation (n = 3/group). ** is for P < 0.01 compared
with the control group (one-way ANOVA plus unpaired t-test).

F IGURE 3 : rMnSOD prevents CsA-induced injury on the aorta.
Representative pictures of DHE staining on the rat aorta. CsA treat-
ment induces a DHE fluorescence signal as the expression of superox-
ide-mediated intracellular injury (B). This effect is greater than in the
control group (A). Co-treatment with rMnSOD and CsA prevents
this effect (D). rMnSOD alone does not significantly affect DHE acti-
vation (C). (E) Fluorescence intensity quantification. Magnification
×200 (values are mean ± SD; * is for P < 0.05 compared with the CsA
group).

F IGURE 4 : rMnSOD prevents CsA-induced morphological altera-
tion. Representative pictures of haematoxylin and eosin staining from
the renal cortex. CsA-treated rats show severe morphological altera-
tion, including tubular vacuolization and atrophy associated with in-
terstitial infiltrate. Co-treatment with rMnSOD is associated with a
modest tubular injury and slight interstitial cellular infiltrate.
rMnSOD-treated rats does not show morphological alteration com-
pared with the control group. Magnification ×400.

O
R
IG

IN
A
L
A
R
T
IC

L
E

S. Damiano et al.

2070

 at U
niversita’ di N

apoli Federico II on M
arch 5, 2015

http://ndt.oxfordjournals.org/
D

ow
nloaded from

 

http://ndt.oxfordjournals.org/


(Table 1). The mechanisms involved in CsA-induced hyper-
tension are still unclear, but it is generally thought that the
primary causes may be related to dysfunction of several organs
including the nervous system, the vasculature or the kidney
[18]. With respect to the kidney, clinical and experimental
studies showed that cyclosporine-induced hypertension was
sodium dependent [1, 19] probably related to the up-regu-
lation of the Na+–K+–2Cl− cotransporter (NKCC2) in the
thick ascending limb of Henle [20, 21]. We may speculate that
hypertension in CsA-treated animals is independent from the
mechanism involved in GFR regulation. By inducing a salt-
sensitive state, CsA may impair the pressure-natriuresis
response [22] of the kidneys and thus sustain the hyperten-
sion. An additional side effect of chronic administration of
CsA is severe impairment of renal haemodynamics. Indeed,
we have found a profound decrease in the GFR measured by
inulin clearance, a method that is considered the gold standard
for the measurement of renal function. This model of CsA-
induced renal failure was not associated yet with the develop-
ment of anaemia, probably related to the short-time of the
experimental study (7 days). Several mechanisms appear to be
implicated in the CsA-inducing GFR reduction; however, there
is general agreement that the major factor is mediated by its
action on afferent arteriolar resistance through vasoconstriction
of all contractile elements leading to vessel narrowing [23]. The
almost full prevention of the reduction in GFR induced by
rMnSOD is not related to a lower serum level of CsA.

rMnSOD administration does not increase the urinary flow
rate together with the GFR. Increased water reabsorption
along the connecting and collecting ducts (CDs) could play a
role in this sense. The CsA-induced up-regulation of NKCC2
[20] could be a common molecular mechanism sustaining hy-
pertension and water reabsorption along the CD. rMnSOD is
the first substance able to prevent the CsA effects on kidney
haemodynamics and to reduce the renal histological damage.
Therefore, it looks that rMnSOD is superior to other agents
previously used to prevent and/or ameliorate CsA nephrotoxi-
city [17]. For example, rMnSOD is more effective as compared
with hydroxytyrosol, a natural antioxidant of olive oil that was
unable to ameliorate the reduction in the GFR associated with
CsA administration [12]. Moreover, even the overexpression
of superoxide dismutase, by gene delivery, could only partially
reduce CsA-induced pathological alterations and inhibition of
the GFR [24]. Finally, the administration of the SOD-mimetic,
tempol, that normalized BP, was less effective than rMnSOD
on the GFR [25].

In conclusion, our data indicate that rMnSOD is able to
prevent arterial and renal oxidative stress, the reduction in the
GFR secondary to CsA administration and, in addition, to
partly improve the renal morphology. Given these findings,
rMnSOD may represent a novel therapeutic option in the
treatment of CsA nephrotoxicity.
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