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Abstract

OBJECTIVE: This study evaluated the impact of patient—prosthesis mismatch on myocardial function and high-energy phosphate me-
tabolism after aortic valve replacement for pure aortic stenosis. Patients with and without patient—prosthesis mismatch were compared
using magnetic resonance techniques.

METHODS: Thirty patients who had undergone aortic valve replacement with Medtronic Mosaic bioprosthesis were evaluated. Fifteen
patients with patient—prosthesis mismatch were compared to 15 matched patients without patient—prosthesis mismatch. These two
homogeneous groups were studied for myocardial metabolism and left ventricle function preoperatively and at 12 months postopera-
tively with magnetic resonance imaging and 31P spectroscopy.

RESULTS: All patients experienced improvement in myocardial metabolism and left ventricle function. Left ventricle mass regression
was impaired in both groups. Impaired diastolic filling was associated with increased left ventricle wall mass in both groups (patient—
prosthesis mismatch: R2 = −0.71, p = 0.002; no patient—prosthesis mismatch: R2 = −0.88, p < 0.001). Myocardial phosphocreatine/
adenosine triphosphate ratio revealed a modest correlation with left ventricle function as evaluated by early acceleration peak
(patient—prosthesis mismatch: R2 = 0.37, p = 0.03; no patient—prosthesis mismatch: R2 = 0.17, p = 0.02) and early deceleration peak
(patient—prosthesis mismatch: R2 = 0.30, p = 0.01; no patient—prosthesis mismatch: R2 = 0.39, p = 0.008). No significant correlation
between the phosphocreatine/adenosine triphosphate ratio and left ventricle mass was found (patient—prosthesis mismatch: R2 = 0.39,
p = 0.6; no patient—prosthesis mismatch: R2 = 0.40, p = 0.08).

CONCLUSION: Aortic valve replacement leads to early improvement of left ventricle function and myocardial metabolism in all patients
regardless of the occurrence of patient—prosthesis mismatch.
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INTRODUCTION

Aortic stenosis is associated with left ventricle (LV) hypertrophy
that involves diastolic and systolic disturbances, collagen network
abnormalities, impaired coronary perfusion, and alterations in
myocardial high-energy phosphate metabolism [1–4]. Aortic
valve replacement (AVR) leads to hemodynamic and metabolic
improvement and to favorable changes in myocardial perfusion
contributing to prolongation of survival [3,5–7]. A number of
factors may influence long-term clinical results after successful
AVR. Among these, the impact of patient—prosthesis mismatch
(PPM) on surgical results is still an intriguing matter of debate
[8–12]. Many variables, largely unknown, might influence clinical
results in patients with PPM; the energetic state of the myocar-
dium and the relationship with LV function following AVR have
not been studied in details so far in these patients.

This study investigated the high-energy phosphate
metabolism and its relationship with LV geometry and LV

diastolic dysfunction in patients with PPM versus a comparative
model of patients without PPM.

MATERIALS AND METHODS

Definition of PPM

PPM occurs when the size of an artificial valve is inadequate for
the patient body size. As previously reported, PPM can be pre-
dicted by calculating the projected effective orifice area derived
from the published normal values for the model and size of
prosthesis indexed to body surface area [13]. PPM was previously
defined as not clinically significant (i.e., mild or no PPM) if
effective orifice area was >0.85 cm m−2, as moderate if the area
was >0.65 cm m−2 and 0.85 cm m−2 or less, and severe if it was
0.65 cm2 m−2 or less. For the purpose of this study, we defined
PPM as an indexed effective orifice area of 0.75 cm2 m−2 or less.
The selection of this value was based on results of previous
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studies [10,12–14]. In addition, we did a preliminary analysis
that confirmed that this cutoff value provides the best comprom-
ise between sensitivity and specificity in the aim of this study
end point.

Study population

Between January 2007 and January 2009, all patients undergoing
AVR for pure aortic stenosis with an aortic annulus of 19–23 mm,
determined after adequate (transthoracic and/or transesopha-
geal) echocardiographic examination, were evaluated for inclu-
sion in the study. Indications for surgery were mean gradient
higher than 50 mmHg and/or an aortic valve area less than 1.0 cm2.
To obtain a population as homogeneous as possible and to
avoid any confounding interference on results, exclusion criteria
were: age <60 years, female sex, contraindications to valve
replacement with bioprosthesis, associated aortic diseases,
simultaneous mitral or tricuspid replacement or repair, previous
myocardial infarction, evidence of coronary lesions, poor cardiac
function as indicated by ejection fraction <40%, chronic atrial
fibrillation, diabetes mellitus, and fasting low-density lipoprotein
(LDL)-cholesterol level higher than 160 mg dl−1. On the basis of
projected effective orifice area indexed for body surface area of
<0.75 cm2 m−2, 15 patients with PPM were identified. They were
compared to 15 patients without PPM matched for main demo-
graphic, clinical, and surgical variables (Table 1). All patients had
implanted a Medtronic Mosaic® porcine valve.

Surgical technique did not change throughout the study
period [13]. Nineteen patients (63.3%) received a 21-mm pros-
thesis and 11 patients (36.7%) received a 23-mm prosthesis.

Preoperatively, all patients were evaluated with magnetic
resonance (MR) imaging and 31P MR spectroscopy. Both these
analyses were again performed at 12 months after surgery. All
drug treatment affecting the myocardial metabolism and the LV
function was withdrawn 72 h before echocardiographic or MR
evaluations.

The study protocol was approved by the hospital ethics
committee and patients’ informed consent was obtained.

Echocardiographic acquisition

All patients had echocardiographic evaluation before surgery
and were followed up 12 months after the operation and
according to the recommendations of the American Society of
Echography [15]. The peak and mean prosthetic gradients were
calculated from continuous-wave Doppler measurements using
the modified Bernoulli equation.

MR data acquisition and processing

MR imaging was performed on a 1.5-T scanner (Philips Medical
System, The Netherlands) using an electrocardiogram-triggered
cine gradient echo for short- and long-axis two-dimensional
sequence [4]. Slice thickness was 8 mm, interslice gap 2 mm, by
means of a breath-hold technique in end-expiratory position.
Images encompassed the entire LV. Phase-contrast flow-velocity
measurements across the mitral valve orifice were obtained by
using a gradient-echo sequence with retrospective electrocardio-
graphic gating. Velocity maps were acquired across the mitral
orifice by using a flip angle of 30° and an echo time of 10–12
ms. The image section had a thickness of 8 mm and a field view
of 350 mm and consisted of two measurements of a 128 × 128
acquisition matrix that was interpolated to a display matrix of
256 × 256 pixels. Depending on the heart rate, between 30 and
50 time frames were distributed during the cardiac cycle, result-
ing in a temporal resolution of 25–35 ms. Total acquisition time
was about 5 min. The maximum phase shift of 180° was set to
occur at a velocity of 100 cm s−1. The LV short-axis acquisitions
were used to assess dimensions, wall mass, and systolic function.
For the analysis, the images were displayed on a computer
monitor in a movie-loop mode. The endocardial and epicardial
borders of the end-diastolic and end-systolic images from
each short-axis section were manually traced with a cursor.
Whenever the epicardial borders were outlined, the epicardial
fat was excluded; whenever the endocardial borders were
drawn, the papillary muscle was regarded as being part of the
ventricular cavity.
During the entire MR examination, blood pressure and heart

rate were recorded every 2 min. Image analyses were performed
by two blinded observers. The surface areas of the endocardial
tracings in end diastole and end systole were summed up and
multiplied by section thickness and section factor to produce the
LV end-diastolic chamber volume and LV end-systolic chamber
volume which were normalized for body surface area. Stroke
volume was the difference between LV end-diastolic chamber
volume and LV end-systolic chamber volume. Cardiac output was
stroke volume multiplied by the average heart rate. LV ejection
fraction was stroke volume divided by the LV end-diastolic
chamber volume. LV wall volume was obtained by the difference
between summed diastolic epicardial and endocardial borders
multiplied by section thickness. LV wall volume was multiplied by
factor for specific density of cardiac muscle (1.05 g cm−3) to yield
LV mass, which was normalized to body surface area. LV hyper-
trophy was defined as an indexed LV mass more than 130 g m−2

in men [16]. Volumetric flow across the mitral valve was calculated
by manually tracing the borders of the mitral valve in all time
frames of the velocity map series. Flow curves were analyzed
following indication of the start of early filling, peak early filling,
peak atrial contribution to filling, and the end of filling.

Table 1: Preoperative and surgical variables

Variable PPM (n = 15) No PPM (n = 15) p

Preoperative variables
Age (years) 69.5 ± 4.1 67.4 ± 5.8 0.5
Male sex 15 15
BSA (m2) 1.95 ± 0.16 1.78 ± 0.17 0.008
BMI 29.4 ± 2.8 27.9 ± 2.1 0.1
NYHA Class III 4 (26.6%) 3 (20.0%) 1
EOAi (cm2 m−2/BSA) 0.69 ± 0.05 0.79 ± 0.04 <0.001

Surgical variables
Pump time (min) 82 ± 11 76 ± 18 0.3
Cross clamp time (min) 68 ± 28 61 ± 30 0.5
Valve size

21 mm 14 (93.3%) 5 (33.3%) <0.001
23 mm 1 (6.7%) 10 (66.7%) <0.001

Values are expressed as mean ± standard deviation or number (%).
The p value determined by analysis of variance or χ2 test. BSA: body
surface area; BMI: body mass index; EOAi: indexed effective orifice
area.
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Acceleration and deceleration peak values were calculated as the
maximal change in ml s−1 (expressed as ml s−2) obtained from the
velocity-encoded MR imaging acquisitions.

These parameters were not indexed due to similar cardiac
output and body mass index between the groups. LV diastolic per-
formance was evaluated according to Thomas and Weyman [17].

31P MR spectroscopy was performed with a 1.5-T system
(Philips Medical System, The Netherlands) equipped with multinu-
clei hardware for 31P MR. Considering that myocardial high-energy
phosphate metabolism can be measured by 31P MR spectroscopy
in several ways, technical details were assessed according to Lamb
and Bayerbacht [4,18]. A 100-mm-diameter surface coil served as
both transmitter and receiver of the radio-frequency signals.
Changes in myocardial high-energy phosphate metabolism were
expressed as changein the myocardial phosphocreatine/adenosine
triphosphate ratio. Myocardial 31P spectra were obtained from the
anterior wall of the LV, with subjects in supine position.
Acquisition of 31P MR spectra was triggered 200 ms after the R
wave of the electrocardiographic signal, with a minimum recycle
time of 3 s. Acquisition time for a single spectrum was 30 min. The
adenosine triphosphate level in the cardiac 31P MR spectra was
corrected for the adenosine triphosphate contribution from blood
present in the volume of interest. Spectra were also corrected for
partial saturation effects. Mean repetition time was 3.6 s, resulting
in a correction factor of 1.35, which was applied to all blood-
corrected cardiac phosphocreatine/adenosine triphosphate ratios.

Statistical analysis

Continuous data are presented as mean ± standard deviation and
categorical data as proportion. Comparison between continuous
variables was done by the Student’s t-test for normally distributed
features; otherwise, the Mann—Whitney U test was used for vari-
ables not normally distributed. Results were compared by analysis
of the χ2 test or the Fisher’s exact test as appropriate. A p-value
of <0.05 was considered to indicate a statistically significant
difference. Pairwise correlations were determined by using linear
regression analysis to determine associations between LV mass,
LV function, and myocardial phosphocreatine—adenosine
triphosphate ratio. One-way analysis of variance (ANOVA) was
performed in order to determine whether the association
between the variables was statistically significant. To assess the

effect of PPM on variables, we developed a first model with PPM
entered as a dichotomous variable (PPM: indexed effective orifice
area ≤0.75 cm2 m−2 vs no PPM) and then a second model with
indexed effective orifice area entered as a continuous variable.

RESULTS

Myocardial function

Mean indexed orifice area was 0.71 ± 0.06 cm2 m−2 in patients
with PPM vs 0.79 ± 0.04 cm2 m−2 in patients without PPM
(p < 0.001). Postoperative mean prosthetic gradients were low
without any statistical difference between groups (p = 0.3).
Regression of indexed LV mass was significant in both groups, al-
though the mean values were overall persistently high in both
groups. Preoperative mean indexed LV diastolic volume was 96
± 25 ml m−2, while 12 months after surgery it improved signifi-
cantly to 79 ± 17 ml m−2 in PPM group (p = 0.03) and to 77 ± 19
ml m−2 in no PPM group (p = 0.03). Mean preoperative early ac-
celeration peak was 5.9 ± 0.9 × 10−2 ml s−2. Twelve months after
valve replacement, it increased to 6.5 ± 0.6 × 10−2 ml s−2 in PPM
patients (p = 0.01) and to 6.7 ± 0.8 × 10−2 s−2 in patients without
PPM (p = 0.01). Mean preoperative early deceleration peak was
−2.8 ± 0.6 × 10−2 ml s−2. Twelve months after surgery it decreased
to −3.1 ± 0.4 × 10−2ml s−2 in the PPM group (p = 0.1) and to −3.3
± 0.6 × 10−2 ml s−2 in the no PPM group (p = 0.06) (Table 2).

Myocardial metabolism

The mean myocardial phosphocreatine/adenosine tripho-
sphate ratio before surgery was 1.13 ± 0.1. It increased signifi-
cantly to 1.42 ± 0.5 (p = 0.03) in the PPM group and to 1.48 ± 0.5
(p = 0.01) in the no PPM group (Table 2).

Relation between LV geometry, LV function, and
myocardial high-energy phosphate metabolism

Correlations between LV geometric and functional parameters
were determined for all patients before AVR and 12 months
after surgery. For this purpose, for each group of patients the

Table 2: Left ventricle geometry, function and metabolism before and after AVR

PPM No PPM p*

Before AVR After AVR p Before AVR After AVR p

MPG 85 ± 14 21 ± 9 <0.001 87 ± 12 19 ± 5 <0.001 0.3
ILVM 183 ± 58 148 ± 12 0.02 181 ± 52 142 ± 20 0.01 0.2
LVEF 51 ± 8 53 ± 7 0.5 51 ± 9 54 ± 11 0.4 0.7
CO 4.3 ± 0.5 4.5 ± 0.6 0.3 4.3 ± 0.4 4.4 ± 0.7 0.6 0.7
EAP (ml s−3) 5.8 ± 0.9 6.5 ± 0.6 0.01 6 ± 0.9 6.7 ± 0.8 0.01 0.4
EDP (ml s−3) −2.8 ± 0.6 −3.1 ± 0.4 0.1 −2.8 ± 0.8 −3.3 ± 0.6 0.06 0.3
ILVM/ILVEDV ratio (g ml−1) 1.91 ± 0.4 1.83 ± 0.3 0.05 1.92 ± 0.5 1.86 ± 0.6 0.05 0.8
ILVEDV (ml m−2) 94 ± 28 79 ± 17 0.03 95 ± 25 77 ± 19 0.03 0.7
PCr/ATP 1.12 ± 0.1 1.42 ± 0.5 0.03 1.13 ± 0.2 1.48 ± 0.5 0.01 0.7

ATP: adenosine triphosphate; AVR: aortic valve replacement; CO: cardiac output; EAP: early acceleration peak; EDP: early deceleration peak; ILVEDV:
indexed left ventricular end-diastolic volume; ILVM: indexed left ventricular mass; LVEF: left ventricular ejection fraction; MPG: mean trans-prosthetic
gradient; p: p values within groups before and after AVR; p*: p values between groups after AVR; PCr: phosphocreatine.
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indexed LV mass was analyzed for correlation to LV systolic and
LV diastolic function parameters. Impaired diastolic filling was
associated with increased LV wall mass in both groups, as
reflected by a significant correlation between indexed LV mass
and early acceleration peak (PPM group: R2 = −0.71, y = −12.15x
+ 245.5, p = 0.002; no PPM group: R2 = −0.88, y = −17.56x + 278.6,
p < 0.001) and early deceleration peak (PPM group: R2 = 0.68, y =
24.74x + 92.2 p < 0.001; no PPM group: R2 = 0.68, y = 28.85x +
87.7, p < 0.001).

For all 30 patients, myocardial high-energy phosphate metab-
olism data were analyzed for correlation to parameters describing
LV geometry and function. The myocardial phosphocreatine/ad-
enosine triphosphate ratio was modestly correlated to the early
acceleration peak in both the groups (PPM group: R2 = 0.37,
y = 8.28x + 4.7, p = 0.03; no PPM group: R2 = 0.17, y = 3.85 + 1.3,
p = 0.02) (Fig. 1), and to the early deceleration peak (PPM group:
R2 = 0.30, y = −2.8x + 5.8, p = 0.01; no PPM group: R2 = 0.39,
y = 2.88x + 6.99, p = 0.008). There was no significant correlation
between the phosphocreatine/adenosine triphosphate ratio
and indexed LV mass (PPM group: R2 = 0.39, y = −133.9x + 347.7,
p = 0.6; no PPM: R2 = 0.40, y = −74.76x + 268.4, p = 0.08) (Fig. 2).

DISCUSSION

Preoperative impaired myocardial high-energy phosphate me-
tabolism in patients with aortic valve stenosis improved following

valve replacement. A statistically significant correlation between
myocardial high-energy phosphate metabolism and LV diastolic
function was demonstrated in both groups of study. Our results
failed to evidence significant differences between the groups of
patients with or without PPM.

Diastolic function

Impaired diastolic function in patients with aortic valve stenosis is
a risk factor for early and late mortality after surgery [19]. Patients
with clinically significant aortic stenosis show impaired diastolic
filling influenced by several determinants such as left atrial
pressure, LV end-diastolic volume, LV systolic function, intrinsic
myocardial stiffness, and the LV relaxation constant [20,21].
AVR relieves LV pressure overload and reduces wall stress both

of which could affect LV hypertrophy regression. As a conse-
quence, improvement in diastolic function after AVR has been
usually attributed to the regression of LV mass. Nevertheless,
these assumptions are incongruent with the evidence that
patients with low gradients had similarly impaired LV hyper-
trophy regression during the mild-term follow-up as patients
with higher gradients. Therefore, it is reasonable that the early
reduction in pressure overload immediately after surgery, when
hypertrophy is still present, could itself lead to improvement in
diastolic function. Our results are consistent with this hypothesis.
Despite the occurrence of PPM, LV mass was persistently
impaired, whereas almost all patients showed a significant

Figure 1: Diastolic function parameters (early acceleration peak) analyzed for
correlation to myocardial high-energy phosphate (HEP) metabolism
expressed as myocardial phosphocreatine (PCr)-to-adenosine triphosphate
(ATP) ratio.

Figure 2: Indexed left ventricular mass index (ILVM) analyzed for correlation
to myocardial high-energy phosphate (HEP) metabolism expressed as myo-
cardial phosphocreatine (PCr)-to-adenosine triphosphate (ATP) ratio.
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remission of mean prosthetic gradients and had a recovery of LV
diastolic volume.

Myocardial metabolism

The effect of AVR on myocardial high-energy phosphate metab-
olism has been previously evaluated by Beyerbacht who first
reported that it is substantially deranged in patients with severe
aortic stenosis and normal coronary artery [4]. A reduced myo-
cardial metabolism before AVR may be an indicator of a relative
myocardial ischemia due to myocardial oxygen mismatch from
decreased coronary flow reserve and abnormal coronary blood
flow velocity in a hypertrophic heart. The decrease in coronary
flow reserve and abnormal coronary blood flow-velocity profiles
have been found to correlate with an increase in LV wall stress
[22,23]. Relief of LV wall stress by means of a near to normal
trans-prosthetic gradient after AVR, as obtained in both groups
of patients, led to a nearly complete normalization of
myocardial high-energy phosphate metabolism regardless of the
occurrence of PPM.

Relation between function and metabolism

Both groups of patients, in spite of PPM, had a significant
improvement of postoperative myocardial phosphocreatine/
adenosine triphosphate ratio, which was associated with better
LV diastolic function. The exact nature of the relation between
myocardial high-energy phosphate metabolism and heart dia-
stolic function and geometry is not yet completely clear. It
seems likely that relieved gradient after AVR leads to improved
coronary flow, which may play a key role for optimized myocar-
dial metabolism and for LV remodeling by a number of struc-
tural and functional changes [22,24]. In addition, it is reasonable
that the relieved hemodynamic burden reduces the wall stress
and restores a near-to-normal myocardial metabolism despite
the complete normalization of LV mass, which is a slow process
that takes years to ameliorate and may continue for decades
after surgery by the regression of both muscular and nonmuscu-
lar, predominantly collagen, tissue [25]. Our results support the
hypothesis that the relief of aortic obstruction due to AVR consti-
tutes the main mechanism of restored high-energy phosphate
metabolism and improved LV function. The absence of a signifi-
cant correlation between myocardial phosphocreatine/adeno-
sine triphosphate ratio and indexed LV mass, in spite of the
occurrence of PPM, could confirm that LV hypertrophy by itself
has no negative consequences for cardiac metabolism and it is
not a prerequisite of impaired myocardial metabolism, as
described in patients with hypertension and high LV mass who
did not show any significant correlation between myocardial
phosphocreatine/adenosine triphosphate ratio and indexed LV
mass [18].

This study has several limitations that deserve mention. First,
the relatively small sample size of patients enrolled due to the
long examination time needed for the combined MR imaging
and 31P MR spectroscopy. However, although a sample of 30
patients may appear underpowered, the strict selection criteria
of a highly homogeneous population of study enabled to draw
statistically significant conclusions. In addition, the small sample
size reflects the single-center design of study, which, on the
other hand, guarantees the essential uniformity in patient

selection, surgical technique, and postoperative care. Second, we
were unable to monitor changes in loading conditions and left
atrial filling pressures, which may all affect LV function. In an
effort to reduce the impact of these variables, we enrolled
patients with isolated aortic stenosis and normal systolic func-
tion, who were not taking any drug treatment affecting the filling
conditions. Ultimately, systemic metabolic data affecting high-
energy phosphate metabolism (e.g., plasma free fatty acid levels)
have not been evaluated. However, all patients were selected as
not having evidence of metabolic disorders.
In conclusion, AVR for aortic stenosis leads to improved

myocardial metabolism and LV diastolic function in parallel with
reduction in aortic gradient, regardless of the occurrence of
PPM. The present study may provide another piece of evidence
in the ongoing discussion of PPM, which still remains a matter of
unresolved debate.
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