CONCENTRATING SOLUTIONS FOR A LIOUVILLE TYPE EQUATION
WITH VARIABLE INTENSITIES IN 2D-TURBULENCE

ANGELA PISTOIA AND TONIA RICCIARDI

ABSTRACT. We construct sign-changing concentrating solutions for a mean field equation
describing turbulent Euler flows with variable vortex intensities and arbitrary orientation.
We study the effect of variable intensities and orientation on the bubbling profile and on
the location of the vortex points.

1. INTRODUCTION AND MAIN RESULTS

Motivated by the mean field equation derived by C. Neri [17] in the context of the sta-
tistical mechanics description of 2D-turbulence within the framework developed by On-
sager [19, 12], Caglioti et al. [10], Kiessling [14], we are interested in the existence and in
the qualitative properties of solutions to the following problem:

{ —Au =p? (e“ — 7'677“) in €,

1.1
u =0 on 012, (L.1)

where p > 0 is a small constant, v, 7 > 0, and Q C R? is a smooth bounded domain.
We recall that the mean field equation for the N-point vortex system with random inten-
sities derived in [17] is given by:
—Brop(d
Jire ; (dr) in 0
fflxﬂ e=Pr'v P(dr')dx (1.2)
v =0 on 0f).

—Av =

Here, v is the stream function of a turbulent Euler flow, P is a Borel probability measure on
a bounded interval I, normalized to I = [—1, 1], describing the vortex intensity distribution,
and 3 € R is a constant related to the inverse temperature. The mean field equation (1.2)
is derived from the classical Kirchhoff-Routh function for the N-point vortex system (see,
e.g., [8] and the references therein):

N
HY(r1, . TN, T,y TN) = Zrier(xi, xj) + ZT?H(ZE“ x;), (1.3)
i#j i=1

under the “stochastic” assumption that the r;’s are independent identically distributed ran-
dom variables with distribution P. Here, G(x,y) denotes the Green’s function for the Laplace
operator on {2, namely

—AG(+,y) =6, inQ
(,y) =6, in (1.4)
G(-,y) =0 on 99
and
1
H(r,y) = Glr,y) + 5= logle —y (15)
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denotes the regular part of G. Setting u := —fv and A = —f, problem (1.2) takes the form
rUu d
I; Te/ P(dr) O
fleQ erv P(dr')dx (1.6)
u =0 on 0f).
We note that when P(dr) = d; (dr) problem (1.6) reduces to the Liouville type problem

—Au =\

U

e
fﬂ e dx
u =0 on 012,

—Au =\ in

which has been extensively analyzed, see, e.g., [15] and the references therein. On the other
hand, when P(dr) = (61(dr) + d_1(dr))/2, problem (1.6) reduces to the sinh-Poisson type
problem
el — e~
—Au=A—————"— inQ
Jolev +e ) da (1.7)
u =0 on 0f.

Sign-changing blow-up solutions to problem (1.7) were constructed in [5].

Here, motivated by the results in [5], we are interested in identifying some qualitative
properties of sign-changing blowing up solutions to (1.2) which are specifically related to
variable intensities and orientations. The key features of this situation are captured by
taking P(dr) = mé1(dr) + m6_~(dr), v € (0,1), 0 < 7,72 < 1, 1 + 7 = 1. Then,
problem (1.6) takes the form

Tt — Toye” ¢

—Au =\ in
" Jo(Tiet 4+ e ) dx m (1.8)
u =0 on 0f).
Setting
Y 9 A
==, = 1.9
7_1 14 fﬂ(eu + %ef’yu) ( )

we are reduced to problem (1.1). It may be checked that, along a blow-up sequence, we
necessarily have fQ e*dx — +o0, see [22]. Therefore, as far as blow-up solution sequences
are concerned, problem (1.8) is equivalent to problem (1.1) with p — 0.

In this article, we are interested in constructing solution sequences u = u, having a
positive blow-up point at & € Q and a negative blow-up point at & € 2, for some &; # &s.
Moreover, we are interested in the qualitative properties of solutions as  approaches its
limit values.

In order to state our results, let F2(2 denote the set of pairs of distinct points in {2, namely

Fodi={(z,y) € Ax Q:x #y}

and let cat(F22) denote the Ljusternik-Schnirelmann category of F).
We consider the “Hamiltonian function” H, : 72} — R defined by

(€2,82)  2G(&1,8)
72 v

Our first result concerns the existence of sign-changing solutions to (1.1) which are approx-
imately the difference of two Liouville bubbles.

Hy (&, &) = H(6, &) + ul (1.10)

Theorem 1.1. There exists pg > 0 such that for any p € (0, po) problem (1.1) admits at
least cat(F2QQ) sign-changing solutions uﬁ), 1=1,...,cat(F2Q), with the property
i i 8w i
’pr(x) - SWG('Ia 61) - TG(xa 62)
in Ch. (Q\{&, &} N Wyd() for all g € [1,2) for some critical point (€;,€%) € Fof) for
H.,. Moreover,
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(i) The solutions u!, have the form.:

STDR —

p1)? +lz =&, )7

2 .
) +8TH (€)1

1 1
— =11 _ i
v[og(w )2+ [ — €2

P2

)2+ 87 H (@,€)0)] + 6} + O(0?),

where [|¢}|| < Cp?*/? for any p > 1, the constants 61,0, 5 >0 are given by

2
i P i i 8w i i
(5,,,1)2 = gexp {SWH( p,1a§p,1) - 7G( p,1> p,Q)}

i \2 P>y i i i i
( p,2) - ) €xp {SWH(é.an 6;;,2) - SWFYG(é.p,l ) 6;;,2)}

with (5:;,15 5:;,2) € Fa2(d .satisfying (fz,p 52,2) - (fi, 55)

(ii) The set Q\ {z € Q:u,(x) = 0} has eractly two connected components.

(iii) If v = 1, then (1.1) admits cat(FoQ/(x,y) ~ (y,x)) pairs of solutions +u!, with the
above properties.

It is not difficult to check (see Lemma 4.4 below) that the solutions u/, to (1.1) obtained
in Theorem 1.1 satisfy

i i 8
p2/ e'r dr — 8m, Tp2/ eV dy — 2 (1.11)
Q Q v

as p — 0, and therefore uz yields a solution to (1.8) satisfying

A=p? / (e"r + Ze”’“;) dx — 87r(1 + %)
Q v v

We note that the blow-up mass values obtained in (1.11) are completely determined by (1.1),

see the blow-up analysis contained in Proposition 6.1 in the Appendix.

We also note that, up to relabelling (1, &2), the function H. defined in (1.10) coincides
with the Kirchhoff-Routh Hamiltonian (1.3), as expected.

Our second result, which actually contains the more innovative part of this article, is
concerned with the asymptotic location of the blow-up points, in the special case where (2
is a conver domain. Roughly speaking, letting v — +o0, the “positive bubble” approaches
the (unique) maximum point of the Robin’s function H (, £), whereas the “negative bubble”
escapes to the boundary 92, and more precisely to a point minimizing 9, G(xo,y), y € 9.
Here v denotes the outward normal at the point y € 9. The “opposite” asymptotic behavior
occurs when v — 0%,

Theorem 1.2. Let Q C R? be a convex bounded domain. For every fived v > 0, let uy

be a solution sequence to (1.1) concentrating at (£ 1,€),) — (£],&3), as constructed in
Theorem 1.1. We have:

(i) As vy — +o0, we have & — xo € Q, where g is the (unique) mazimum point of the
Robin function H(&,€); furthermore, & — yo € OS), where yo is a minimum point
of the function 0,G(xo,y), y € 9.

(ii) Conversely, as v — 07, we have &] — yo € IQ, & — xo € Q, where xg,yo are as
in part (i).

We observe that our method is readily adapted to yield the existence of one-bubble
solutions for the problem:

1.12
u =0 on 012, ( )

{ —Au =p® (e" + Tei'yu) in Q,
where «, 7 are as above, v # 1. Problem (1.12) was considered in [3] (with 7 = 1 and
v € (0,1)) in the context of combustion, where bubbling solutions were constructed by a
delicate perturbative method on the line of [4].
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Finally, we note that solutions to (1.1) also yield solutions to the following related mean
field equation derived in [19], see also [23], under a “deterministic” assumption on the vortex
intensity distribution:

re’™
—Au:)\/i'Pdr in Q
I fQ ert dx (dr)

u =0 on 012,

(1.13)

provided P(dr) = é1(dr)+P’, suppP’ C [—rg, 1] for a suitably small ro > 0, see [18, 20, 21].

This paper is organized as follows. In Section 2 we introduce the notation necessary to
the LP-setting of problem (1.1) and we state the Ansatz for the sign-changing solutions,
following [11]. In Section 3 we reduce problem (1.1) to a finite dimensional problem on F»).
The equivalent finite dimensional problem is solved in Section 4, thus completing the proof
of Theorem 1.1. In Section 5 we prove Theorem 1.2. The Appendix contains a blow-up
analysis for (1.1) as well as some technical estimates.

2. ANSATZ AND LP—SETTING OF THE PROBLEM

Our aim in this section is to formulate problem (1.1) in a more convenient Sobolev space
setting, namely system (2.17)—(2.18) below. To this end, we first introduce some notation
and we recall some known results.

1/p
Henceforth, ||ull, := ( f |u(x)|P d:c) denotes the usual norm in the Banach space
Q
LP(Q), (u,v) := [Vu(z) - Vo(x)dz denotes the usual scalar product in H}(Q) and |u]
Q

denotes its induced norm on H}(Q). For any p > 1, we denote by i, : Hg () — LP/P=D(Q)
the Sobolev embedding and by % : LP(2) — Hg(Q) the adjoint operator of i,. That is,
u = i%(v) if and only if u € Hj(€2) is a weak solution of —Au = v in Q. We point out that
i, is a continuous mapping, namely

lip()l a3 0) < epllvllLe), for any v € LP(), (2.1)

for some constant ¢, which depends on € and p. We define i* : Up~1LP(Q) — H}(2) by
setting i*|r(q) = 7, for any p > 1.
We shall repeatedly use the following well-known inequality [16, 24].

Lemma 2.1 (Moser-Trudinger inequality). There exists ¢ > 0 such that for any bounded
domain Q in R? there holds

/emz/nunzd:C <9,

Q
for all w € HY(Q). In particular, there exists ¢ > 0 such that for any q > 1

u q
e llzagey < el exp { Zlull?} (2:2)
for all u € HL ().

It follows that for any p > 1 problem (1.1) is equivalent to

u =i, [p2 (e“ — Tef’yu)] ; 2.3)
u € Hy(Q). '
In order to further reduce (2.3), we recall that the solutions to the Liouville problem
—Aw=¢€" in RZ /ew(x)d:c < 400, (2.4)
R2
are given by the “Liouville bubbles”
862 9
wse(z) :=In z, £ € R §>0. (2.5)

(82 + [ — €[2)”
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Moreover, for every ¢ € R?, § > 0 there actually holds

/ ews&(®) gy = 8.
R2

We define the projection P : H*(2) — H}(Q) as the weak solution to the problem
APu=Au in §, Pu=0 on 09, (2.6)
for all u € H*(Q2). We shall use the following expansion, see Proposition A.1 in [11].

Lemma 2.2 ([11]). Let ws¢ be a Liouville bubble as defined in (2.5) with { € Q and 6 — 0.
Then,

Pwse(x) = wse(x) — In(85%) + 87 H (z, &) + O (67)
in C°(Q) N CZ.(Q) and
Pws¢(z) = 87G(x, &) + O(6?)
in COQ\{€}) N CR(Q\ {€}).
Finally, it will be convenient to set
fo(t) = p* (e —Te™ ). (2.7)
We seek a solution u to problem (1.1) (or equivalently to problem (2.3)) whose form is

approximately the difference of two bubbles. More precisely, we make the following

2.1. Ansatz. The solution wu is of the form
u(z) =Wy () + ¢ (),
P 2.8
W& (z) :==Pw(z) — '(UTQ(.I), x €. 28)
where we denote w; = ws, ¢, ¢ = 1,2, for some ¢; > 0 and & € Q with & # &.

2.2. Choice of 41, 2. We observe that W§ is an approximate solution only if the quantity
AW§ + fp(Wpf) is small. This condition uniquely determines d1,02. Indeed, in view of
Lemma 2.2 we have near &; that

8
W) _ exp{87H (&, &) — TG(&, §2>}ewl(m)+0(5§+5§+|mf§1|)
852 '

Similarly, near {2 we have

o WE(@) _ exp{8mH (&, &2) ~ 8my G(&, §2)}ewg(m)+0(5%+5§+|m7§2|)
852 '

It follows that if the quantity:

ez

Rg = AW§ + fp(ng) = —e" 4 —p° (eWE - Tef'ng) (2.9)
is in some sense small, then necessarily d1, d2 are given by
2 8T
% = exp {strien ) - T6(e,6 |
i (2.10)

2
53 = P oxp (87H (€2, &2) — 877 G(61, &)}

Henceforth, we assume (2.10). We note that in particular 41,2 have the same decay rate
as p. The precise decay rate of (2.9) is provided in the following lemma and will be used
repeatedly throughout this paper.

Lemma 2.3. Let 61,92 be defined by (2.10). Then, for all 1 < p < 2 we have

QWE_e’LUlp

13 p
‘peﬁ W—€w2

Lr(Q) —

LP(Q)

In particular,

IR oy = IAWS + Fo(Wi)l[ oy < Cp* 77 (2.11)
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and
LEWE) = (e + €)%y < CpP. (2.12)

Proof. The proof is analogous to the proof of Lemma B.1 in [11]. Since the asserted estimates
are a key point in the LP-setting of problem (1.1), we outline the proof for the reader’s
convenience. We need to estimate the quantity

|erW;§ — e Pdx = |p2@P““7'flpw2 — e P dx.
Q Q

Recalling the expansions in Lemma 2.2 and the value of §; as in (2.10), we have:

/ |p2eW‘§ — e P dx
B:(&1)

2 2 8w 2 w b
= p°exp {wl —log(867) + 8nH (z,&) — —G(x, &) + 0(51)} — et
B:(&1) Y

dxr

p
dxr

= / g exp {wn — log(80%) + 8mH (€1, €1) - (61, 62) + 037 + [z - Gl —em
Be(&1) v

:/ W1 +O(0 Ha—&1]) _ gws b dx
B:(&1)

<C P (52 + |z — &,])P da.
Bs(fl)

In turn, using the explicit form of wy, we derive:

2 _ P
/ %eV5 — eV |P de < O / <§1 Tlo 512”2 da
Be(&1) B.(&1) (51 + |z — &2|?)2P

_ o1 + |y|)P _
SC(Sf ;D/ (11 |y2|)2p dy < Cp2 P
B.;s, (0) (1+1y?)

On the other hand, since in Q\ B.(£;) we have e** < C6f and W5 < C for some C > 0
independent of p > 0, we readily obtain

P
/ p2€W§ dz —|—/ ePVt do < Cp?P.
O\ B:(&1) O\ B:(&1)
Hence, we conclude that
2 W& _Lwy P <C 2—p
Hp crTe Lr(Q) — r
The second decay estimate is obtained similarly. O

Estimate (2.12) will be used to prove the key invertibility estimate for the linearized
operator.

2.3. Condition on &1, . The concentration points &1, &2 are taken inside €2, far from the
boundary of 2 and distinct, uniformly with respect to p. More precisely, &1, &2 satisfy the
following condition:

d(&1,09), d(&2,00), & — &a] > n for some n > 0. (2.13)

2.4. The error term ¢. The error term ¢ belongs to the subspace K+ C HE(Q) which we
now define. It is well known that for every § > 0, £ € R2, the linearized problem
—Atp =¢e“¢yp in R? (2.14)
has a 3—dimensional space of bounded solutions generated by the functions
1 1 8’(05 £ Xr; — 51
J = 2 =
5’5(33)' 4 0¢; 62 + |z — €2’
0 Qws 5% — |z —¢?
0 —_9 &
Vael®) == 555" = @y |z — €2

J=12,
(2.15)
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We shall need the following “orthogonality relations” from [11], Lemma A.4:

Dyd
IPUel® = 220+ 0]

- Dg?
(PUie PUsOmy @) = —5 103+ O") (2.16)

(P1/)§1,51a P1/’fs2,g2)Hg(Q) =0(1)

as p — 0, uniformly in £, &1, &> satisfying dist(&, 9Q) > n and (2.13). Here Dy = 64 [p.(1 —
ly|2)/(1 + [y[*)*, D =64 [, |y[*/(1 + |y|*)* and §;; denotes the Kronecker symbol. We set

K := span {ngiy&, i,j:1,2}, KL= {¢eH3(Q) : <¢,P¢§i7§i>:0i,j:1,2}.

We also denote by

I: H}(Q) — K, It : 7} (Q) — K+
the corresponding projections. Then, problem (2.3) is reduced to the following system:
I fu — i* (f, (u))] =0 (2.17)
I [u — " (fp(u))] =0 (2.18)
where u satisfies Ansatz (2.8) and f, is defined in (2.7)

3. THE FINITE DIMENSIONAL REDUCTION

In this section we obtain a solution for equation (2.17) for any fixed &7, & € Q satisfying
(2.13). Namely, our aim is to show the following.

Proposition 3.1. For any p € (1,2) there exists pg > 0 such that for any p € (0, pp) and
for any &1, & € Q satisfying (2.13) there exists a unique ¢ € K+ such that equation (2.17)
is satisfied. Moreover,

o]l = O (p(pr)/p| 10gp|) uniformly with respect to £ in compact sets of €. (3.1)

Remark 3.1. We note that if (£1,&2) is a critical point for H., then we actually have
6] = O(p?), see Lemma 6.1 in the Appendiz.

We split the proof into several steps.
3.1. The linear theory. We consider the linearized operator ﬁg : K+ — K+ defined by
L50 =T — " [f,(W5)¢]} (3.2)
The following estimate holds.

Proposition 3.2. There exists c¢ > 0 independent of p such that
¢

1£50] =

S 1
9|, forall p € K—.
|10gp|H H

The proof of Proposition 3.2 may be derived by adapting step-by-step to our situation
the proof of Proposition 3.1 in [11]. Here, alternatively, we choose to prove Proposition 3.2
by reducing Ef) to a suitable operator Lf) to which Proposition 3.1 in [11] may be applied
directly. To this end, we first show the following.

Lemma 3.1. Let & = (&,&) € Q2 & # &, and let 51,52 > 0 be such that 0 < ap < §; < bp,
1=1,2 for some 0 < a<b. Let Lf) : K+ — K+ be defined by
3 — L -k w w:
Ly¢ =T"{¢ —i"[(e™ 4 €"*)g]}.
There exists ¢ > 0 depending on dist(&;, 9Q) and a,b only, such that

181l

Ce
| log p|

¢
ILpoll =
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Proof. Let V(x) be any smooth positive function defined on ) satisfying

O V&) arenveens %2 L V&) urgieaen+ee )
8 : 8 :

P P
see formula (2.6) in [11]. That is,
867 863
V(&) = p_216787TH(51>§1)*87TG(51>§2), V(&) = p_22678ﬂ-H(§2>§2)*87rG(§1,§2)'

Then, following Lemma B.1 in [11] (or the proof of Lemma 2.3), we have
[PV ()PP — (e )], o) < CpP P, (33)
We define the operator Ly ¢ by setting
Lyo=TI{g —i*[p"V (x)e™ T 4]}
Then Proposition 3.1 in [11] states that there exists ¢y > 0 such that

cy
ILvol > w“(ﬁ“ (3.4)

for all ¢ € K. Thus, we may write
L5l =[TH{¢ — i [(e™ +ev2)el} |
> [T — i*[p°V (@) HP02 g} | — I [(e + €2 — p?V (x)e FFv2)g] .
We estimate the last term, for any 1 < ¢ < p < 2, using (3.3):
[T [(e + e = p? V(@) TPe) gl | < [|i*[(e + e — p*V (w)em FFv2) g |
Seqll(e® + e — PPV (2)e TR g)
<cglle™ + e = p*V(2)e™ T 1]/ p-a)
<CpPIP|g)).
It follows that

_ Ccy _
LS| > || Lv ol — Cp2P)/P|p|| > ( —Cp? Wp) o]l
| log p|

Hence, the asseted estimate holds with ¢ = ¢y /2. g
Now the proof of Proposition 3.2 is readily derived from Lemma 2.3 and Lemma 3.1.

Proof of Proposition 3.2. We estimate
L5010 2T { —i*[(e* + )] }H| — [T {[f,(W5) — (" +€*2)]o} |
=|Lyoll — I {[f (W) — (e + e“*)] o}
On the other hand, for any g € [1, p), we have
[T {Lf, (W) — (et + )]} < i {[f,(Wg) — (** +e*2)]o}|

<cqlllfy(W5) = (€ +e“)]ollg < cqll F(WE) = (et + €“*)lIpllSllpa/p—a)

<Cp®PP|g)].
It follows that for sufficiently small p we have

L5601 2Ll — I {(f,(W5) — (e + e*2))g} |

C _ C
20 |||l — Cp2 /7|9 > 0 < _{lg]l,
| log p | log p|

With Cg = 55/2 O




A LIOUVILLE EQUATION WITH VARIABLE INTENSITIES 9

3.2. The contraction argument. Recall that we seek solutions to system (2.17)—(2.18)
satisfying Ansatz (2.8). Hence, we rewrite equation (2.17):

IH{¢ — i*[f,(WS + ¢) + AWE]} = 0. (3.5)

We recall from (2.9) that
RS = AWS + f,(W5).

Setting
N5 (8) = fo(Wy + ) = [o(W5) = [L(W;)e, (3.6)
we may write
Fo(W5 4+ ¢) + AWS = NS(¢) + RS + f,(WE)o. (3.7)
Hence, using (3.7) and the definition (3.2) of £§ we may rewrite (3.5) in the form
L56 =1{p — " [fL(W))¢]} =TI 0 i [N () + Rj). (3.8)

Finally, setting
. —1 1 -k
T5(¢) = (L£5) " o IIH 0" [N5(¢) + R;),
we are finally reduced to solve the following fixed point equation for ¢:
¢ =T;(¢). (3.9)
The existence of a solution for (3.9) will follow from the following.

Proposition 3.3. For any p € (1,2), there exists Ry = Ro(&,p) > 0 such that ’Tpg s a

contraction in BRop(zfp)/p“Ogm c K+,

Remark 3.2. We note that Proposition 3.3 slightly improves Proposition 4.1 in [11], where
the condition p € (1,4/3) is required.

We begin by some lemmas. The following elementary result is useful to estimate IV, pf.

Lemma 3.2. Let f, € C*(R,R) and let NS be correspondingly defined by (3.6). Then, for
all ¢, € R there exist n,0 € [0,1] such that

INS(8) = Ny ()] < £ (W5 +0(06 + (1= 0)w)] (1] + [¥]) |6 — .
Proof. Applying the Mean Value Theorem twice, we have:
N5 (8) = N () =fo(Wy + ) — fo(W5 +4) = fL(W5)(¢ — )

=f, (W5 + 4 +0(6 —9))(¢ —¥) — [L(W;) (¢ — ) (3.10)
=f, (Wg + 106 + (1 — 0)¢]) [0 + (1 — 0)y](6 — ).
The asserted estimate now easily follows. O

Lemma 3.3. Let f, be given by (2.7). Let g > 1, ¢ > 0. There exists C > 0 independent of
g, &, p such that

—q)/q— 1
IN(@)lzaey < Cp* 000 Eexp{4—m|¢|2}|¢|2.

Proof. In view of Lemma 3.2 with ¢ = 0, and observing that pr (0) =0, we have

ING (@) < |fy (Wg +n0)] ]

for some 0 < n(z),0(z) < 1. Let r,s > 1 satisfy 7! + s7! = ¢g71. Then, by Holder’s
inequality and the Moser-Trudinger embedding (2.2),

INS@)llg < I1Fy (Wg +000) 1621« < CILE (W +n68) . [16].

Since

0° (e" —re )
P (e +7e™ ) (3.11)
P2 (¢" —A2re )

fo(0)
fo()
5 ()



10 ANGELA PISTOIA AND TONIA RICCIARDI
we have
¢ CAWE—
15005 4 m9)] < 7 (V55100 4 oo i)
We estimate term by term. In view of Lemma 2.3, we have

< Cp*7P.
L (Q) P

Let t,v > 1 be such that t"'4-v~! = r~!. In view of Holder’s inequality, the Moser-Trudinger
embedding and Lemma 2.3, we have

3
e 2l

I en’? Il (Q)

L7(Q) LH(Q)

) ||€|¢|||Lv(ﬂ)

- _ v
<O(CpP0 0+ Cop 1) expl <912}

w1 2 WE _ w1
S(He HLt(QH_Hpe e L*(Q)

<O 21—/t v 2y
<CRI exp{ == 9]}
Similarly, we estimate

s < ot e (T o2, (3.12)

L7(Q) —

-
We conclude from the above that

1 (W +109) Ly < Co* 0 exp { - l162}
for every t,v > 1 such that t=! + v=! = 771, Choosing s = v = 4/¢, we obtain r~! =
gl —c/4,t7 P =r"1 —¢/4=q ! —£/2 and consequently
20-t) _21-q) _ 2-t_2-q _
t q t q
The asserted estimate is established. O

Proof of Proposition 3.3. Recalling the definition of Tp5 , we estimate:
175 (&)l <II(L) Mo (NS (6) + RE)I| < Cpellog pl (1" (Ng (o) + ll* (B
<Cs|10g ol (calN§(6) 4 + coll BS1L)
for any p,q > 1. It follows that
ITE@)] < Cpellog ol x

||<25||2

> [(Clp2(1q)/q€+02p(2q)/qs) { }||¢||2+C o3 p)/p] )

Consequently, if [|¢|| < Ro|log p|p?~P)/? we have
||Tp§(¢>)|| < C£§| 10gp|p(2*p)/p [CR3| 1Ogp|2p2(1fq)/qfs+(2fp)/p + Cg] )

For any fixed p € (1,2) we may find ¢ > 1 and £ > 0 such that

20—-q)/g—e+(2—p)/p>0.
Taking Rg > 2C ;¢ C3, we obtain for sufficiently small p that

Tpg(BRol tog plp@=»/2) C BR|10g plpa-»)/r - (3.13)
We are left to show that ’Tp5 is a contraction. We have
I17;5(¢) = T3 ()|l < Cpellogpl|i*[N5(6) — N ()]l < Cpellog p| gl Ny () — Ny (9) |-
Recalling that
£ (W5 4n[6¢ + (1 — 6)¢])

=p2eWi Ao+ (1=0)] _ 2.2 =W —ynlfé+(1-0)¥]
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we estimate, similarly as above, for any 7, s > 1 such that =1 + (25)7! = ¢!

ING () = N5 (@)llg < 1f5 (W5 +nl6d + (1= 0)¢]) (6] + 1w ) (|6 — ¥ ]lq

S{Hp2€W§ Fnl0s+1-0)0)) ||p27-~er"YW§ —rmloo+1=0)wl ) 1

X (lells +Ills)Ne = 2lls)

SC{||p2€W§+n[0¢+(170)w] [ ||p27.ﬂy2e*'yW§ —y[0¢+(1-6)y] [l x

< (llell + Nl le = 1)

Similarly as above, taking t,v > 1 such that t=* + v~ =7~

Hp2eW§+n[0¢+(170)w] Il SHerW‘f [|o]|eMEe+A=0%])

L we estimate

<(C1 R0/t 4 0y p=0)/t) Tz IV
<(C1p2AD/ 4 0y p2=D/t)exz (1IN,

Choosing 2s = v = 4/e so that ¢! = r ! +¢/dand t7! = ¢ +e/4 =171 +¢/2, we
conclude that

2
INS(6) = N5 (@)lg < (Crp =07 4 pE=/a==)emz PR (g 1 ) (16 = o)-
For ¢, € Bp|10g p|p2-»/» We thus obtain

INS(8) = N5(@)llq < | log plp®P/2(Cr 200/ a=<)emie IR (g — )
By choosing ¢ > 1 and € > 0 such that 2(1 — ¢)/q — €+ (2 — p)/p > 0, we obtain that for p
sufficiently small Tp5 is indeed a contraction in B Ro| log p|p2—#)/p 5 &S asserted. [l

Proof of Proposition 3.1. In view of Proposition 3.3, there exists py > 0 such that the fixed
point problem (3.9) admits a solution ¢, € Bp|10g p|p2-r/» for any p € (1,2) and for any
p € (0, pp). Correspondingly, we obtain a solution for (3.5), which in turn yields a solution
for (2.17) satisfying Ansatz (2.8). O

4. THE REDUCED PROBLEM

In this section we obtain &1, &2 €  such that equation (2.18) is fulfilled, thus concluding
the proof of Theorem 1.1. Recall from (1.10) that ., is defined by
(€2,€2)  2G(&1,&)

H7(§1’§2) = H(glagl) + ul ,_YQ - ~ .

We consider the Euler-Lagrange functional for (1.1), given by

1
Jp(u) := 5/0 |Vul? de — p? /Q e dr — p*r /Q e ™Mdx

for uw € H}(Q). Then u € H}(2) is a solution for (1.1) if and only if it is a critical point for
Jp. We define the “reduced functional” J, : 7€) — R by setting

Tol€1,€2) =, (W5 +6y) (4.1)
where, for every (§1,&2) € Fo), the function ¢, is the solution to (2.17) obtained in Propo-
sition 3.1.

The main result in this section is given by the following.
Proposition 4.1. The function u = W§ + ¢ is a solution to problem (1.1) if and only if
(&1,&2) € Fofd is a critical point for J,. Moreover, the following expansion holds true:

- 1 1 ! .
T (€1, &) = — 87 [(1 + ?) log p* + (10g§ +1) + ?(bg% +1)+1+ ;] )
T 2
— (82) Hy (€1, 62) + o(1),

Ct—uniformly in compact sets of Fof).

We first establish some lemmas.
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Lemma 4.1. For any § > 0 and & € R2, the Liouville bubble ws satisfies

(1) Jp. (¢ € ws dw = 8 (log(85%) — 2) 4+ O(5? log )
(i) [y (¢ € P do = 87(~210g(5?) + STH(E,€) — 2) + 0(5).

for any fixed € > 0.

Proof. Proof of (i). We use the following identity, which is readily obtained by an integration
by parts, see also [11].

1 1
Gl P dy == [
L T e (11 192

We compute

/ e wsdx / 807 log 807 dz
6 =
B-(€) B.(e) (0% + [z = &) 7 (6% + [z —¢?)?
8 8
*/Bs/a(o) 02(1 + |y|?)? 2(1 + |y[2)2
8 dy 1
:810g—/ 5 —16/ ————log(1 + [y|?) dy
02 /500 L+ 19l?)? B. 50 (1+y[2)?

=87 (log(8072) — 2) + O(6*log¥).

Proof of (ii). Recalling the expansion of Pws, we have

/ e Pw; dx :/ e ws dx + (—log(86%) + 8T H (&, £)) / eV’ dx
B () Be(8) Be(8)

4 / 50|z — £]) dx + O(5?)
B.(§)

=87 (log(8072) — 2) + 87(—log(86%) + 8T H (&, €)) + O(9)
=8m(—2log(6%) 4+ 87 H(&,€) — 2) + O(6).

Let

01:—2(10gé+1), 02:—2(10g%+1). (4.3)

Using Lemma 4.1 we readily derive the following.

Lemma 4.2. Let w1 = ws, ¢,, W2 = W5, ¢,, With 01,02 given by (2.10). Then,

/ et Pwy =8m(—2log p? — 8n[H (£1,61) — 2 G(&1,8)] +c1) + O(p)
B.(&1) Y

/B o C P =B(-21og g —Se{H(6.€) = 2/G(61,6)) +2) + 00

where the constants ¢;, 1 = 1,2, are defined in (4.3).
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Proof. We compute, recalling Lemma 4.1, (2.2) and the definition of ¢; in (2.10):

/ e P = / e [wy —1og(80%) + 87 H(£1,61) + O(lz — &1 + p°)]
Bs(fl) Bs(fl)
:/ ew1w1—|—[—10g(85f)+87rH(§1,§1)]/ ewl
Bs(fl) Bs(fl)
+/ "10(jz — &+ p°)
Bs(fl)

8
:87T[10g(5—2
1

=8n[—2logd} — 2+ 87H (1,61)] + O(p)

) — 2] + 8m[—log(867) + 8w H (&1,£1)] + O(p)

2
=8m[—2log (%egﬂH(g’f)f Sv”G(fl’f?)) —2+8mH(£1,61)] + O(p)

=8n[—2logp? — 8TH (£1,&1) + mTWG(ﬁl, &) — 2log8 — 2].

This yields the expansion (i). Expansion (ii) is derived similarly. O
Lemma 4.3. The following expansion holds
1
[ Wi de =sx |20+ S)logs + o1+ B - mr 60,2) + Ol
Q
where ¢;, i = 1,2, are defined in (4.3).
Proof. We have
1 2
/ VW5[Pde = [ |[VPuw|*dx + —2/ |V Pws|?dz — = | VPw;-VPwydx.
Q Q 7 Ja Y Ja
Integrating by parts, we obtain

|VPwi|2d:c:/(—APwi)Pwid:c:/e““Pwid:c,
Q Q Q

for i = 1,2. In view of Lemmas 4.1-4.2, and observing that

VPw; - VPwsydx :/

(=APw) Pwa dx = / et Pwsy dx
Q

Q Q

- /Sz e (871G (€1, &2) + O(lz — &) + O(p%))
=(8m)*G (&, &) + O(p),
we derive the asserted expansion. O

Lemma 4.4. The following asymptotics hold, as p — 0:

8
p2/ Vs do = 8m + o(p); Tp2/ e~ W =28 + o(p).
Q Q Y

Proof. We compute:
2 / WS 2 / w1 —108(863) +87H (€1,61) — 2 G (£1,62) +O(p* +la—&1)
Bs(fl) Bs(fl)

:/ 1 tO(p* Ho—€l) — gr 4 o(p).
Bs(fl)
Similarly, we have

Tp? / e Wi =1 p? / w2 —108(863)+8m H (2,62) 87y G (£1,€2)+0(p” +|w—Eal)
B 35(52)

8w

:_/ eW2+O(p2+|m7§2|) =—+ 0(p)
Y 35(52) 7
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Proof of Proposition 4.1. Similarly as in [5, 11], we readily check that

To(61,&) = J,(W5) + O([ 1)

in CY, on compact subsets of F»). In turn, Lemma 4.3 yields the C°— uniform convergence
of jp to the functional on the r.h.s. of (4.2) on compact subsets of F2{). The C'— uniform
convergence on compact subsets of F2{) may be then derived by a step-by-step adaptation of
the arguments in [11], which rely on an implicit function argument and on the invertibility
the operator Eg as stated in Proposition 3.2.

We are left to show that critical points of jp correspond to critical points of J,. To this
end, we observe that since u, satisfies (2.17), there exist constants ¢;n, i, h = 1,2 such that

2

wp = " [folup)l = D Pyl (4.4)

i,h=1

where the functions ¢! are defined in (2.15). Therefore, we may write

8511:7;(51, §2) = <J;/;(U’P)’ afnup> :(U’P - i*[fp(up)]’ 8511(W§ + (bp))Hé(Q)

2 ., . (4.5)
=( Z cinPy; aaéuwp)Hg(Q)-
i,h=1

On the other hand, by definition of W§ we have

1 1
8511W§ = afnpwl - ;PwQ = PU’% + P1/)?8§1151 (51, §2) - ;nga§1152(§15 §2)
In view of (2.16) and observing that J¢,,0;({1,&2) = O(p), ¢ = 1,2, we conclude that

2
oD
( E cinPy)!, 0, WS ) i) = u_s (1+0(p)).
i,h=1

Now it follows from (4.5) and the above that if 8511(2,(51, &) = 0 then necessarily ¢1; = 0.
Similarly, we check that ci19 = co1 = c22 = 0. [l

Proof of Theorem 1.1. We use standard Ljusternik-Schnirelmann theory to obtain catF2()
critical points for H,(&1,&2). More precisely, we note that H. (£1,&2) — —oo as (§1,62) —
0F»Q. Consequently, H, is bounded from above on F22 and we may apply Theorem 2.3 in
[1] to derive the asserted existence of critical points (£f, &) € Faf). See also Theorem 2.1 in
[8]. Since J, — H., in C}(Faf2), we conclude for sufficiently small values of p the functional
J, admits at least catF,€) critical points (€1,65) — (€1,85),i=1,...,catFoQ. For each
fixed i = 1,..., catF5€, we then apply Proposition 3.1 with (&1,6) = (£,1,€, ) to obtain
the desired solutions u,,.

Proof of (i). By construction, u’, i = 1,..., catFoQ satisfies Ansatz (2.8).

Proof of (ii). We adapt an argument from [5, 7] to our situation. Since ||@,| e — 0
as p> — 0, there exist disjoint balls B,(&,) C @\ {z € Q : w,(x) = 0}, i = 1,2,
dist(By(&1,p), Br(€2,5)) > 6 > 0 such that v, > § in B,(&,,) and u, < —6 in By (§2,p).
Therefore, the set Q\ {z € Q: u,(z) = 0} has at least two connected components. Arguing
by contradiction, we assume that there exists another connected component 2, C Q\ {z €
Q: u,(x) = 0} with the property w, D B, (§) for some B, (§) € Q\ (Br(§1,5) U Br(§2,p))-
Then u, satisfies

—Au, =a,u, + p*(1 — 1) inw,
up €Hg(w)
with a, defined by

a, = fﬂ(up) —p (1 - 7-) _ p2 (eu" — 1) — 7'(677“9 — 1) '

Up Up
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Multiplying by u, and integrating, we obtain

[ 1906 dz <haplimio el + 2 = elluglis e
w

P

1/2
llapll Loo (w >/ 2 o 11— 7| |w,|*/? 2
WML o) [ 1 |2 dae + p2 12— TRl T / 1V, |? da
M) S, A2(,) w,

where for any w C Q we denote by A\;(w) the first eigenvalue of the operator —A defined on
w, subject to Dirichlet boundary conditions. Recalling that A (w,) > A1(2) > 0, we derive

that
1/2
llap|l oo w >> / 11— 7] |w,|'/?
Ll 7)) \Vau,|2de| <pp B TH%el (4.6)
( A (Q) o AV2(Q)

Since u, — ug in C*(@p), with o = 87G(-, €) — 877~ LG(-, &) for some &, €5 € 0, & # &,
|Vu,|* dz > / |Vuo|* dz > 0.

we have
/wp B:(§)

On the other hand, we have ||a,||L=,) = O(p?). We thus obtain from (4.6) that (1 +
O(p?)) < Cp?, a contradiction.

Proof of (iii). The proof is a straightforward consequence of the symmetry of the problem.
See also Theorem 2.1 in [§8], Part (b). O

P

5. PROOF OF THEOREM 1.2

In this section we prove Theorem 1.2 by carefully analyzing the asymptotic behavior of
the critical points of the Hamiltonian H, defined in (1.10). For the sake of simplicity, we
slightly change notation throughout this section. We recall that

h(y 2
P (o) = (o) + 25— 26y,
for all (z,y) € Q x Q, x # y, where
1 1
G(z,y) =5 -In Tyl + H(z,y)
is the Green’s function and we denote by
h(zx) := H(x,x)

the Robin’s function.
Our aim in this section is to establish the following result, which is the main ingredient
needed in the proof of Theorem 1.2.

Proposition 5.1. Let Q C R? be a convex bounded domain. Let y, — +00. Let (2, yn) be
a critical point of H., such that (z,,yn) — (zo,v0) € Q x Q. Then, we have:
(i) xo € Q; moreover, xg is the unique maximum point of the Robin’s function;
(ii) yo € 99Q; moreover, yo is a minimum point of the function 8,G(xo,y), y € 0. Here
v denotes the outward normal at y € 0N2.

We collect in the following lemmas some known results which are needed in the proof of
Proposition 5.1. We first introduce some notation. For a fixed small constant ey > 0 we
define the tubular neighborhood

Do :={zx e Q: dist(z,00) < go}.

We assume that ey is sufficiently small so that the reflection map at 0f2, denoted by = €
0y — = € R?\ Q, is well-defined. Correspondingly, we define the orthogonal projection
p: Qo — I by setting p(x) = (x + Z)/2. The outward normal at p(z) is then given by
(z —x)/|z — z|. For z €  we denote d, = dist(z, Q).

Lemma 5.1. The following properties hold for the Green’s function G(z,y) and the Robin’s
function h(z).
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(i) [9], Theorem 8.1.] Let Q C R? be a convex domain, not necessarily bounded, which
is not an infinite strip, and let h = hq denote the associated Robin’s function. Then,
—h is strictly convex, that is, the Hessian (—hj) is strictly positive definite.

(i) /6], Lemma A.2] Let Q C RN, N > 2, be a conver bounded domain. Then for any
z,y € Q, x #y, we have

(x —y) - Vo.G(z,y) <0.

(iii) [[2], p. 204] Suppose 0N is sufficiently smooth so that e" € C2(Q). Then, writing
y = ply) — dyv(y) fory € Qo, the following expansion holds:

) = g (1out2a) - “5004, 1 o(a,)).

where k denotes the mean curvature of the boundary with respect to the exterior
normal.

Remark 5.1. Although Lemma A.2 in [6] is stated for N > 3, it is clear that it holds for
N =2 as well, in view of [13].

Exploiting the explicit expression of the Green’s function for the half-plane, the following
accurate expansions may be derived.

Lemma 5.2 ([8], Lemma 3.2). Let (,yn) € Q x Q. Then,
(i) h(zn) = 5= 1log(2dy,) + O(1), du,|Vh(zn)| = O(1), if zn € Qo;
(i) VA(zn) = gmg—v(zn) +o(1), if ds, — 0;

)
(i) VaGlrn yo) =~ 225 + 0 (k7 ) if on € 0
)

T 27 [T —Yn|?

(iv) (Vau,G(zn, yn), V(xn)>+<vynG(ym o), v(yn)) = %(drn‘kdyn)(
0(1); if Tn,Yn € Qo.
(V) |Zn — yn|2 = |z, — yn|2 +4d,,dy, + of|zn — yn|2); if Ty yYn — p* € OLL.

1
|infyn

Proof of Proposition 5.1. By assumption, (z,,y,) is a critical point of H,,, that is:

,Y%Vh(yn) = V,G(Tn,Yn)- (5.2)
We first establish the following.
Claim 1: xo # Yo
Indeed, suppose the contrary.
We first consider the case zg = yo € Q. Then, Vh(y,) = O(1). Consequently, (5.2)
implies that V,G(zn, yn) = o(1), a contradiction.
Hence, we consider the case x¢g = yo € 2. We claim that

[Zn=ynl _ 4y, (5.3)
dg,,
Indeed, if not we may assume that |mj’i"yn| = O(1). Multiplying (5.1) by v(z,), using
Lemma 5.2—(i)—(iii) we deduce
1
”Yn(27rd +0(1)) =1 (Vh(zn), v(zn)) = (VoG (2n, Yn), v(zn))
1 (@n — yn, v(zn)) 1
=-————m O —_—

A |xn — ynl? + (dmn)

and therefore p
1= — Ty <'r7l — Yn, V($n)> + 0(1)

Yoo 2|Tn — ynl?
In turn, we find

1—0(—4@;—>—dm
Yol Zn — Yn

and a contradiction arises. Therefore, (5.3) is established.



A LIOUVILLE EQUATION WITH VARIABLE INTENSITIES 17

Similarly, we claim that
—In — o(1). (5.4)

Indeed, if not we may assume that z" = O(1). Multiplying (5.1) by v(z,) and (5.2) by
v(yn), and adding the two identities we obtain

Y VI(Tn), v(zn)) + _<Vh(yn) v(yn)) = (VaG(Tn, Yn), v(2n)) + <VyG(‘Tm Yn)s V(Yn))-

Hence, using Lemma 5. 2 (i1)—(iv) we derive that

1 1 1 1
n = —(d, d - - .
! (27Tdm > (27Td > 27T( T yn) (|33n = Ynl? * |Un _$n|2>
)

In turn, using Lemma 5.27(v we deduce

n I dy, +dy,
& T yd, - © ( dody. )

14 L 1 (dm" )
7721 dyn Tn dyn

and a contradiction arises. Therefore, (5.4) is established.
Finally, (5.3)-(5.4) and the triangle inequality
dmn < |$n - yn| + dyn
yield a contradiction. Hence, the proof of Claim 1 is complete.
Claim 2: xg € Q and yo € 09Q.
Since xg # yo in view of Claim 1, we have
VG (zn,yn) = O(1). (5.5)
If o € 09 then |Vh(z,)] — +oo and by (5.1) and (5.5) we get a contradiction. If z¢ €
and yo € Q then VH(y,) = O(1) and by (5.2) we deduce that V,G(zo,yo) = 0. This is
impossible if Q is convex, in view of Lemma 5.1—(ii). Hence, Claim 2 is established.

Proof of (i). We are left to show that z( is the maximum point of the Robin’s function.
Since z¢ € Q and yo € 99, then by (5.5) and (5.1) we derive Vhi(zg) = 0. Since the domain
is bounded and convex, in view of Lemma 5.1-(i) Robin’s function has a unique critical
point, given by the maximum point. Now Proposition 5.1—(i) is completely established.

Proof of (ii). By the mean value theorem we may write for any = € Q

Gz, y) = Gz, p(y) — dyv(y)) = —0,G(x, p(y))dy + o(dy). (5.6)
Let (2, yn) be the maximum point of the function H,,. For any point p € 92, we consider
y=p—dy,v(p) € Q. Then, we have H,, (2, yn) > Hn(xrn,y). That is,

h(yn) = 290G (Tns Yn) > h(Yy) — 279G (Tn, Y)-

In view of Lemma 5.1-(iii) and (5.6) we derive

1 s(p(yn))
_%Tdyn_2vnal’G(xn’ (yn))dyn+0(dyn) Z _%Tdyn 2’7"8 G(xn’ )dyn+0(dyn)

Recalling that ~,, — 400, we derive from the above that
9y G (2, p(yn)) < 8,G (25, p) +o(1).
Finally, taking limits, we obtain
9,G (20, Y0) < 0,G(w0,p)
for any p € 99, and (ii) is completely established. O

The above yields

1 x(p)

Finally, we provide the proof of Theorem 1.2.

Proof of Theorem 1.2. Proof of (i). Let 7, — +oco. The asserted asymptotic behavior

follows readily from Proposition 5.1 with (z,,y,) = (§/",£™). Proof of (ii). In this case,

we take («In,yn) = ( ;’n, ?n) .
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6. APPENDIX

We provide in this section a blow-up analysis for solution sequences to (1.1), from which
it is clear that the blow-up masses and the locations of the blow-up points, as taken in
Theorem 1.1, are the only possible choice.

Proposition 6.1. Assume that u,, is a solution sequence for (1.1) satisfying u,, — uo in
CRN (&, &1 MW" (), 1< p <2, with

ug(z) = n1G(z,§1) — n2G(x, §2)

for some &1,&2 € Q and for some ni,ng > 0. Then,

ny = 8, ng = 8% (6.1)
velnea - SR o v [HER g =0 62

Proof. We adapt a technique from [25]. For the sake of simplicity, throughout this proof,
we denote u = u,,. We recall that

Fo(t) =p?(e" —Te™)

£ (¢ 5e)
v

so that —Au = f,(u) and F; = f,. By assumption, we have f,(u) X nyde, — nade, weakly

in the sense of measures, and therefore p?e® = n1d, and p?re " = nade,. It follows that
n
F(u) = mye, + 72552, (6.3)

weakly in the sense of measures. Using the standard complex notation z = z + iy, 0, =
(0z —10y)/2, 0z = (0y +10y)/2 so that 0,z = A/4, we define the quantities

where N(z,z) = (47) ! log(z%) is the Newtonian potential. We note that AN = &y, N, =
(472)"L N,, = —(472?)~t. Let S = H + K. It is readily checked that S; = 0, that is, S is
holomorphic in 2. Indeed, we have Hz = —4u. f,(u) and Kz = Nz * [F,(u)], = 4f,(w)u..
It follows that S converges to some holomorphic function Sy. In order to determine Sy, we
separately take limits for H and K. By assumption, we have
1 1

H — Hy= 5“3,,2 = 5[”1Gz(2, &) —n2G.(z, &) (6.4)
in C2 .2\ {€1,&}). Recalling that G(z, &) = (4m) " log[(z — &) (2 — &)] + H(2, ), we derive
G.(2,6) = (4n(z — &))" + H.(z,£). Hence, we may write

UO,z = = - 12 + Wz,

dr(z — &)  An(z — &)

where the function
WZ(Z) = TLlH(Z, 51) - TI’QH(Za 52)
is smooth in €. Thus, we derive

2 2

o ni ny - nin2
Ho = 3272(z — £1)2 + 32m2(z — &2)?  1672(2z — &1)(2 — &) (6.5)
ny n2 1 2

+ dm(z — 51)w2 Cdr(z — 52)w2 tgvs
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On the other hand, we have K — K, with

n9 1 n9
Ko =N,, * [n15§1 + 7552] = T2 * [n15§1 + 7552]
- ni no
Am(z—&)?  dmy(z — &)
Since Sy = Ho+ K is holomorphic, the singularities of Hy necessarily cancel the singularities
of Ky. Cancellation of the second-order singularities readily yields n; = 8w. The second
identity in (6.1), namely no = 87/ is derived similarly.
Now, we consider the first-order singularities. Near £;, we obtain that

(6.6)

ning niwy (51)

T 16m2(6 — &) i

That is, using (6.1),

2

e, WG —&) (6.1)

i) = |8nHL (2,6 - %”sz,sz)]

On the other hand, we may write
1 1

e g — 10 Rl @)~ B)llime = N, ©) = Gl 8) — Ha (2 80)

Therefore, in view of (6.7) we obtain

noy Bl L g - R
Hz( a§1> v e, — 47?_)/(51 _§2> = ")/GZ( 552)|Z:§1 ~ .
Hence, we conclude that
8. [H(z,gl) - @] =0.
z2=&1

Since H, G are real, the first equation in (6.2) follows. The second equation in (6.2) is derived
similarly. O

We note that (6.2) implies that at the blow-up points &1, &> the estimate in Lemma 2.3
may be improved as follows.

Lemma 6.1. Let &1, & satisfy (6.2) and let Wp5 be defined by (2.8). Then,

p p
2€O¢1W§ _ w1 WE _ W2 < Cp2 (68)

Lr(Q) —

e

+[lerre
Hp Lr(Q) pre

Proof. In view of (6.2), the Taylor expansion employed in the proof of Lemma 2.3 may be
improved:

H(x, &) - %G@c, &) = H(Er, &) - %G@l, &)+ 0l — &),

Consequently, we estimate
Bs(fl)

a /BE@I)
dx

<c (52 4 |z — & 2P da < 0521”/ o
B.(&1) ! Y e (03 + |z — &?)P

dy
§C52/ —2 __dy < Cp*.
! B.,s, (0) (L [y]?)?

At this point, arguing as in Lemma 2.3, we conclude the proof. O

2 w1 —log(837)+8[H(€1,61) 2 G(£1,62)1+0(8} +Ha—& 1*) _ jui [” 4o

p
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