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We conducted a two-stage genome-wide association study 
of renal cell carcinoma (RCC) in 3,772 affected individuals 
(cases) and 8,505 controls of European background from 	
11 studies and followed up 6 SNPs in 3 replication studies of 
2,198 cases and 4,918 controls. Two loci on the regions of 
2p21 and 11q13.3 were associated with RCC susceptibility 
below genome-wide significance. Two correlated variants 
(r2 = 0.99 in controls), rs11894252 (P = 1.8 × 10−8) and 
rs7579899 (P = 2.3 × 10−9), map to EPAS1 on 2p21, which 
encodes hypoxia-inducible-factor-2 alpha, a transcription 
factor previously implicated in RCC. The second locus, 
rs7105934, at 11q13.3, contains no characterized genes 	
(P = 7.8 × 10−14). In addition, we observed a promising 
association on 12q24.31 for rs4765623, which maps to 
SCARB1, the scavenger receptor class B, member 1 gene 	
(P = 2.6 × 10−8). Our study reports previously unidentified 	
genomic regions associated with RCC risk that may lead to 
new etiological insights.

Kidney cancer accounts for approximately 2% of new cancer diagnoses 
worldwide1 and is the deadliest urologic malignancy, with an estimated 
5-year survival rate between 50% and 60% (ref. 2). Approximately  
80–90% of kidney cancers develop in the renal parenchyma and are 
known as renal cell carcinoma (RCC). Epidemiological studies have 
conclusively identified three risk factors for RCC, all of which are modi
fiable: hypertension, obesity and smoking2,3. Furthermore, there is evi-
dence that genetic factors influence susceptibility to RCC; for instance, 
the lifetime risk for disease increases approximately twofold for those 
with a first-degree relative with RCC4–7. The tumor is also commonly 
observed in pedigrees with von Hippel-Lindau (VHL) syndrome, as 
well as other genetic disorders, such as hereditary papillary renal cell 
carcinoma, Birt-Hogg-Dubé syndrome, and hereditary leiomyomatosis 
and renal cell cancer (HLRCC)2,8. However, familial RCC cases repre-
sent less than 5% of RCC cases overall9. To date, candidate gene studies 
have not yielded genetic variants that conclusively replicate. In search of 
common genetic variants with moderate effect sizes, we have therefore 
conducted a genome-wide association study (GWAS) of RCC.

Genome-wide association study of renal cell carcinoma 
identifies two susceptibility loci on 2p21 and 11q13.3
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We report the findings of a two-stage GWAS of RCC based on two 
parallel scans followed by replication of six notable SNPs in three 
studies. The two scans were coordinated by (i) the International 
Agency for Research on Cancer (IARC) and the Centre National de 
Génotypage (CNG) based on 2,639 RCC cases and 5,392 controls of 
European background drawn from seven studies conducted in Europe 
with the Illumina Infinium HumanHap 300 and 610 BeadChips and 
(ii) the US National Cancer Institute (NCI) scan, based on 1,453 RCC 
cases and 3,531 controls of European background from four studies 
with the Illumina Infinium HumanHap 500, 610 and 660w BeadChips 
(Supplementary Table 1, Online Methods and Supplementary Note). 
All subjects from the IARC-CNG study were genotyped at the CNG 
with the exception of 305 cases and 323 controls from Russia that 
were genotyped at the Center ‘Bioengineering’ and at the Kurchatov 
Institute in Moscow. All subjects from the NCI study were scanned 
at the NCI Core Genotyping Facility. In addition, 1,438 controls from 
the Wellcome Trust Case Control Consortium were genotyped at the 
Sanger Institute, UK10. All RCC cases were defined on the basis of the 
International Classification of Diseases for Oncology, Second Edition 
(ICD-O-2), and included all cancers that were coded as C64.

Comparable quality control metrics were applied to the two scanned 
datasets, and following sample and SNP exclusions, genotype data for 
up to 577,547 SNPs were available for 2,461 cases and 5,081 controls 
in the IARC-CNG scan, and data for 585,576 SNPs were available for 
1,311 cases and 3,424 controls in the NCI scan (Online Methods). We 
conducted the primary analyses using unconditional logistic regression 
models for genotype trend effects (1 degree of freedom) and adjusted for 
sex, country and eigenvectors, as well as for study in the data from the 
United States (Online Methods). In order to compute summary findings 
across both scans, we performed a meta-analysis using a fixed effects 
model with inverse-variance weighting followed by a pooled analysis 
with individual level data. Quantile-quantile plots of the combined results 
showed little evidence for inflation of the test statistics compared to the 
expected distribution (λ = 1.018 overall; Supplementary Fig. 1). We then 
applied genomic control, and we corrected all reported P values and CIs 
for the observed inflation. A Manhattan plot summarizing the combined 
results of 586,069 SNPs is shown in Supplementary Figure 2.

Based on the meta-analysis using SNPs genotyped in both centers, 
six SNPs were associated with RCC at a significance level approaching 
or surpassing genome-wide statistical significance (P < 5 × 10−7 in 
two-tailed tests)10 and were selected for replication in three additional 
case-control series from Europe and the United States (2,198 RCC 

cases and 4,918 controls) (Supplementary Table 1). Performing 
genomic control on this data showed that hidden population sub-
structures or differential genotype calling between cases and controls 
did not substantively influence these results (Online Methods). Three 
SNPs on 2p21 (rs11894252, rs7579899 and rs6758592) were selected, 
as well as single SNPs on 3q26.31 (rs9839909), 11q13.3 (rs7105934) 
and 12q24.31 (rs4765623). For the replication study, rs11894252 
could not be optimized; thus we genotyped a highly correlated SNP, 
rs1867785 (r2 = 1.0 in the HapMap European CEU population11) 
(Online Methods). For the other five SNPs, there was a high con-
cordance between genotype calls on the Illumina BeadChip and the 
optimized TaqMan assays in both centers (concordance of 100% 
for IARC-CNG and 98.9%–100% for NCI)12. Because rs9839909 
(3q26.31) and rs7105934 (11q13.3) were not included on the Illumina 
HumanHap 300 BeadChip, subjects genotyped with this chip in 
the GWAS (908 cases and 2,415 controls) were also genotyped by 
TaqMan and included in the replication phase. In a meta-analysis 
of the pooled GWAS and replication results, SNPs in three of the 
four regions achieved genome-wide significance and mapped to 
2p21, 11q13.3 and 12q24.31 (Table 1 and Fig. 1). Imputing SNPs in 
the implicated regions 2p21, 11q13.3 and 12q24.31 using the 1000 
Genomes Project data13 as a scaffold did not reveal additional SNPs 
with stronger, independent associations to those genotyped directly 
(Supplementary Table 2).

In the combined analysis14, two SNPs on 2p21 achieved genome-
wide significance, rs7579899 (P = 2.3 × 10−9, per allele odds ratio 
(OR) = 1.15, 95% CI 1.10–1.21) and rs11894252 (P = 1.8 × 10−8, 
OR = 1.14, 95% CI 1.09–1.20). Further, rs7579899 was significant 
in the independent replication analysis (P = 0.008, OR = 1.11, 95% 
CI 1.03–1.20), whereas rs1867785, a highly correlated surrogate 
for rs11894252, suggested a comparable effect that did not achieve 
independent significance (P = 0.06, OR = 1.08, 95% CI 1.00–1.16) 
(Table 1). When stratified by either SNP marker, the signal of the 
other was extinguished (data not shown). Together with the high 
correlation between the two markers (r2 = 0.99 in controls), these 
results point toward a single common susceptibility locus for RCC. An 
additional SNP, rs4952818, achieved genome-wide significance in the 
combined scan (P = 1 × 10−7; Fig. 1), but its association was accounted 
for by rs11894252 and rs7579899 (adjusted P = 0.45 and adjusted  
P = 0.36, respectively) and was therefore not selected for replication. 
The third SNP selected for replication, rs6758592, was minimally 
correlated with the previous two SNPs (r2 = 0.12 and r2 = 0.11 with 

Table 1  Summary results for six SNPs selected for replication in renal cell carcinoma genome-wide association study
IARC+NCIa Replicationb All combinedc

Locus  
(gene region)

SNP ID 
(minor allele 
frequency)

3,772/8,505d 2,198/4,918d 5,970/13,423d

ORe 95% CIe P e ORe 95% CIe P e ORe 95% CIe P e

2p21  
(EPAS1)

rs11894252 
(0.40)

1.18 (1.12–1.26) 1.9 × 10−8 1.08 (1.00–1.16) 0.06 1.14 (1.09–1.20) 1.8 × 10−8

2p21  
(EPAS1)

rs7579899 
(0.40)

1.18 (1.11–1.25) 5.9 × 10−8 1.11 (1.03–1.20) 0.008 1.15 (1.10–1.21) 2.3 × 10−9

2p21  
(EPAS1)

rs6758592 
(0.47)

1.13 (1.07–1.20) 2.5 × 10−5 1.05 (0.97–1.14) 0.20 1.10 (1.05–1.15) 4.0 × 10−5

3q26  
(PP13439)

rs9839909 
(0.34)

0.82 (0.76–0.89) 4.3 × 10−6 0.96 (0.90–1.03) 0.30 0.90 (0.86–0.95) 4.0 × 10−5

11q13.31  
(chr. 11)

rs7105934 
(0.07)

0.65 (0.55–0.76) 1.7 × 10−7 0.71 (0.62–0.81) 6.8 × 10−7 0.69 (0.62–0.76) 7.8 × 10−14

12q24.31  
(SCARB1)

rs4765623 
(0.34)

1.18 (1.11–1.25) 6.4 × 10−8 1.07 (0.99–1.16) 0.09 1.15 (1.09–1.20) 2.6 × 10−8

Chr., chromosome.  
aAll scanned samples from IARC-CNG and NCI combined by meta-analysis (Online Methods). bSamples include subjects from three replication studies: the MD Anderson Renal Cell Cancer Study, 
the Dutch Renal Cell Cancer Study and the IARC Replication Study (Supplementary Note). cColumn shows combined results of the pooled GWAS data and the three replication studies by meta-
analysis. dNumber of cases/controls. eOdds ratios (OR) were estimated using the per-rare-allele log-additive model and unconditional logistic regression (Online Methods).
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rs11894252 and rs7579899, respectively) and only showed an associa-
tion in the NCI data (NCI P = 1.8 × 10−7, IARC P = 0.16, heterogeneity 
P = 0.0004; Supplementary Table 3), which was not accounted for by 
rs11894252 and rs7579899 (adjusted P = 1 × 10−5 for both). Although 
rs6758592 did not replicate, the combined analysis yielded P = 4.0 × 
10−5, suggesting that in the NCI scan data there could be evidence 
for a more complex genomic architecture underlying the association 
of this locus with RCC.

Our finding on 2p21 is notable because the candidate gene in this 
region, EPAS1, has previously been implicated in RCC15–19. The two 
SNPs on 2p21, rs11894252 and rs7579899, are distributed across a 4.2-kb  
region of intron 1 in EPAS1, which encodes the hypoxia-inducible 
factor 2α (HIF-2α) and is a key gene in the VHL-HIF pathway. The 
VHL complex targets HIF subunits for ubiquitin-mediated degra-
dation20. Accumulation of HIF-2α leads to upregulation of vascular 
endothelial growth factor (VEGF) and epidermal growth factor 
receptor (EGFR). The inactivation of VHL in renal carcinoma cell lines 
leads to unchecked HIF-2α–mediated expression of HIF-responsive 
tumorigenic factors, most notably VEGF16,17. Further, tumor for-
mation in VHL-deficient renal carcinoma cells has been found to 

be suppressed by inhibition of HIF-2α18,19. The findings from our 
GWAS provide further evidence that EPAS1 is a key gene in RCC 
development, but additional studies are needed to identify the func-
tionally relevant common variants associated with increased risk.

A variant, rs7105934, on 11q13.3 was associated with RCC in the 
combined analysis (P = 7.8 × 10−14, OR = 0.69, 95% CI 0.62–0.76). 
This SNP was independently replicated with a comparable risk esti-
mate to the initial GWAS results (P = 6.8 × 10−7, OR = 0.71, 95% CI 
0.62–0.81). Overall, the magnitude of the association with this rela-
tively uncommon SNP (minor allele frequency = 0.08 in controls) is 
comparatively large compared to risk markers previously identified 
in the GWAS of other cancers21. This SNP maps to a 350-kb region 
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Figure 1  Association results, recombination and linkage disequilibrium 
plots for regions below genome-wide significance (2p21 and 11q13.3) 
and a region with a promising association (12q24.31) to RCC 
susceptibility. Results of pooled IARC-CNG and NCI GWAS data (GWAS), 
for SNPs selected for replication in replication studies combined by meta-
analysis (replication), and of all studies combined by meta-analysis (all 
combined). P values for log-additive association results (−log10) are shown 
with recombination rates (cm/Mb) based on HapMap phase II data, and 
pairwise r 2 and superimposed D′ values are displayed below for all SNPs 
included in the GWAS analysis. Coordinates refer to genome build 36.1. 
(a) A depiction of the region of 2p21 including the EPAS1 gene region 
(46,353,240–46,498,984 bp). (b) A depiction of the region of 11q13.3 
(68,852,465–69,037,945 bp). (c) A depiction of the region of 12q24.31 
including the SCARB1 gene region (123,800,267–124,008,657 bp).©
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of 11q13.3 containing no characterized genes; its flanking genes are 
MYEOV (encoding Homo sapiens myeloma overexpressed (in a subset  
of t(11;14)-positive multiple myelomas)) and CCND1 (encoding 
cyclin D1), situated approximately 140 kb centromeric and 220 kb  
telomeric, respectively, from rs7105934. In the control samples, there 
was little evidence for linkage disequilibrium (LD) with markers in 
these genes (r2 < 0.01 in scanned controls). Similarly, we did not 
observe LD with a complex susceptibility locus for prostate cancer 
also identified within 11q13 (refs. 22,23) nor with a SNP marker, 
rs614367, 89 kb telomeric to rs7105934 that was recently associated 
with breast cancer risk24.

A third locus, marked by rs4765623 on 12q24.31, also achieved 
genome-wide significance overall (P = 2.6 × 10−8, OR = 1.15, 95% 
CI 1.09–1.20), although it did not independently replicate using a 
two-tailed significance test (P = 0.09, OR = 1.07, 95% CI 0.99–1.16). 
This SNP maps to intron 1 of SCARB1, the scavenger receptor class B,  
member 1 gene, which encodes a cell-surface receptor that binds to 
high-density lipoprotein cholesterol (HDL-C) and mediates HDL-C 
uptake25–27. Its role in cancer biology is not as well established, and 
the signal at this SNP was stronger in the European studies (scan and 
replication studies) than in the US studies (Fig. 2 and Supplementary 
Table 3). Although this SNP marks a promising association, further con-
firmatory work is required to establish its association with RCC risk.

For each of the three regions associated with RCC risk, we 
conducted further pooled analyses stratified by study, age, gender 
and established modifiable risk factors: body mass index, smoking 

status and history of diagnosed hypertension. The associations 
with rs11894252 and rs7579899 were notable in former and current 
smokers but not in never smokers, suggesting an interaction with 
smoking (P heterogeneity = 0.003) (Fig. 2). This observation raises 
the possibility that the effect of EPAS1 could be dependent on tobacco 
smoking, but further studies are needed to explore this promising 
finding. The associations with the two 2p21 (EPAS1) SNPs were 
stronger among men than women, possibly a result of the different 
risks by smoking status. The stratified analyses suggested no other 
evidence of interaction.

This study was well powered to detect common alleles with large 
effect sizes (greater than 90% power to detect a per-allele OR of 1.5 
for a variant of allele frequency of 20% at an α = 5 × 10−7), but the sta-
tistical power was limited for detecting effects of weaker size or those 
due to uncommon SNPs. Additional studies are needed to identify 
susceptibility markers of weaker effects or lower allele frequency.

Our study has identified previously unknown regions of the genome 
associated with risk of RCC. Two regions on 2p21 and 12q24.31 map 
to the candidate genes EPAS1 and SCARB1, respectively, and one 
maps to a region of 11q13.3 with no characterized genes. Further 
fine mapping of these regions is required before investigating the 
optimal variants for studies into the biological underpinnings of the 
observed associations. Moreover, these loci should be pursued in 
follow-up studies in distinct populations, such as African Americans, 
who have an increased risk of RCC2,3. Similarly, it will be important 
to evaluate these regions in studies that address clinical endpoints, 

Heterozygous
Homozygous

IARC
NCI
Replication

<50
50–59
60–69
70+

<25
25–29
30+

Never smokers
Former smokers
Current smokers

Yes
No

Male
Female

Co-dominant
Overall

By study

By age group

By BMI

By smoking status

By hypertension

By gender

(5,907)

2,893
1,132

2,448
1,310
2,130

527
1,035
1,341

977

1,153
1,451

943

2,008
1,474
1,033

1,736
1,844

3,812
2,095

(13,314)

6,333
2,258

5,068
3,419
4,824

2,611
1,550
3,276
2,549

4,453
4,134
1,724

3,754
3,735
4,378

2,867
7,012

8,672
4,642

1.14
1.16
1.31

1.18
1.19
1.08

1.21
1.25
1.20
1.15

1.11
1.13
1.28

1.01
1.20
1.25

1.19
1.14

1.18
1.06

1.09–1.20
1.07–1.24
1.19–1.44

1.10–1.27
1.08–1.32
1.00–1.16

1.03–1.42
1.10–1.43
1.08–1.33
1.02–1.30

1.00–1.23
1.03–1.24
1.13–1.46

0.93–1.10
1.09–1.32
1.12–1.40

1.08–1.31
1.05–1.23

1.12–1.26
0.98–1.15

rs11894252 (EPAS1)

Ca Co OR 95%CI

1.0 1.2 1.4

OR

(Pheterogeneity = 0.16) (Pheterogeneity = 0.35) (Pheterogeneity = 0.03)

(Pheterogeneity = 0.17)

(Pheterogeneity = 0.41)

(Pheterogeneity = 0.27)

(Pheterogeneity = 0.20)

(Pheterogeneity = 0.61)

(Pheterogeneity = 0.90)

(Pheterogeneity = 0.19)

(Pheterogeneity = 0.19)

(Pheterogeneity = 0.41)

(Pheterogeneity = 0.29)

(Pheterogeneity = 0.84)

(Pheterogeneity = 0.20)

(Pheterogeneity = 0.003)

(Pheterogeneity = 0.50)

(Pheterogeneity = 0.03)

(5,475)

557
16

1,183
1,310
3,047

461
875

1,185
900

1,149
1,413

933

1,985
1,462
1,029

1,649
1,769

3,540
1,935

(12,688)

1,761
48

2,083
3,421
7,639

2,546
1,412
3,125
2,286

4,208
3,888
1,605

3,601
3,517
4,161

2,424
6,532

8,229
4,459

0.69
0.69
0.58

0.57
0.70
0.71

0.72
0.71
0.65
0.62

0.58
0.68
0.81

0.77
0.62
0.62

0.72
0.64

0.71
0.63

0.62–0.76
0.62–0.76
0.31–1.08

0.43–0.74
0.57–0.86
0.62–0.81

0.48–1.07
0.51–1.00
0.51–0.83
0.47–0.81

0.46–0.74
0.54–0.84
0.62–1.06

0.65–0.92
0.51–0.76
0.49–0.80

0.58–0.89
0.54–0.77

0.62–0.80
0.53–0.76

Ca Co OR 95%CI

0.4 0.6 1.0

OR

rs7105934 (Chr. 11)

0.9 1.1 1.3 1.5

OR

(5,175)

2,756
808

2,458
1,311
2,148

529
1,041
1,348

979

1,156
1,455

944

2,025
1,481
1,030

1,741
1,849

3,833
2,102

(12,428)

5,911
1,519

5,078
3,423
4,788

2,608
1,552
3,273
2,552

4,442
4,137
1,722

3,752
3,720
4,373

2,866
7,003

8,667
4,625

1.14
1.14
1.32

1.23
1.10
1.07

1.06
1.27
1.17
1.31

1.10
1.19
1.22

1.08
1.20
1.13

1.24
1.14

1.15
1.12

1.09–1.20
1.06–1.22
1.19–1.47

1.14–1.32
0.99–1.21
0.99–1.16

0.90–1.25
1.11–1.45
1.05–1.31
1.16–1.48

0.99–1.22
1.08–1.31
1.07–1.40

0.99–1.18
1.09–1.31
1.01–1.26

1.12–1.36
1.05–1.24

1.09–1.23
1.03–1.21

Ca Co OR 95%CI

rs4765623 (SCARB1)

P = 4.7 × 10–14P = 1.7 × 10–8 P = 2.6 × 10–8

Figure 2  Forest plots for three SNPs showing significant or promising association to RCC susceptibility. Forest plots show stratified odds ratios (ORs) for 
SNPs selected for replication. The two highly correlated SNPs located at 2p21, rs7579899 and rs11894252, gave very similar results in the stratified 
analysis, and only the results from one of the SNPs (rs11894252) are shown in the figure. Apart from the ORs for heterozygous and homozygous 
individuals, ORs and 95% CIs were estimated by the per-rare-allele log-additive trend model. All models were adjusted for sex, study and country. The 
overall log-additive OR is shown by the broken vertical line. P values indicate heterogeneity for OR within each group.
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such as response to therapy and survival. The discovery of additional 
susceptibility loci should lead to further advances in understanding 
the etiology of RCC as well as its risk prediction and early detection.

URLs. CGEMS portal, http://cgems.cancer.gov/; CGF, http://cgf.nci.
nih.gov/; GLU, http://code.google.com/p/glu-genetics/; EIGENSTRAT, 
http://genepath.med.harvard.edu/~reich/EIGENSTRAT.htm; 
STRUCTURE, http://pritch.bsd.uchicago.edu/structure.html; PLINK, 
http://pngu.mgh.harvard.edu/~purcell/plink/; SAS, http://www.sas.
com/; MACH, http://www.sph.umich.edu/csg/abecasis/mach/index.
html; ProbABEL, http://mga.bionet.nsc.ru/~yurii/ABEL/.

Methods
Methods and any associated references are available in the online 
version of the paper at http://www.nature.com/naturegenetics/.

Note: Supplementary information is available on the Nature Genetics website.
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ONLINE METHODS
Genome-wide SNP genotyping. New genome-wide SNP genotyping was con-
ducted in three laboratories (Supplementary Table 1) using Illumina Infinium 
BeadChips available at the time of genotyping. All US samples were genotyped 
at the NCI Core Genotyping Facility (CGF, Division of Cancer Epidemiology 
and Genetics (DCEG), National Cancer Institute, Bethesda, Maryland, USA), 
whereas the Centre National de Genotypage (CNG, Evry, France) genotyped 
all samples from Central Europe and the HUNT2/Tromsø studies, as well as 
cases from EPIC, the UK and France. All Moscow samples were genotyped at 
the Kurchatov Scientific Center (KSC, Moscow, Russian Federation). Controls 
for the UK cases were drawn from data generated from the 1958 British Birth 
Cohort by the Wellcome Trust Sanger Institute as part of the Wellcome Trust 
Case Control Consortium (WTCCC)10. Controls from PLCO, ATBC and CPS-II  
were drawn from previously scanned subjects28–30. Controls for the EPIC cases 
were drawn from data generated from EPIC controls by CGF as part of the 
Pancreatic Cancer Cohort Consortium (PanScan)31,32.

Quality control assessment. Systematic quality control common to both cent-
ers was conducted separately for the European and US datasets before merging 
the two datasets, which included quality control steps specific for the perform-
ance of different arrays at distinct times in the two main laboratories. For SNP 
assays, exclusions included those with less than 90% completion rate and those 
with extreme deviation from fitness for Hardy-Weinberg equilibrium (P < 1 × 
10−7). Monomorphic assays observed in either cases or controls only and SNPs 
with alleles ambiguously coded (AT- and CG-coding alleles) were excluded.

IARC-CNG scan. After excluding 46 expected duplicate samples, the number 
of attempted DNA samples was 8,031. We excluded 4 pairs (8 samples) of 
expected duplicates that were not identical, 23 unexpected duplicate pairs 
(46 samples) and 112 samples with low (<95%) success rate. Samples were 
excluded if heterozygosity rates for autosomal chromosomes were >6 stand-
ard deviations from the mean. We further excluded one self-reported male 
and one female with abnormal X-chromosome heterozygosity rates (>10% 
and < 20%, respectively). Using a set of 12,000 unlinked SNPs (pair-wise r2 < 
0.004) common to all GWAS arrays33, 59 samples with less than 80% European 
ancestry were excluded based on STRUCTURE analysis34. Eleven samples were 
identified as first-degree relatives and excluded based on identity-by-descent. 
A principal component analysis (PCA) using the EIGENSTRAT software 
excluded 83 additional samples detected as outliers (6 standard deviations 
from the mean)35.

After these quality control steps, of the 8,031 samples genotyped, 7,542 
(2,461 cases and 5,081 controls) were retained. 577,547 SNPs were available 
for data pooling.

NCI scan. 2,109 samples (1,490 cases and 619 new controls) were genotyped 
on Illumina 610 or 660w BeadChips at the Core Genotyping Facility. 3,004 pre-
viously scanned (on 550 or 610 BeadChips) samples from PLCO, CPS-II and 
ATBC were included. Participants were excluded based on (i) unanticipated  
inter-study duplicates (n = 5), (ii) completion rates lower than 92–94% as  
per the quality control groups (n = 38 samples), (iii) abnormal heterozygosity 
values of <25% or >35% (n = 4; two overlap with low completion samples)  
(iv) expected duplicates (n = 50 pairs), (v) abnormal X-chromosome hetero
zygosity (n = 10) and (vi) phenotype exclusions (due to ineligibility or incom-
plete information) (n = 57). Using a set of 12,000 unlinked SNPs (pairwise  
r2 < 0.004) common to the GWAS chips used herein33, 80 subjects with less 
than 85% European ancestry were excluded based on STRUCTURE analysis34 
and PCA35. For the known 50 duplicate pairs, concordance was 99.95%.

The final participant count for the association analysis was 1,311 cases  
and 3,424 controls. 585,576 SNPs were available for analysis in one or  
more studies.

Each participating study obtained informed consent from the study 
participants and approval from its Institutional Review Board; each study 
also obtained Institutional Review Board certification permitting data sharing 
in accordance with the US NIH Policy for Sharing of Data Obtained in NIH 
Supported or Conducted Genome-Wide Association Studies (GWAS). The 
Cancer Genetic Markers of Susceptibility (CGEMS) data portal provides access 

to individual-level data from the NCI scan only to investigators from certified 
scientific institutions after approval of their submitted Data Access Request.

Merging datasets. The post–quality-control datasets were merged, normal-
izing strand differences when necessary. No incompatible encodings were 
detected, and the final dataset contained 586,069 SNPs (after excluding 
monomorphic and ambiguously coded AT and CG SNPs) for 3,772 cases and  
8,505 controls.

Statistical analysis. Associations between the 586,069 SNPs and the risk 
of RCC were estimated using unconditional logistic regression by the OR 
and 95% CI using multivariate unconditional logistic regression assuming a  
co-dominant–trend genetic model (in which the effect of the variant is  
calculated by a log-additive model with 1 degree of freedom). PCA analysis 
revealed two significant (P < 0.05) eigenvectors when included in the null 
model (which comprised logistic regression with dummy variables for sex, 
country and study for the US data). The main effect model was adjusted by 
sex, country, the two eigenvectors showing significant effect (P < 0.05) in the 
null model and study for the US studies. For the replication studies, both an 
unadjusted and an adjusted analysis were conducted; adjustment included sex, 
country (study), smoking status (current, former or never), body mass index 
and diagnosis of hypertension.

The estimated inflation factors of the test statistic were 1.011 for IARC-
CNG scan, 1.016 for the NCI scan and 1.018 for the pooled scan. All P values 
and CIs were corrected for the appropriate observed inflation factor (genomic 
control)36.

Replication and TaqMan genotyping. In order to select a set of top-ranked 
SNPs for further follow-up, we initially combined the European and US data-
sets through a meta-analysis. Genomic control was applied to the IARC-CNG 
and NCI scans separately36, and the results were subsequently combined using 
a fixed-effects meta-analysis model, and per-allele trend effect estimates and 
P values were computed using inverse variance weighting (first column of 
Table 1). The individual level genome-wide data were subsequently pooled, 
and association results of the six SNPs selected for replication were combined 
with results from the replication studies by meta-analysis (third column of 
Table 1). A separate analysis of the six SNPs selected for replication is shown 
in Supplementary Table 3 using alternative genetic models, namely, the domi-
nant and recessive models. The association results of the six SNPs selected for 
replication are also shown separately for each study participating in the GWAS 
in Supplementary Table 4.

TaqMan genotyping assays (ABI) for replication were optimized for five 
of six SNPs in the three notable regions to validate the Illumina results. 
rs11894252 could not be manufactured, but instead, rs1867785 (r2 = 1.0 in 
CEU HapMap Phase II) was optimized12. TaqMan assays for replication were 
genotyped in three centers: MD Anderson Cancer Center (Houston, Texas, 
USA), Nijmegen, The Netherlands, and IARC. Concordance of known dupli-
cates was greater than 99%. In an analysis of 1,126 samples from three studies 
scanned at NCI, the comparison of the Illumina calls with the TaqMan assays 
showed a concordance of 98.7–100%; no shifts from wildtype to homozygotes 
were observed. The Illumina Infinium genotype probe cluster plots for the four 
SNPs achieving genome-wide significance, rs11894252, rs7579899, rs7105934 
and rs4765623, are shown in Supplementary Figure 3.

Imputation. In order to further interrogate the loci associated with RCC, we 
imputed additional SNPs within 1 Mb on either side of the implicated SNPs 
using the MACH software and data from the 1000 Genomes Project as a scaf-
fold13. Unconditional logistic regression as implemented in the ProbABEL37 
software was used to analyze the posterior SNP dosages from MACH, adjusting 
for sex, country, the two eigenvectors showing significant effect (P < 0.05) in 
the null model and study for the US studies. Association results for all SNPs 
with r2 (squared correlation between imputed and true genotypes) above 0.3 
and minor allele frequency above 0.05 in the regions of 2p21 (EPAS1), 11q13.3, 
and 12q24.31 (SCARB1), are shown in Supplementary Table 2. Also shown 
in Supplementary Table 2 are the association results for each imputed SNP 
after adjusting for one of the implicated SNPs in each region.
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Data analysis. Data analysis and management were performed with GLU 
(Genotyping Library and Utilities version 1.0), PLINK, SAS version 9.2, 
Eigenstrat, MACH and ProbABEL.
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