
J Sci Comput (2014) 61:239–257
DOI 10.1007/s10915-014-9824-2

A Scalable Approach for Variational Data Assimilation

Luisa D’Amore · Rossella Arcucci ·
Luisa Carracciuolo · Almerico Murli

Received: 9 December 2013 / Revised: 19 January 2014 / Accepted: 25 January 2014 /
Published online: 8 February 2014
© Springer Science+Business Media New York 2014

Abstract Data assimilation (DA) is a methodology for combining mathematical models
simulating complex systems (the background knowledge) and measurements (the reality or
observational data) in order to improve the estimate of the system state (the forecast). The
DA is an inverse and ill posed problem usually used to handle a huge amount of data, so, it
is a large and computationally expensive problem. Here we focus on scalable methods that
makes DA applications feasible for a huge number of background data and observations. We
present a scalable algorithm for solving variational DA which is highly parallel. We provide
a mathematical formalization of this approach and we also study the performance of the
resulted algorithm.
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1 Introduction and Motivations

Data assimilation (DA) has long been playing a crucial role in numerical weather prediction
and oceanography [15,22,38] and more in general, in climate science; recently, DA is also
applied to numerical simulations of geophysical applications [3], medicine and biological
science [9,42] for improving the reliability of the numerical simulations.

Data assimilation (DA) is an ill posed inverse problem [31] and, today, there are a lot of
DA algorithms. Two main methods gained acceptance as powerful methods for data assimi-
lation in the last decennium: the variational approach and the Kalman Filter. The variational
approach [29] is based on the minimization of a functional which estimate the discrepancy
between numerical results and measures. The Kalman Filter [21] is a recursive filtering
instead. Recently, were developed algorithms (see [2]) which are an intermediate between
the two approaches, i.e. the back and forth nudging algorithm, consisting in adding to the
equation of the model a relaxation term that fits the model to the observations. Most signifi-
cant feature of such approaches is the very large computational burden required in concrete
scenarios [32]. The parallel processing is necessary for the numerical solution of these prob-
lems, but it is not sufficient. These large-scale problems are computationally difficult and
their solution requires designing of scalable approaches. Many factors contribute to scala-
bility, including the architecture of the parallel computer and the parallel implementation of
the algorithm. However, one important issue is the scalability of the algorithm itself. Here,
scalability refers to the capability of the algorithm to [23]:

1. exploit performance of emerging computing architectures in order to get a solution in a
real time (strong scaling),

2. use additional computational resources effectively to solve increasingly larger problems
(weak scaling).

As claimed in [13], problem partitioning (decomposability: to break the problem into small
enough independent less complex subproblems) is a universal source of scalable parallelism;
the approach we introduce here meets the following demand: parallelization should be con-
sidered from the beginning [1,36].

1.1 The Present Work

A research collaboration between us and CMCC (Centro Euro Mediterraneo per i Cambi-
amenti Climatici) give us the opportunity to use the DA software called OceanVar [8,11].
OceanVar is based on a three dimensional variational scheme (3D-Var) and it is used in
Italy to combine observational data (Sea level anomaly, sea-surface temperatures, etc.) with
backgrounds produced by computational models of ocean currents for the Mediterranean Sea
(namely, the NEMO framework, [37]), within the Mediterranean Forecasting System (MFS).
The final aim of this research is to integrate the existing software code of OceanVar with
NEMO software into a high performance computing environment able to take advantage of
the emerging architectures, while fulfilling the requirements of its configuration coupled with
the existing parallel forecast model, within the MFS.

Starting from this demand, we present a scalable approach for variational DA: we introduce
a decomposition of the global domain into sub domains. On these sub domains we define
local 3D-Var functionals and we prove that the minimum of the global 3D-Var functional
can be obtained by collecting the minimum of each local functional. The (global) problem
is decomposed into (local) sub problems in such a way. The resulted algorithm consists of
several copies of a slightly modified 3D-Var algorithm, each one requiring approximately the
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same amount of computations on each sub domain and an exchange of boundary conditions
between adjacent sub domains. The data is flowing across the surfaces, the so-called surface-
to-volume effect is produced [4,14].

We perform a feasibility analysis of the algorithm, analyzing its execution time and scal-
ability. To this aim we introduce the scale-up factor as performance metric of the algorithm.

In conclusion, the benefits of this approach are the following:

1. efficiency: the subproblems are computationally easier (smaller) than the original;
2. parallelism: the subproblems can be solved concurrently;
3. design of innovative numerical algorithms (ensamble-based variational data assimilation

EnDA).

Our approach allows to tackle the ill conditioning of DA inverse and ill posed problem
without reducing the number of available data furthermore, as discussed in [20].

The paper is organized as follows. In Sect. 2 we review main results related to our work. In
Sect. 3 we introduce the domain decomposition and the functional defined on this decomposi-
tion by using restriction and extension operators. In Sect. 4 we introduce the three dimensional
variational data assimilation problem. It will be employed in our testing problem discussed
in Sect. 5. Conclusions are drawn in Sect. 6.

2 Related Works

During the last 20 years, parallel algorithms for data assimilations reached a widespread
interests at many federal research institutes as well as at many universities [NCAR (National
Center for Atmospheric Research), NCEP (National Centers for Environmental Prediction),
DWD (Deutscher Wetterdienst), UK Met Office, JMA (Japan Meteorological Agency),
CMC (Canadian Association of Management Consultants) and the CMCC (Centro Euro-
Mediterraneo per i Cambiamenti Climatici)].

Good scalability of the data assimilation system is necessary to make these applications
feasible. Sequential data assimilation methods based on ensemble forecasts (an example is the
ensemble based Kalman Filters) provide scalability, because the forecast of each ensemble
member can be performed independently. The ensemble approach has to be combined with
the parallelization of the numerical model and the data assimilation algorithm yet. In order to
simplify the implementation of scalable data assimilation systems based on existing numerical
models, the Parallel Data Assimilation framework (PDAF) has been developed [40]. PDAF
provides several parallel DA algorithms. Ensemble filters like the Local Ensemble Transform
Kalman Filter (LETKF) and the Error Subspace Transform Kalman Filter (ESTKF) are
included.

The present work is an effort to the development of variational data assimilation scalable
algorithms.

3 Preliminaries

In this section, we explain the mathematical setting of the decomposition of the space and
the functions. We also state some notations, we will need to use it later.

Definition 1 (Domain decomposition) Let Ω ⊂ �N be decomposed into a sequence of
overlapping sub domains Ωi ⊂ �ri , ri ≤ N , i = 1, . . . , p such that
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Ω =
p⋃

i=1

Ωi (1)

where

Ωi ∩Ω j = Ωi j �= ∅.
�	

Let t ∈ [0, T ]. Let f be a function belonging to the Hilbert space K([0, T ] ×Ω), that is:

f (t, x) : [0, T ] ×Ω �→ �
Associated with decomposition (1) we define the Restriction Operator:

Definition 2 (Restriction operator) Let us define:

ROi : K([0, T ] ×Ω) �→ K([0, T ] ×Ωi )

such that:

ROi ( f (t, x)) ≡ f (t, x), (t, x) ∈ [0, T ] ×Ωi .

Moreover, for simplicity of notations, we let:

f RO
i (t, x) ≡ ROi [ f (t, x)].

�	
In this respect we define the adjoint Extension Operator also. Given a set of p functions
gi , i = 1, . . . , p, each belonging to the Hilbert space K([0, T ] ×Ωi ):

Definition 3 (Extension operator) Let us define:

EOi : K([0, T ] ×Ωi ) �→ K([0, T ] ×Ω)

such that:

EOi (gi (t, x)) =
{

gi (t, x) x ∈ Ωi

0 elsewhere
.

Moreover, for simplicity of notations, we let:

gEO
i (t, x) ≡ EOi [gi (t, x)].

�	
We observe that, for any function f ∈ K([0, T ] ×Ω), associated to the decomposition (1),
it holds that

f (t, x) =
∑

i=1,p

EOi
[

f RO
i (t, x)

]
. (2)

Given p functions gi (t, x) ∈ K([0, T ] ×Ωi ), the summation
∑

i=1,p

gEO
i (t, x) (3)
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defines a function g ∈ K([0, T ] ×Ω) such that:

RO j [g(t, x)] = RO j

⎡

⎣
∑

i=1,p

gEO
i (t, x)

⎤

⎦ = g j (t, x).

We will use the same notation to denote the restriction/extension operators acting on points
and vectors. If Ω = {x1, x2, . . . , . . . , xNP} ⊆ �NP×N and f=( f (x1), f (x2), . . . , f (xNP)) ∈
�NP, where f : �N �→ �, let us assume that Ω can be decomposed into a sequence of p ≥ 1
overlapping sub domains Ωi such that

Ω =
p⋃

i=1

Ωi

where Ωi ⊂ �ri×N and ri ≤ NP. Hence

ROi (f) ≡ fROi ≡ ( f (xi ))xi∈Ωi , fROi ∈ �ri .

In this respect we define the adjoint Extension Operator also. If g = (g(zi ))zi∈Ωi , it is

EOi (g) =
{

g(zk) zk ∈ Ωi

0 elsewhere

and EOi (z) ≡ gEOi ∈ �NP.
Let w ∈ �NP, and let C(w) denote the matrix such that:

C(w) = wwT .

Associated to the domain decomposition (1), we define:

Definition 4 (Covariance matrix decomposition) Let C(w) ∈ �NP×NP be the covariance
matrix of a random vector w = (w1, w2, . . . , wNP) ∈ �NP, that is coefficient ci, j of C is
ci, j = σi j ≡ Cov(wi , w j ). Let s < NP, we define the restriction operator ROs onto C(w)

as follows:

ROs : C(w) ∈ �NP×NP �→ ROs[C(w)]
def︷︸︸︷= C(wROs) ∈ �s×s

i.e., it is the covariance matrix defined on the restriction wROs of w. �	
Hereafter, we refer to C(wROs) using the notation Cs.

4 The DA Mathematical Model

In this section we define the DA inverse problem and the three dimensional variational (3D-
Var) DA problem. Finally, we prove the main result: we obtain the minimum of the global
functional (defined on the entire domain) as a piecewise function by collecting the minimum
of each local functional (defined on a sub domain).

We underline that the assumptions we will do (for example the assumption concerning the
covariance matrices) come out from applications of the DA on the real problems. Regarding
the numerical approach, we refer to the 3D-Var algorithm as implemented in OceanVar [11]
instead. Let t ∈ [0, T ], x ∈ Ω ⊂ �N and let u(t, x) be the state evolution of a predictive
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system from time t −Δt to time t , governed by the mathematical model Mt [u(t, x)]. So, it
is

Mt−Δt,t : u(t −Δt, x) �→ u(t, x). (4)

At each time, the system state at time t depends on the initial condition.
Let:

v(t, y) = H(u(t, y)), y ∈ Ω, (5)

denote the observations mapping, where H is a given nonlinear operator that includes trans-
formations and grid interpolations.

The aim of the DA problem is to find an optimal tradeoff between the current estimate
of the system state (background) and the available observations at that time. More precisely,
according to the practical applications of model-based assimilation of observations, we will
use the following definition of DA.

Let {tk}k=0,1,..., be a discretization of the interval [0, T ], where tk = t0 + kΔt , and let
DNP(Ω) = {(x j )} j=1,...,NP ∈ �NP×N , be a discretization of Ω ⊂ �N , where x j ∈ Ω .

For each k = 0, 1, . . ., we consider

– ub
k = {u j

k }bj=1,...,NP ≡ {u(tk, x j )
b} j=1,...,NP ∈ �NP: (background) numerical solution of

the model Mt [u(t, x)] on {tk} × DNP(Ω);
– vk = {v(tk , y j )} j=1,...,nobs : the vector values of the observations on y j ∈ Ω at time tk ;
– H(x) � H(y) + H(x − y): a linearization of H, where H ∈ �NP×nobs is the matrix

obtained by the first order approximation of the Jacobian of H and nobs� NP;
– R and B the covariance matrices of the errors on the observations and on the background,

respectively. These matrices are symmetric and positive definite.

Definition 5 (The DA inverse problem) The DA inverse problem is to compute the vector
uDA

k = {u j
k }DA

j=1,...,NP ∈ �NP such that:

vk = H[uDA
k ]

Since H is typically rank deficient and highly ill conditioned, DA is an ill posed inverse
problem [31]. The Tikhonov-regularized formulation leads to an unconstrained least square
problem [44]. The weighted background term acts as a regularization term, and it ensures
the existence of a solution with reduced sensitivity [26,27]. In the following we let time tk
be fixed, i.e. we consider the so-called 3D-Var DA problem, then for simplicity of notations,
we refer to ub

k and uDA
k omitting index k.

Definition 6 (The 3D-Var DA problem) 3D Variational DA problem is to compute the vector
uDA such that

uDA = argminu∈�NP J (u) = argminu

{
‖Hu− v‖2R + λ‖u− ub‖2B

}
(6)

where λ is the regularization parameter, while ‖ ·‖B and ‖ ·‖R denote the weighted euclidean
norm on �NP. �	
So, the 3D-Var operator is:

J (u) = (Hu − v)T R(Hu − v)+ λ(u − ub)T B(u − ub). (7)

It depends on u, R, B, and DNP(Ω), then in order to emphasize these relationship, we write
J (u, R, B, DNP(Ω)).
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Remark The 3D-Var operator depends on the regularization parameter, too. As is evident,
when the regularization parameter λ tends to zero the regularized problem tends to the DA (ill
posed) inverse problem, while larger values are expected to produce more stable solutions but
with less fidelity to the observations and background state. Furthermore, we see that reducing
the regularization parameter has the effect of increasing the uncertainty in the background,
which means the data assimilation scheme trusts the observation term more. Conversely,
increasing the regularization parameter has the effect of decreasing the uncertainty in the
background which means the data assimilation scheme trusts the background term more.
Therefore, the regularization parameter plays an important trade-off role.

The choice of a good regularization parameter is one of the most important issues in
solving inverse problems and there exists a significant amount of research in the literature on
the development of appropriate strategies for selecting regularization parameters. Parameter
choice methods can be classified according to the input they require. There are two basic
types

– a-priori methods, requiring information about the noise level on data. The discrepancy
principle, developed and analyzed by Morozov [35] is the oldest one of them.

– data-driven methods, require no extra information. The Generalized cross-validation
(GCV), due to Wahba [16], is one of the most popular methods.

Of course, latter methods are more expensive than the former ones, which are mainly
used in operational data assimilation. Recently [5,12,45], some experiments focusing on
the regularization parameter estimation based on data-driven methods (L-Curve and GCV)
have been performed with the aim of analyzing the improvement of the computed result
by variational data assimilation. In general, operational DA software assume λ = 1. By
choosing λ = 1 can be considered as giving the same relative weight to the observations in
comparison to the background state. Here, following the OceanVar and NEMOVAR software,
we let λ = 1.

Associate to the decomposition given in Sect. 2, we give the following:

Definition 7 (Functional restriction) We generalize the definition of the restriction operator
ROi acting on J , as follows:

ROi : J (u, R, B, DNP(Ω)) �→ J (uROi , ROi [R], ROi [B],Ωi )

�	
For simplicity of notations, and to underline that the restriction operator is associated to the
domain decomposition given in Sect. 2 we let:

J (uROi , ROi [R], ROi [B],Ωi ) ≡ JΩi

Definition 8 (Functional extension) We generalize the definition of the extension operator
EOi acting on J as

EOi : JΩi �→ J EOi
Ωi

,

where

EOi [JΩi ] =
{

JΩi x ∈ Ωi

0 elsewhere

�	
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We observe that

J (u, R, B, DNP(Ω)) =
∑

i=1,p

J EOi
Ωi

. (8)

We are now able to define the local 3D-Var regularization functionals. A local 3D-Var reg-
ularization functional describes the local DA problem on a sub domain Ωi of the domain
decomposition. It is obtained applying the restriction operator to the 3D-Var regularization
functional J and by adding a local constraint to such restriction then. This is in order to
enforce the continuity of each solution of the local DA problem onto the overlap region
between adjacent domains Ωi and Ω j .

Definition 9 (Local 3D-Var regularization functional) Let us introduce the operator Ji

defined as follows:

Ji (uROi) = ‖HiuROi − vROi‖2Ri
+ ‖uROi − (ub)ROi‖2Bi

+ μ‖uROi/Ωi j − uROj/Ωi j‖2Bij

(9)

where vROi , uROi , Ri, Bi, Hi and (ub)ROi are restrictions on Ωi of vectors and matrices in
(7), and uROi/Ωi j , uROj/Ωi j , Bij are restriction on Ωi j = Ωi ∩Ω j of the quantities defined
in (7). Parameter μ is the regularization parameter. �	
Parameter μ is equal to 1: it ensures the continuity of each solution of the local DA problem
onto the overlap region between adjacent domains while keeping it sufficiently close to
observations and background state, with the same relative weight.
We observe that each Ji is quadratic (and convex) then its minimum is unique. Let

uDA
i = argminu Ji (u). (10)

We are able to prove the following result:

Theorem 1 If

Ω =
⋃

i=1,p

Ωi

is a decomposition of Ω then, under the assumptions of Sect. 2, let

ũDA
DEF︷︸︸︷=

∑

i=1,p

(uEOi
i )DA , (11)

then it follows that:

ũDA = uDA.

Proof The functional J as well as all the functionals Ji , are quadratic (hence, convex), so
their unique minimum, uDA and uDA

i , respectively, are obtained as zero of their gradients,
i.e.:

∇ J [uDA] = 0 , ∇ Ji [uDA
i ] = 0. (12)

From the Definition 9 of Ji it is

∇ Ji [uDA
i ] = ∇ JΩi [uDA

i ]. (13)
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By applying the extension operator EOi (see Definition 3) to uDA
i , instead of uDA

i , we may

consider the vector (uEOi
i )DA. From the Definition of the extension operator EOi it is:

uDA
i =

∑

j

(uEOi
i )DA, on Ωi . (14)

Applying the extension operator EOi to JΩi , and from the (12), the (13), and the (14), it
follows that

0 = ∇ JΩi (u
DA
i ) = ∇ J EOi

Ωi

⎛

⎝
∑

j

(uEOi
j )DA

⎞

⎠ . (15)

From (8), by summing each equation in (15) for i = 1, . . . , p on all sub domains Ωi and
from (11) it follows that:

∑

i

∇ J EOi
Ωi

⎛

⎝
∑

j

(uEOi
j )DA

⎞

⎠ = 0⇔
∑

i

∇ J EOi
Ωi

(̃uDA) = 0. (16)

Thanks to the linearity of the gradients of JΩi , it is
∑

i

∇ J EOi
Ωi

(̃uDA) = ∇
∑

i

J EOi
Ωi

(̃uDA) = (17)

where the last term in (17) is

= ∇ J (̃uDA). (18)

Hence, from the (16), the (17) and the (18) it follows
∑

i

∇ JΩi (̃u
DA) = 0⇔ ∇ J (̃uDA) = 0.

Finally,

∇ J (̃uDA) = 0⇒ ũDA ≡ uDA,

where the last equality holds because the minimum of J is unique. �	
This result ensures that uDA (the minimum of J ) can be obtained by patching together all
the vectors uDA

i (minimum of the operators JΩi ), i.e. by using the domain decomposition,
the global minimum of the operator J can be obtained by patching together the minimum
of the local functionals JΩi . This result has important implications from the computational
viewpoint as it will be explained in the next section.

4.1 The Preconditioned 3D-Var Functional

The ill conditioning of the DA inverse problem (i.e. the sensitivity of the analysis to small
perturbations in the data), depends on the conditioning of the Hessian of J . Small errors in
the Hessian lead to large errors in its inverse, so the computed solution to the DA problem
may be very inaccurate. In designing of the DA schemes, it is important to ensure that the
conditioning of the Hessian is as small as possible, or it is essential to use preconditioning
techniques to improve the conditioning.
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As implemented in OceanVar software, we consider the incremental formulation of the
preconditioned local 3D-Var functionals (see [6] and [7]). More precisely, to compute the
preconditioner matrix Vi we apply a spectral decomposition to Bi. So, we get

Bi = UiDiUT
i = UiDi

1
2 Di

1
2 Ui

T = (UiDi
1
2 )(UiDi

1
2 )T

and by posing Vi = UiDi
1
2 we get Vi such that

Bi = ViVi
T .

Let

di = [vi −Hi(u)ROi ]
be the misfit, and let δuDAi = (uDAi)ROi − (ub)ROi be the increment. By setting wi =
VT

i δuDAi , the cost function becomes

Ji(wi) = 1

2
wi

T wi + 1

2
(HiViwi − di)

T Ri
−1(HiViwi − di)

+1

2

(
Vijwi

+ − Vijwi
−)T (

Vijwi
+ − Vijwi

−)
(19)

where

wi
+ = wi on Ωi j wi

− = wj on Ωi j .

This scheme is the so-called incremental formulation of the preconditioned 3D-Var: the cur-
rent estimate of the solution is updated with its computed increment.1 Each linearised cost
function is minimised in an inner-loop using iterative gradient methods. The minimiser is
then used in an outer-loop step to update the current best estimate of the analysis. Generally
only few iterations of the outer loops are performed. Hereafter, we focus on the inner-loop
minimization which is the most expensive kernel in terms of time consuming.

As implemented in OceanVar software, each linearized preconditioned local functional
is minimized using the L-BFGS (Limited-Broyden–Fletcher–Goldfarb Shanno) method2

(see [41]), so, to compute the minimum, we need to compute the gradient of (19),

∇Ji(wi) = wi + Vi
T Hi

T Ri
−1(HiViwi − di). (20)

The convergence rate of L-BFGS depends on the conditioning of the numerical problem, i.e.
it depends on the condition number of the preconditioned Hessian of Ji [20]:

AJi
=

(
I+ Bi

1/2Hi
T Ri
−1HiBi

1/2
)

1 It was shown [28] that incremental 3D-Var is equivalent to a GaussNewton method [10] (i.e. an approximation
to a Newton iteration, in which the second-order terms of the Hessian are neglected) applied to the full nonlinear
regularization functional.
2 The idea of using the L-BFGS method in variational data assimilation is not new because of its modest
storage requirements and its high performance on large-scale unconstrained convex minimization [39,46].
L-BFGS method is a Quasi–Newton method that can be viewed as extension of conjugate-gradient methods
in which the addition of some modest storage serves to accelerate the convergence rate. The L-BFGS update
formula generates the matrices approximating the Hessian using information from the last m Quasi-Newton
iterations, where m is determined by the user (generally 3 ≤ m ≤ 30). After having used the m vector storage
locations for m quasi-Newton updates, the approximation of the Hessian matrix is updated by dropping the
oldest information and replacing it by the newest information. Hence, time complexity of the L-BFGS increases
linearly with the size of the m vectors [30].
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In [17] the authors have established that the condition number is significantly reduced by
such preconditioning, assuming that:

1. the correlation structures of B are homogeneous and isotopic, the coefficients of B depend
only on the distance between points, i.e. it is:

B = σ 2
b C

where

cij = ρ|i− j |2 , ρ = exp

(−Δx2

2L2

)
, |i − j | < N/2

N is the size of the domain, C denotes the Gaussian correlation structure of the background
errors while σ 2

b is the background error variance. As a consequence:

μ(B) = μ(C)

2. the error covariance matrix R is such that:

R = σ 2
o Inobs

where nobs is the number of the observations and σ 2
o is the observational error variance.

In our testing problems, under the same assumptions on Bi and Ri we experimentally found
that the condition number of the preconditioned (local) Hessian matrix is about of order unity,
and on each sub domain, the minimization of the local 3D-Var functionals requires about the
same number of iterations (<10).

We observe that quantifying observation error correlations is not a straightforward problem
and this is a research issue [20,43]. Secondly, even when good estimates of the errors can be
made, there were conditioning problems with the minimization that had to be overcome [17–
19,24,25]. Observation errors are usually assumed uncorrelated because diagonal matrices
are simple and numerical efficient. However, it is often better to include an approximate
correlation structure in the observation error covariance matrix than to incorrectly assume
error independence, for example, by choosing a suitable matrix approximation (diagonal,
block-diagonal, …). Here, following the OceanVar software, we choose the same correlation
structure of the covariance matrices.

4.2 The Local 3D-Var Algorithm

Let AM3D(ri ) be the notation for the algorithm used to compute the minimum of the local
3D-Var functional on Ωi ⊂ �ri×N . Hereafter we describe the our AM3D(ri ) algorithm: a
modified 3D-Var algorithm on Ωi .

Algorithm 1 AM3D(ri ): Modified 3D-Var algorithm on Ωi , i = 1, . . . , p

1: Input: vi and (ub)ROi

2: Define Hi
3: Compute di ← vi −Hi(ub)ROi

4: Define Ri and Bi
5: Compute the matrix Vi from Bi
6: Define the initial value of uDAi

7: Compute wi ← Vi
T uDAi

8: repeat
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9: Send and Receive the boundary conditions from the adjacent domains
10: Compute Ji ← Ji(wi)

11: Compute gradJi ← ∇Ji(wi)

12: Compute new values for wi by the L-BFGS steps
13: until (Convergence on wi is obtained)
14: Compute uDA

i ← (ub)ROi + Viwi

end

The convergence criterion used in the repeat-until loop, at each iteration iter, is

Ji(iter + 1)− Ji(iter))
max{|Ji(iter)|, |Ji(iter + 1)|, 1} ≤ TOL

where TOL = 10−6 together with a maximum iteration number (about 10).
We observe that AM3D(ri ) requires an exchange of the boundary conditions (local data

communications) between adjacent sub domains only.

5 The Scalable Algorithm ant its Performance Analysis

At the first we analyze the time complexity of the AM3D(ri ) algorithm. The number of
floating point operations required at each step of the AM3D(ri ) algorithm are:

– Step 3 and 14: O(r2
i + ri )

– Step 5: O(r3
i )

– Step 7: O(r2
i )

– Step 10 and 11: O(r2
i + ri )

– Step 12: O(kmri ) (k is the number of iterations of L-BFGS, m is the number of Quasi-
Newton updates of L-BFGS, ri is the size of each sub domain Ωi ; k � ri and m � ri ).

So, the time complexity for performing these floating point operations is T (AM3D(ri )) =
O(p(ri )), where p(ri ) ∈ �3, that is a polynomial of degree 3.

At step 9, AM3D(ri ) requires O(ri ) data exchange between adjacent sub domains, so
additional time is required for this step. This overhead can be estimated by using the so-
called surface-to-volume ratio.

Definition 10 Let S/V be the surface-to-volume ratio. It is a measure of the amount of data
exchange (proportional to surface area of domain) per unit operation (proportional to volume
of domain).

The goal is to minimize this ratio. In case of algorithm AM3D(ri ), we get the surface-to-
volume ratio equals to

S

V
= O(ri )

O(r3
i )
= O

(
1

r2
i

)

and, as the size of each sub domain increases, amount of data exchange per unit computation
decreases.

We now introduce the algorithm associated to the decomposition given in Sect. 2.
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Definition 11 (Scalable algorithm) If p ∈ ℵ, p ≥ 1, the algorithm associated to the decom-
position given in Sect. 2 is

AS3D(NP, p)

def︷︸︸︷= {AM3D(r1), AM3D(r2), . . . , AM3D(rp)︸ ︷︷ ︸
p times

}

where AM3D(ri ) acts on Ωi , subset of DNP(Ω) ⊂ �NP.
We observe that if p = 1, then i = 1, ri = NP and the modified 3D-Var algorithm reduces
to 3D-Var algorithm,

AM3D(ri ) ≡ AS3D(NP)

Definition 12 (Scale up factor) Let p1, p2 ∈ ℵ and p1 < p2. Let T (AS3D(NP, pi )), i = 1, 2
be the time complexity of AS3D(NP, pi ), i = 1, 2. We name (relative) scale-up factor of
AS3D(NP, p2), in going from p1 to p2, the following ratio:

SS3D
p2,p1

(NP) = T (AS3D(NP, p1))

(p2/p1)T (AS3D(NP, p2))
.

The following result allows us to analyze the behaviour of the scale-up factor:

Proposition 1 Let us consider an “uniform” domain decomposition, that is for i = 1, . . . , p
it is ri = NP

p (≡ r , where r is a constant independent on i). Let us assume that 1 ≤ r <∞.
Let us assume that p1 = 1 and let p2 = p. Moreover, if T (AM3D(NP)) has a polynomial

growth of degree d > 1, i.e.

T (AM3D(NP)) = adNPd + ad−1NPd−1 + · · · + a0, ad �= 0

then scale up factor is

SS3D
p,1 (r) = T (AM3D(pr))

pT (AM3D(r))
= α(r, p) pd−1 (21)

where

α(r, p) =
ad + ad−1

pr + · · · + a0
(pr)d

ad + ad−1
r + · · · + a0

rd

and, if r = 1

α(1, p) = β ∈]0, 1]
where, if ai = 0 ∀i ∈ [0, d − 1], then β = 1.

Finally,

lim
r→∞α(r, p) = 1.

Proof It holds

SS3D
p,1 (NP) = ad NPd+ad−1NPd−1+···+a0

p(adrd+ad−1rd−1+···+a0)
· rd · 1

rd =
ad ·pd+ad−1

pd

NP+···+ a0 ·pd

NPd

p·
(

ad+ad−1
p

NP+···+ a0 pd

NPd

)

= pd
(

ad+ad−1
1

NP+···+ a0
NPd

)

p·
(

ad+ad−1
p

NP+···+ a0 pd

NPd

) = ad+ ad−1
pr +···+ a0

(pr)d

ad+ ad−1
r +···+ a0

rd

· pd−1

(22)
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and (21) comes out. Note that α(r, p) > 0. If r = 1,

α(1, p) = ad+ad−1
1
p+···+ a0

pd
∑k≤d

k=0 ak
≤ 1. (23)

If ai = 0 ∀i ∈ [0, d − 1] then α(1, p) = ad
ad
= 1.

Finally, it is

lim
r→∞α(r, p) = lim

r→∞
ad + ad−1

pr + · · · + a0
(pr)d

ad + ad−1
r + · · · + a0

rd

= 1.

We observe that, from (23), it is

k≤d∑

k=0

ak ≥ ad + ad−1
1

NP
+ · · · + a0

NPd

and the offset increases as NP grows. In conclusion, if NP increases β grows too. �	

In conclusion,

1. if NP is fixed and p ∼ NP (such as the so-called strong scaling), it follows that r ∼ 1.
We observe that in this case, SS3D

p,1 (NP) ∼ β NPd−1, where β ≤ 1; while the surface-to-
volume ratio S/V ∼ 1.
Hence, the AS3D(NP) algorithm has a poor (strong) scalability.

2. if NP→∞ and r is kept fixed, then p increases too (such as the so-called weak scaling).
Observe that in this case, SS3D

p,1 (NP) ∼ α(r, p) pd−1, where α(r, p) ∼ 1. The surface-to-
volume ratio S/V the more decreases as r is large. Hence, the AS3D(NP) algorithm has
a good (weak) scalability.

6 The Scalable Algorithm on a Test Problem

6.1 Experimental Set-Up

For testing the A3D(NP) algorithm we needed of

– DNP(Ω) = {((xi , y j ) = (i, j)i=0,...,nx+1; j=0,...,ny+1}, and tk ∈ [0,∞[;
– ub

k ∈ �NP, the numerical solution of Mt [u(t, x)], given in [34] and computed in [34] on
DNP(Ω) and on tk ;

– H: a piecewise linear interpolation operator whose coefficients are computed using the
points of model domain nearest the observation values;

– Matrix B:

B = σ 2
b C, σ 2

b = 0.5, L = 1

– Matrix R:

R = σ 2
0 I, σ 2

o = 0.5

– vk : the observation values are obtained choosing (randomly) among the values of ub
k and

perturbing (randomly) these values; finally we set nobs = NP
3 .
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Fig. 1 Decomposition of
DNP(Ω): points are the observed
data and lines are the overlapping
regions

Fig. 2 Domain DNP(Ω): black
points are the observed data

6.2 The Mapping of the AS3D(NP, p) Algorithm on the Parallel Computing Architecture

Let us consider the AS3D(NP, p) algorithm running on a parallel architecture made of
8 distributed nodes (blades). Each node is a 8-core element (the cores share the same
local memory). Here we use the notation nproc (nproc ≥ 8) referring to the processing
elements.

Let nproc = s×q . We assume a 2D uniform decomposition of DNP(Ω) along the (x, y)-
axis. The x-axis is divided by s and the y-axis by q (Figs. 1, 2). An implementation of
AS3D(NP, p) algorithm was obtained mapping each sub domain onto a processing element
of the reference parallel architecture, i.e. we use the following correspondence

p↔ nproc.

We assume that NP = (nx + 1)× (ny + 1)× (nz + 1) where nx = ny = n and nz = 1, then
the size of each sub domain Ωi is

r = NP

nproc
= nlocx × nlocy × nlocz

where:

nlocx = n

s
+ 2ox , nlocy = n

q
+ 2oy , nlocz = 1. (24)

These dimensions include the overlapping (2ox × 2oy).
By using nxpp and nypp to denote the position of the (1, 1) grid-point of each sub domain
in the global domain, each element of the local array xloc corresponds to the element of the
global array xglob, as following:

xglob(i + nxpp − 1; j + nypp − 1; k) = xloc(i; j; k) (25)

where 1 < i < nlocx , 1 < j < nlocy , and 1 < k < nlocz .

6.3 Experimental Results

The Table 1 shows the values of ‖uDA − ũDA‖∞, where uDA denotes the minimum of the
3D-Var (global) functional J on DNP(Ω) while ũDA is the sum of the minimum of the (local)
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Table 1 Values of
‖uDA − ũDA‖∞, for different
values of nproc and of n

n nproc ‖uDA − ũDA‖∞
64 nproc = 1 0.0000e−00

nproc = 2 6.9418e−04

nproc = 4 5.2801e−04

nproc = 8 7.0604e−04

128 nproc = 1 0.0000e−00

nproc = 2 7.7383e−04

nproc = 4 1.3096e−03

nproc = 8 1.7156e−03

3D-Var functional Ji on sub domain Ωi . uDA is computed by running AS3D(NP, nproc) for
nproc = 1. The results of Table 1 prove the reliability of the algorithm AS3D(NP, nproc).

Last result specifies the scale-up factor of the AS3D(NP, p) algorithm in our case study:

Corollary 2 The scale-up factor of the AS3D(NP, p) algorithm is

SS3D
p,1 (NP) = α(r, p) p2. (26)

Proof The time complexity of the A3D(NP) algorithm is T (NP) = O(p(NP)) flops, on a
problem of size NP, where p(NP) ∈ �3. Hence, the results follows from Proposition 1. �	

Let tflop be the time required by one floating point operation. The execution time of the
AM3D(NP) algorithm needed for performing T (NP) floating point operations, is

Tflop(NP) = T (NP)× tflop.

Multiplying and dividing the (26) by tflop we get

α(r, p)p2 = Tflop(NP)

pTflop(NP/p)
. (27)

Let T nproc(NP) be the execution time of the AS3D(NP, p) algorithm, measured in seconds,
running on our parallel computing architecture. It is

T nproc(NP) =︸︷︷︸
def

T nproc
flop (NP)+ T nproc

com (NP)

where

– T nproc
flop (NP) ≡ Tflop(NP) is the computing time required for the execution of T (NP)

floating point operations;
– T nproc

com (NP) is the inter-node communication time of T (NP) data.

In Table 2 we report T nproc(NP) and the measured values of SS3D
nproc,p1

. We also compare

the measured values of SS3D
nproc,p1

with the values of SS3D
nproc,p1

, given in the (26), where p1 =
8, 16, p2 = nproc and p = p2

p1
. Experimental results confirm the scalability analysis of the

algorithm as discussed in Sect. 5.
We observe that measured values of scale-up factor are obtained as

measured SS3D
nproc,p1

= T nproc
flop (NP)

pT nproc
flop (NP/p)+ pT nproc

com (NP/p)
,
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Table 2 Execution time and
scale-up factor for different
values of NP = 3n2 and nproc

n nproc T nproc(NP) Measured SS3D
nproc,8 SS3D

nproc,8

64 8 2.0545e+02 1.0 1

16 3.1658e+01 3.25 4

32 5.0012e+00 10.27 16

64 1.0979e+00 23.39 64

n nproc T nproc(NP) Measured SS3D
nproc,16 SS3D

nproc,16

128 8 – – –

16 3.9091e+03 1.0 1

32 4.9976e+02 3.91 4

64 6.8960e+01 14.17 16

hence, it follows that

measured SS3D
nproc,p1

=
T nproc

flop (NP)

pT nproc
flop (NP/p)

1+ T nproc
comm (NP/p)

T nproc
flop (NP/p)

<
Tflop(NP)

pTflop(NP/p)
≡ SS3D

nproc,p1
,

where the last equivalence follows from the (27).

7 Conclusions and Future Works

We presented an innovative algorithm for solving Variational Data Assimilation problem.
The algorithm we considered starts from a decomposition of the physical domain; it uses a
partitioning of the solution and a modified regularization functional describing the DA prob-
lem on the decomposition. We provided a mathematical formulation of the model and the
algorithm. We also proved the mathematical validity of this formulation and we performed a
feasibility analysis in terms of computational cost and of algorithmic scalability. In order to
evaluate the performance of the parallel algorithm we introduced the scale-up factor which
measure the performance gain in terms of time complexity reduction. We tested the model
and the algorithm on a consistent test case (the shallow water equations). We are currently
working on the deployment of this algorithm in a concrete scenario. Mainly, we are work-
ing on the variational DA systems used with the NEMO ocean model: OceanVar [11] and
NEMOVAR [33]), including the extension to 4D-Var of this approach.
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