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Abstract

Almost all people in developed countries are exposed to metal nanoparticles (MeNPs) that are used in a large number of
applications including medical (for diagnostic and therapeutic purposes). Once inside the body, absorbed by inhalation,
contact, ingestion and injection, MeNPs can translocate to tissues and, as any foreign substance, are likely to encounter
the innate immunity system that represent a non-specific first line of defense against potential threats to the host. In this
review, we will discuss the possible effects of MeNPs on various components of the innate immunity (both specific cells
and barriers). Most important is that there are no reports of immune diseases induced by MeNPs exposure: we are
operating in a safe area. However, in vitro assays show that MeNPs have some effects on innate immunity, the
main being toxicity (both cyto- and genotoxicity) and interference with the activity of various cells through modification
of membrane receptors, gene expression and cytokine production. Such effects can have both negative and positive
relevant impacts on humans. On the one hand, people exposed to high levels of MeNPs, as workers of industries
producing or applying MeNPs, should be monitored for possible health effects. On the other hand, understanding
the modality of the effects on immune responses is essential to develop medical applications for MeNPs. Indeed,
those MeNPs that are able to stimulate immune cells could be used to develop of new vaccines, promote immunity
against tumors and suppress autoimmunity.
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Introduction
Human exposure to engineered nanoparticles (NPs) is at
present widespread. The general population is subjected
to a lower risk compared to workers of industries produ-
cing or using NPs [1] and, obviously, extremely relevant
is the exposure of patients receiving NP-based drugs for
diagnostic or therapeutic purposes. NPs are used as bio-
sensors, photo-detectors, sensing devices, catalysts, sor-
bents, semiconductors [2]. In nanomedicine, they are
used in diagnostic imaging, vaccines, cancer therapy and
drug delivery [3–6]. In any way, either assimilated by en-
vironmental exposure or deliberately administered to
humans, they may interact with cellular and molecular
targets and can also trigger unpredicted and potentially
harmful outcomes. Therefore, information on biological

effects and safety of these emerging manufactured prod-
ucts is mandatory.
Speculations on the possible effects of metal-based

nanoparticles (nanoparticles made of elemental metals
and their oxides and compounds - MeNPs) on human
cells is not straightforwardly deducible from bulk metal-
lic matter. This is because in the nanoworld, dose and
concentration are not the most relevant factors for the
toxicological profile but, rather surface specific area and
physicochemical properties, such as ions leakage, mag-
netism, crystalline and electronic configurations should
be taken into account [7, 8].
Moreover, metal toxicology definition is further compli-

cated by the biphasic dose–response relationship of some
metallic elements, the so-called hormetic-like behavior [9].
For doses below the threshold, the response can likely re-
flect an adaption of modest magnitude [10]. Additional
complexity is given by the aggregation/agglomeration ten-
dency of certain types of MeNPs and the tunable effect of
the milieu [11]. The fact that a large number of studies are
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published on technical more than biomedical journals is
symptomatic of the difficulty to adapt current biological
tests to the assessment of NP toxicology.
Once inside the body, absorbed by inhalation, contact,

ingestion and injection, MeNPs can translocate to tissues
and, as any foreign substance, are likely to encounter the
innate immune system [12]. The first response of the in-
nate immune system to harmful substances is mediated
by inflammation. The process is initiated by cells present
in all tissues mainly resident as macrophages, dendritic
cells, neutrophils and mast cells. They produce a variety
of chemical factors that induce vasodilation and favor
chemotaxis of phagocytes [13]. Generating high levels of
reactive oxygen species (ROS) upon interaction with cel-
lular components [14] causes accumulation of oxidized
glutathione (GSSG). The extent of the generated oxida-
tive stress determines the pathophysiologic potential of
the NPs as it activates pro-inflammatory signals, favoring
cell death [14] or cancer [15].
Cells of the innate immune system, particularly macro-

phages and dendritic cells, communicate with the adap-
tive immune system inducing tolerance or an immune
reaction depending from the safety or harmfulness of
the absorbed substance [13].
Numerous experimental evidences support the role of

the innate immune cells in the onset of inflammatory
pathways in response to MeNP exposure. Immunotoxi-
city comprises activation/dysregulation of macrophages
and antigen presenting cells (APC) [16, 17].
There are evidences that in animals, MeNPs cause

aspecific immune responses, immunosuppression and
autoimmunity and associated morphological alterations
of the immunologically active tissues [18]. These effects
are attributable to both physical characteristics (mainly
size) of NPs and to their chemical nature (through re-
leased ions) [19–21]. Moreover, MeNPs may affect im-
mune system function indirectly by changing essential
elements homeostasis due to released ions [22]. Metallic
elements, their ions and compounds, have been clearly
related to immune system mediated diseases. The find-
ing that exposure to platinum, chromium, nickel, beryl-
lium, and mercury can cause asthma and allergic contact
dermatitis in professional workers provided the first clue
of their possible detrimental influence [23].
There is no information in literature regarding the

correlation of the onset of some disease as consequence
of MeNPs exposure in the general population. How-
ever, it has been observed the increase in palladium
(Pd) allergic contact dermatitis, in parallel with the in-
creased pollution of PdNPs emitted from catalytic con-
verters [24]. The main concern is for people exposed to
large amounts or high concentrations of MeNPs, as
workers in NP-making industries or in patients receiv-
ing NP-based drugs.

Review
In this review, we will examine the possible immune
effects of MeNPs, focusing our attention on the innate
immune system (both specific cells and barriers), and we
will discuss future research lines.

Nanoparticle/cell surface receptor interaction
Increasing experimental evidences suggest that cells of
the innate immune system react to MeNPs through the
same mechanisms developed to destroy pathogens.
Toll-like receptors (TLRs) are crucial sensor molecules,
which detect conserved molecular patterns of microbes
and viruses and initiate innate immune response [25].
Toll-like receptor 4 (TRL-4) appears to be sensor and
signal transducer for CoNPs ending up with activation
of the innate immune response and pro-inflammatory
cytokines production [26]. In fact, no pro-inflammatory
response is produced when using blocking antibodies
against TRL-4 or when TLR4-negative cells are chal-
lenged, whereas an enhanced reaction is observed by
TLR4-overexpressing cells [26]. Through the activation
of TRL-4, human monocyte/macrophages THP-1 exposed
to Co microparticles (0.5-2 μm) activate a signaling path-
way leading to IL-8 release. This presumably leads to neu-
trophil attraction that in turn might phagocytose and
eliminate the particles. An analogous IL-8-mediated mech-
anism might function for aggregated/agglomerated CoNPs,
on epithelial cell types [27–29].
Non-toxic exposure (10 μg/mL) to TiO2 NPs and ZnO

NPs did not significantly alter the phenotype of MDDC,
whereas subtoxic concentrations of ZnO NPs, but not of
TiO2 NPs, induced a down regulation of Fcγ RIII
(CD16) expression on NK-cells, suggesting an effect on
FcγR-mediated immune responses [30].
Gold nanoparticles (AuNPs) of various sizes (ranging

from 4 to 45 nm) have been found to affect macrophage
response against microbial pathogens through accumula-
tion in the lysosomes and inhibition of TLR-9 function.
In fact, AuNPs impede the binding of bacterial DNA
fragments (CpG-ODN) specifically recognized by this
receptor, as well as the downstream signaling pathway in-
volving JNK and NF-kB activation, leading to lower TNF-
α production. AuNPs are easily internalized by phagocytic
and tumor-infiltrating macrophages used as a sort of
Trojan horse to target (silica-coated) Au-nanoshells to
the center of human breast carcinoma spheroids, thus
allowing the killing of bystander tumor cells [31]. Simi-
larly, AuNPs are internalized by human T cells and tar-
geted to the tumor in a xenograft model of lymphoma
[32]. AuNPs, commonly considered biologically inactive
and non-cytotoxic, have become one of the ideal nanoma-
terials for medical applications. However, once engulfed
by phagocytes, the immunological effects of AuNPs are
still of concern and require exhaustive investigation.
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Table 1 summarizes the main interactions of MeNPs with
receptors of the innate immune cells.

Immune depression and pro-inflammatory response
Monocytes/macrophages exposed to MeNPs (Co-, ZnO-,
CeO2- and TiO2NPs) can die by necrosis and apoptosis, a
phenomenon that depends on concentration, chemical na-
ture, size and structure of NPs [33–37] as assessed with
various in vitro assays. At non-cytotoxic doses, however,
MeNPs generate pro-inflammatory effects. AgNP-exposed
macrophages were promptly induced to produce IL-8, as
well as oxidative stress genes (hemeoxygenase-1, heat
shock protein-70), in a size-dependent way. In fact, 5 nm
NPs produced an early effect, while 100 nm particles
failed to do so [38]. The inverse relationship between
size and cytotoxic effect of AgNPs is confirmed on hu-
man blood monocytes that produce higher levels of
hydrogen peroxide when exposed to 5 nm compared to
28 nm NPs. Moreover, the potential of activating the in-
nate immunity, measured as production of IL-1β, and in-
duction of inflammasome formation and other effects, was
higher for the smaller AgNPs [39]. ZiONPs behave simi-
larly. As for Ag, at an equivalent mass load, smaller parti-
cles induce a greater cytotoxicity in exposed monocyte/
macrophages [40].
Interestingly, in human peripheral blood lympho/

monocytes, CoNPs induced an increase of TNF-α and
IFN-γ release along with an inhibition of IL-10 and IL-2,
a cytokine pattern similar to that detected in the experi-
mental and clinical autoimmunity and in allergic contact
dermatitis [41]. It is not possible to exclude that this pro-
inflammatory response could be triggered by Co2+ ions
that are known to abundantly leak from CoNPs.
Many metal oxide NPs (made of CuO, TiO2, ZnO,

Fe2O3, Fe3O4) induce cytotoxicity and DNA damage in
A549 type II lung epithelial cells. Amongst them, CuNPs
evoke inflammatory responses stronger than the other
metal oxides [42], and in an in vivo model, they induced
an increase of neutrophils and associated cytokines in
the lung as well as signs of cytotoxicity [43]. However,
when mice were exposed to both CuNPs and Klebsiella,

bacterial clearance was decreased respect to mice not
treated by NPs. This suggests that CuNPs exposure
might lead to increased risk of pulmonary infection by
impairing host defense against bacteria. Similar results
have been obtained by other authors with single-walled
carbon nanotube [44]. However, it is not certain whether
these NPs directly impair the immune system. It has
been demonstrated that the rate of bacterial clearance
depends on the ratio of neutrophils to bacteria and that
a reduced recruitment of neutrophils with a severe neu-
trophil inflammation are accompanied by a reduced bac-
terial killing [45, 46].
Intratracheally instilled Fe2O3NPs induce lung inflam-

mation as assessed by increased cytokine productions by
cultured lung lymph node cells and decreased pulmon-
ary immune responses against sheep erythrocytes. Both
levels of inflammation and immunodepression were
greater than those induced by the corresponding micro-
particles [47].
A recent in vitro study enlightened the differential re-

sponse of human antigen presenting cells with different
roles in innate and adaptive immunity, macrophages and
dendritic cells, to ZnO and TiO2 NPs. ZnONPs caused cell
death in a dose-dependent manner, but at sub-toxic doses
both kinds appear to follow the typical storage, transport
and detoxification route of metals through upregulation of
the gene encoding metallothioneins. Nevertheless, dendritic
cells appear less distressed by ZnONPs compared to mac-
rophages, with only 12 genes affected, compared to the
2703 genes in macrophages. In macrophages, ZnONPs
affect main biological processes regarding cell death and
growth and controlling the development of the immune
system. This effect was essentially dependent on particle
dissolution and was strongly reduced when NPs were
modified to reduce Zn2+ release [48].
Heavy metals and almost all MeNPs can also activate

autophagy [35, 49–52], a fundamental eukaryotic path-
way controlling inflammation through regulatory interac-
tions with innate immune cells, by removing endogenous
oxidative stress-damaged mitochondria and modulating
the secretion of immune mediators [53–55]. Moreover,

Table 1 Main interactions of metal nanoparticles with receptors of the immune cells
NP Cells Effect Dose/Diameter Ref

CoNP Monocyte/Macrophages -Activation of the innate immune response [26]

-Release of inflammatory cytokines through TLR-4

TiO2NP ZnONP Human lymphocytes -No alterations of MDDC phenotype 10 μg/mL [30]

ZnONP Human lymphocytes -Down regulation of CD16 on NK-cells subtoxic [30]

AuNP Macrophages -Reduction of macrophage response against pathogens 4-45 nm [32]

-Accumulation of NPs in the lysosomes

-Inhibition of TRL9 function

-Inhibition of TNF-α production
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autophagy contributes to antigen presentation and to T
cell homeostasis, and it affects T cell repertoires and
polarization [56].
Mitogen-stimulated human primary lympho/mono-

cytes exposed to Co and PdNPs show autophagic vacu-
oles, associated with the alteration of cell cycle, in
particular with prolongation of G1-phase [20, 24], and,
in the case of hematopoietic progenitor cells, with pro-
longation of G2/M-phase [20]. Delayed cell cycle-phases
are likely due to DNA replication fidelity checkpoints
that, in case of failure, cause mutations and genomic ar-
rangements promoting cancer development. Moreover, IL-
8 was released by the primary human lympho/monocytes
upon exposure to a sub-toxic dose of PdNPs. Notably, such
effect was not observed for immature progenitor cells of
the myeloid lineage (CD133+) [57].
Two studies on the divergent behavior of NPs from par-

ticles of greater size (microparticles) or ions [58, 59] show
that CoNPs cytotoxicity is lower than that of microparti-
cles and ions, following the ranking ions >micro > nano.
On the contrary, only micro- and nanoparticles have mor-
phological transforming potential [58]. Another investiga-
tion concerning the interference of CoNPs with gene
expression has shown that only Rab18 is affected by all
three forms of cobalt. This gene regulates membrane traf-
fic and vesicular organization, whose down-regulation is
implicated in lipid metabolism, autophagy and inflamma-
tion. In general, Co ions interfere with genes related to
mitochondrial dysfunction, microparticles with genes re-
lated to cell metabolism and cycle, whereas NPs with
genes involved in the activation of the immune response,
in particular innate immunity and apoptosis [60, 15].
Primary dendritic cells were the least sensitive to Co

ions amongst six cell lines of non-immune system deriv-
ation and the second least sensitive to CoNPs, based on
the hypothesis that the toxic effects of aggregated
CoNPs are mainly due to Co ions dissolution from the
aggregated NPs [29].
At present, a major area of interest is the modification

of some properties of NPs (size, surface charge, hydropho-
bicity/hydrophilicity, and the steric effects of particle coat-
ing) that can dictate nanoparticle compatibility with the
immune system in order to use them for human therapy
[61–64]. For example, the hydrophilic environment, ob-
tained designing NPs by attaching to poly(ethylene glycol)
(PEG) or other types of polymers, shields them from
immune recognition [65]. However, also in this case re-
peated injections of high doses of PEG-coated lipo-
somes are followed by the formation of PEG-specific
antibodies [66, 67], which results in an accelerated
clearance of PEG-liposomes with change in their phar-
macokinetic profile [68].
Coating can reduce NPs cytotoxicity and pro-

inflammatory effects. However, while Fe2O3NPs coated

with PEG or dextran were non-toxic to primary human
monocyte-derived macrophages, dose-dependent tox-
icity of 30 nm and 50 nm silica-coated Fe2O3NPs was
observed for primary monocyte-derived dendritic cells
[69]. Similarly, both coating and particle size determine
the cytotoxicity of ZnONPs for human macrophages
and monocytes [40]. Poly(vinylalcohol)-coated super-
paramagnetic Fe2O3NPs, used in biomedical applications
induce important functional deficit in monocyte-derived
dendritic cells. These cells internalize NPs in a dose-
dependent manner. However, LPS-induced maturation
decreases uptake at higher particle concentrations, and
cytochalasin D pre-treatment also inhibits this process
suggesting pinocytosis mediated by actin assembly. NPs
exposed dendritic cells maintain the typical immuno-
phenotype (CD80, CD83, CD86, myeloid/plasmacytoid
DC markers) and are capable of antigen-uptake. How-
ever, the capacity of antigen processing, T helper cells
stimulation, and cytokines induction is reduced, sug-
gesting that they may revert to an immature state fol-
lowing particle exposure [70].
The type of coating also affects NPs uptake; for instance,

silica-coated Fe2O3NPs are internalized to a significantly
higher degree when compared to the dextran-coated NPs
of comparable size, through an active, actin cytoskeleton-
dependent process [69]. This behavior makes them prom-
ising materials for medical imaging and cell tracking.
Table 2 summarizes cytotoxic effects of MeNPs.

Immune stimulation
There are no evidences so far that NPs are able to in-
duce a T- and B-cells (antibody) mediated specific im-
mune reactions. In addition, there are no reports on IgE
mediated allergies against NPs. However, three studies
demonstrated the generation of particle-specific anti-
bodies when C60 fullerene derivatives conjugated to a
protein carrier were used for immunization [71–73]. All
the studies demonstrating the generation of antibodies
against NPs have as common feature the NPs conjuga-
tion to BSA. Therefore, it may be assumed that some
water-soluble NPs may behave as haptens, gaining anti-
genicity when bind to protein carrier possibly as a result
of their small size. On the contrary, other studies using
gold colloids, different fullerene derivatives, and dendri-
mers, even in the presence of strong adjuvants, have not
reported particle-specific immune response [74–76].
However, NP interaction with the innate immune system
can influence the adaptive immune reaction through the
production of cytokines and chemokines. AgNPs-exposed
peripheral blood mononuclear cells produced IL-1β, a crit-
ical cytokine involved in lymphocyte activation and prolif-
eration [39]. Also in this case, the size of NPs (5 nm and
28 nm) is inversely correlated to the magnitude of the ob-
served effects. Both particle sizes induced inflammasome
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formation and the subsequent caspase-1 activation, but
the 5 nm AgNPs produced more hydrogen peroxide and
were more cytotoxic [39].
The interaction of NPs with the innate and adaptive

immune system is modulated through the induction of
specific pattern of cytokines. By this way, MeNPs can
favor sensitization to common allergens. For instance, in
mice exposed to TiO2NPs it was observed lung cellular
inflammation involving eosinophils [77], with conse-
quent production of T helper cells-activating cytokines
[78] along with an amplification of Th2 cytokines ex-
pression. This event might contribute to the immuno-
toxicity underlying pulmonary injury associated with
exposure to this type of NPs [79].
Similar pattern of Th2 cytokines production is induced

by other MeNPs for example Ag- and ZnONPs [79–81].
On the contrary, Fe2O3-, NiO-, Co3O4- and PdNPs favor
the production of Th1 cytokines by peripheral mono-
cytes [24, 41, 82–84] hypothetically favoring the spread-
ing of autoimmune diseases. Table 3 summarizes the
immunostimulating effects of MeNPs.

Adjuvant properties of MeNPs
The ability to stimulate the innate immune system is
exploited in medicine as some NPs can guide appropri-
ate immune responses in therapeutic settings acting as
adjuvants [85]. In fact, in the immunotherapy of allergy,
specific NPs imprint differentially modulated induction
of acute allergic airway inflammation, with a significant
inhibition of adaptive allergen-specific immunity. In this
context, NPs are taken up by a specific subset of lung
APC, stimulate cytokine/chemokine production and pul-
monary DC maturation and translocate to the lung-
draining lymph nodes via cell-associated transport.
These findings support the development of lung-specific
particulate vaccines, drug delivery systems, and immu-
nomodulators [86]. The increase in inflammatory cells,
airway hyperresponsiveness, increased levels of IL-4, IL-
5, and IL-13, and the increased NF-κB levels in lungs
after ovalbumin inhalation were significantly reduced by
the administration of AgNPs. These are able to reduce
intracellular ROS levels in bronchoalveolar lavage fluid
induced by antigen inhalation [87]. Fullerenes have

Table 2 Main cytotoxic effects of metal nanoparticles on cells of the immune system
NPs Cells Effects Ref

CoNPs ZnONPs CeO2NPs TiO2NPs Mononyte/Macrophages Necrosis (dependent on dose, size, concentration, structure [33–36, 48]

AgNP ZiONP Monocyte/Macrophages -IL-8 and IL-1β production (size-dependent) [37–40]

-Oxidative stress

-Inflammasome induction

CoNPs Human PBMCs -Increase of TNF-α, IFN-γ [41]

-Inhibition of IL-2, IL-10

CuONP Neutrophils -Neutrophil recruitment and activation [42, 43]

-Increase of IL-6, IL-12, GM-CSF, KC, MCP-1, MIP-α, TNF-α

CuONPs Neutrophils -Reduced bacterial killing [44–46]

Fe2O3NPs Lung lymph node cells -Increased cytokine production [47]

ZnONPs Monocyte/Macrophages -Toxicity (dose-dependent) [48]

-Cell death (ion relese-dependent)

CoNP Human PBMC -Autophagy [20]

PdNPs Human PBMC -Autophagy [20]

-Cell cycle (prolongation of G1-phase)

-Increase of IL-8

Coated NPs Monocyte-derived macrophages -Variable cytotoxicity [62–64, 69, 70]

Table 3 Immunostimulating effects of metal nanoparticles on cells of the immune system
NPs Cells Effects Ref

AgNPs Human PBMCs Size dependent IL-1β production (inverse correlation) [39]

TiO2NPs AgNPs ZnONPs Lung macrophages, dendritic cells, basophils,
neutrophils and eosinophils

Increase of inflammatory and Th cell activating
cytokines (IL-2, IL-4, IL-6, CINC-1, IL-10, TNF-α)

[77–79, 86, 87]

Fe2O3 NiNP CoNPs PdNPs Human peripheral monocytes Increase of Th1 cytokines [24, 41, 82–84]
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shown activity as a negative regulator of allergic inflamma-
tion, suppressing Ag-driven mediator release by mast cells
[88]. Human mast cells preincubated with fullerenes exhib-
ited a significant inhibition of IgE dependent mediator re-
lease, involving profound reductions in the activation of
signaling molecules, likely involving a reduction in the
tyrosine phosphorylation of Syk. In addition, fullerenes
significantly inhibited elevation in cytoplasmic ROS levels
induced by allergens [88]. Au- and AgNPs of similar size
are taken up in a dose-dependent manner (more efficiently
when they own a positive charge) by mouse peritoneal
mast cells, whose efficiency of the degranulation and se-
cretion was inhibited [89]. AuNPs of 15 nm are also suc-
cessfully used as adjuvants of a recombinant protein
vaccine (hNgR-Fc) developed to block myelin associated
inhibitors of neurite outgrowth. In a rat model of spinal
cord-injury, adjuvant AuNPs produced higher titers of
anti-NgR antibody and promoted repair [90].
Aluminum is included in vaccines formulations, including

those for allergen immunotherapy, for its adjuvant activity
involving the engagement of the NLRP3 inflammasome
and the induction of IL-1β by dendritic cells [91].
Aluminum has been designed in form of NPs (nanorods)

to obtain effective immune adjuvancy using aluminum oxy-
hydroxide (AlOOH-). In in vitro models (human myeloid
cells and murine dendritic cells), the adjuvant capacity of
these NPs has been confirmed since they induce activation
of the inflammasome. The extent of the activation depends
on the shape, crystallinity and hydroxyl groups displayed of
the NPs surface and is more potent than the elemental
aluminum. Moreover, AlOOH-nanorods of specific shape
and crystalline structures are capable of inducing higher
MHC-II and co-stimulatory molecules expression [92].
Thus, they are useful for quantitative boosting of antigen-
specific immune responses.
Superparamagnetic Fe2O3NPs, tested as an anti-cancer

DC-targeting nanovaccine, were found to rapidly enter,
even if transitorily, within endolysosomal compartments
of ex vivo exposed dendritic cells, and also limitedly in the
cytoplasm [93]. Magnetic Fe2O3NPs induced exosomes in
the alveolar region of BALB/c mice that act as signaling
mediators in the induction of Th1 immune activation.
NPs induced exosomes would transfer their membrane-
bound antigens to immature DC and macrophages,
favoring their maturation into cells producing the Th1
cytokines, IL-12 and TNF-α which drive T-cell activation
and differentiation [82]. Th1-polarized immune activation
can be useful in the case of tumor nanovaccines. Table 4
summarizes the adjuvant properties of MeNPs.

NPs and physical barriers of the innate immune system
Since epithelial cells have toll-like receptors [94] and se-
crete cytokines [95] that participate in the determination
of the type of immune reaction against the host, it is

important to verify the ability of NPs to overcome the epi-
thelial barrier and to look at the possible toxic effects on
the epithelial cells. Inhalation is an important route for
NPs exposure, and several studies report NPs-induced
lung inflammation in animals [96, 97], although no exam-
ples of lung pathologies have been reported in humans.
The production of ROS remains the main inflammatory
mechanism induced by Ag-, TiO2-, ZnO-, MnO2- and
CeO2NPs in human bronchial epithelium [98–104]. On
the contrary, oxidative stress plays only a marginal role in
the genotoxicity of Fe2O3NPs in human lung cells [105].
ROS production can lead to cellular and DNA damage
[106] with extracellular and intracellular signals and cell
death through apoptosis [107] that has been associated
with many lung diseases [108]. A kinetic study of the gene
expression profiles induced by inhalation of Co3O4 and
CeO2 NPs in lung epithelial cells showed mainly a down-
regulation of gene transcription; about 14 % of the differ-
entially expressed transcripts were involved in immune
processes [109]. NiNPs induced a significant reduction of
cell viability and an increase of apoptotic and necrotic cells
at 24 h along with an increase in ROS production and a
significant release of IL-6 and −8, dependent on mitogen
activated protein kinases (MAPK) cascade through the in-
duction of NF-kB pathway [110]. ZnO NP exposed human
bronchial epithelial cells significantly increase the expres-
sion of IL-8 mRNA and protein in a dose-dependent man-
ner [111]. Both IL-6 and IL-8 are proteins of the acute of
the acute inflammation acting as chemotactic and activat-
ing factors for neutrophils and other granulocytes [13].
Generation of ROS and release of IL-8 are also typical for

MeNPs exposed gastrointestinal epithelial cells. ZnONPs
induce cell oxidative damage, the small-sized NPs being the
more effective, with a marked increase in anti-oxidant gene
expression and high lipid peroxidation level in the entero-
cytes, in which disarrangement of the cytoskeleton and cell
junction integrity were evidenced. These events led to dif-
fuse necrotic damages in the intestinal barrier with a trans-
and paracellular permeation of NPs through the mucosa.
Differently from other NPs, ZnONPs toxicity seems to be
crucially mediated by the NP reactivity rather than their
dissolved ions [112]. ZnONPs led to significant cell death
in Caco-2 and SW480 cells, while Ag and TiO2NPs led to
cell death in SW480 cells. In these last NPs, the exposure
did not yield significant increased ROS generation, but all
NP exposures led to increased IL-8 cytokine generation in
both cell lines [113].
Mucus represents an efficient acellular barrier for

both the respiratory and intestinal tracts. The passage
through the mucus is most likely based on the electro-
static repulsion from negatively charged sugar moieties
which favors the penetration of positively charged
hydrophilic molecules. The passage of lipophilic com-
pounds is slow [114]. Furthermore, smaller particles
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underwent a significantly faster transport so bypassing
the barrier.
It has been demonstrated that, in vitro, TiO2NPs [115]

and, in vivo, AgNPs [116] induce abnormal mucus pro-
duction. However, no data are available on the capacity
of NPs to pass the mucosal layer of bronchi and intes-
tine in pathological conditions.
Once reached the intestinal epithelium, NPs can react

with epithelial cells. It was found that AgNPs damage
microvilli as well as intestinal glands in mice, inducing a
malabsorption syndrome [117]. Au NPs were retained in
the gut lumen of Daphnia magna, but there was no ob-
servable internalization into the gut epithelial cells. Car-
bon nanotubes and CuO NPs have a similar behavior as
in vivo retention does not necessarily result in their in-
ternalization [118].
TiO2NPs can cross the intestine. In fact, exposure of

whole gut sacs to 1 mg/l TiO2NPs for 4 h caused total
Ti metal concentrations to increase in the intestine in
rainbow trout [119]. Furthermore, TiO2NPs cross Caco-
2 monolayers without disruption of junctional com-
plexes and without causing cytotoxicity [120]. Since the
plasma membrane of the cells forming the epithelial bar-
rier is lipophilic, lipophilic substances are taken up pas-
sively by the transcellular route whereas hydrophilic
drug compounds use the paracellular route. The pene-
tration area of the paracellular route is extremely small
compared to the transcellular route and restricted to
polar substances below 1000 Da. NPs are not expected
to be able to use the paracellular route, because they are
considerably larger than 1000 Da. Transcellular passage
by passive diffusion appears to be rare. Although the
passage of cells by 22 nm TiO2 NPs was suggested to
occur by passive diffusion [121], 5–8 nm AuNPs could
not enter cells by this process [121]. Independently on
the entry route, NPs are mainly transported via endo-
somes to lysosomes. Non-functionalized Ag-, TiO2- and
SiO2NPs are mainly taken up by clathrin-mediated
endocytosis [122–124].

The transport of antigens and/or NPs is mainly carried
out by the follicle associated epithelium-M cells, since the
mucus layer limits the particle uptake across the villous
epithelium [125]. Once NPs have crossed the epithelial
barrier, they can be found in the lymphatic tissues.
No information is present in literature regarding pos-

sible changes in MeNPs uptake in inflamed intestine,
whereas contrasting results have been obtained with
other NPs [126, 127]. Other important effects are linked
to the tendency of NPs to absorb macromolecules. By
adsorption of organic compounds also unintended mole-
cules (undigested and unmetabolized compounds) may
be absorbed by the gastrointestinal tract so inducing ad-
verse effects [128]. Table 5 summarizes the interaction
of MeNPs with cellular barriers of the innate immunity.

Conclusion
The study of the possible effects of potentially noxious
substances on the innate immune system is of funda-
mental importance, as it drives the subsequent reaction
by the adaptive immune system. Cells of the innate im-
mune system acting as APC are responsible of antigen
recognition. Damaged APC can release pattern of cyto-
kines that can start hypersensitive immune reactions
with the appearance of allergies of autoimmune diseases
and in industrialized countries hypersensitivity reactions
represent the most frequently reported immunotoxic ef-
fects of chemicals [129, 130].
Moreover, the innate immune system can directly

react against harmful substances thus inducing inflam-
mation, which is the basis of many diseases involving
different organs. Among them cancer is the main con-
cern as immunomodulation also plays a key role in car-
cinogenicity. Immunosuppressive activity is important as
neoplastic cells frequently have antigenic properties that
permit their detection and elimination by normal im-
mune system function. It has been demonstrated that, if
a compound is immunotoxic, likely it is carcinogenic
[131]. Chemicals affecting the activity of NK cells, NKT

Table 4 Immune adjuvant properties of metal nanoparticles
NPs Cells Effects Ref

AgNPs Lung -Reduction of IL-4, IL-5, IL-13 [87]

-Reduction of NF-kB

-Reduction of eosinophilic inflammation (OVA-induced )

Fullerenes Mast cells -Inhibition of IgE dependent mediator release [88]

-Reduction of phosphorylation Syk

-Inhibition of allergen-induced ROS

AuNPs AgNPs Mast cells -Inhibition of degranulation and serotonine secretion [89]

AgNPs Rat model of spinal cord injury -Higher anti-NgR antibody [90]

AlNPs Dendritic cells -Increased MHC and CD86, Cd80 and CD40 (> than Al ions) [91]

Fe2O3NPs Dendritic cells -Th1 immune activation [81, 93]
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cells, macrophages, CD8+ cytotoxic T lymphocytes, or
altering cytokine production, are likely to compromise
cancer immune surveillance.
Based on the in vitro, in vivo and occupational data, it

can be expected that Me NPs may activate the immune
system towards immune suppression and immune acti-
vation in exposed people. In fact, Me NPs induce cell
death of immune cells and changes in cytokine produc-
tion. Therefore, this tends to support the hypothesis that
Me NPs directly or indirectly interacting with cells of
the immune system trigger effects that may be relevant
to the development of escalating diseases (allergies,
autoimmunity and cancer) in Western countries.
On the contrary, literature review clearly shows that

there are no report of immune diseases induced by
MeNPs exposure, except for the observation that the in-
crease in Pd allergic contact dermatitis is linked to the
increased exposure to PdNPs released from car catalytic
converters [58]. Descotes [132] stated that “present
methods of evaluating immunotoxicity are primarily fo-
cused on immunosuppression, even though unexpected
immunosuppression has rarely a cause of concern”. On
the other hand, immune system has enormous overca-
pacities and indeed a functional deficit often manifests
itself only under the additional stress of mass infection.
Even a therapeutic immunosuppression is difficult to

reach; in fact, it needs strong doses, strict adherence to
the dose regimen, and often a combination of drugs. It is
also important to underline that immune responses in
the normal human population vary considerably. This
means that immunomodulation does not necessarily
take an individual out of a healthy response pattern.
A few studies undertaken by groups without a special-

ist toxicological qualification generated results that are
not based on scientific fundamentals and speak of the
“enormous toxicological potential” of engineered NPs.
These statements have a negative effect on the public
opinion much greater than the many good scientific
studies which demonstrate, through careful analysis of
the dose–response relationship, that we are operating in
a safe area.
It is clear from the literature that the influence MeNPs

have in the innate immune system could be beneficial
when exploited to modify the immune response in medi-
cine. In fact, recent MeNPs able to stimulate of immune
functions are used in the development of new vaccines,
to promote immunity against tumors and suppress auto-
immunity. Therefore, understanding the modality of the
effect of Me NPs on immune responses is an essential
requirement to developing novel technological and clin-
ical applications. Understanding the immune compatibil-
ity of nanoformulations is one of the important factors

Table 5 Nanoparticle interaction with cell barriers of the immune system
NPs Cells Effects Ref

AgNPS TiO2NPs ZnONPs
MnONPs CeO2NPs

Human lung epithelium -ROS production [97–104]

-DNA damage

-Apoptosis

Fe2O3NPs Human bronchial epithelium -Genotoxicity [105]

NiNPs Lung -Reduction of cell viability [110]

-Apoptosis

-Necrosis

-Increase of ROS, IL-6 and IL-8 (MAPK-dependent, NF-kB-mediated)

ZnNPs Human bronchial epithelial cells -Increased of IL-8 (dose-dependent) [111]

-Activation of NFκB and C/EBPβ

MeNPs ZnONPs Gut epithelium -Generation of ROS [112]

-Release of IL-8

-Cytotoxicity (size dependent)

AgNPs TiO2NPs Intestinal epithelium -Cell death (SW480 cells) [113]

-IL-8 production

-ROS generation

AgNPs Mice intestinal epithelium -Damage of microvilli and intestinal glands [117]

-Malabsorption syndrome

TiO2NPs Caco-2 -Cross monolayers without disruption of junctional complexes and
without causing cytotoxicity

[120]

TiO2NPs AgNPs Bronchial and intestinal eptithelium -Abnormal mucus production [115, 116]
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in (pre)clinical development and requires reliable in vitro
and in vivo immunotoxicity tests. There are several major
challenges in the in vitro testing of nanoparticle immuno-
toxicity: i) selection of a model, ii) selection of an end-
point, iii) selection of relevant positive and negative
controls, iv) nanoparticle interference with in vitro
assays, and v) understanding assay predictability of corre-
sponding immunotoxicity in vivo. The generally low sensi-
tivity of standard in vivo toxicity tests to immunotoxicities,
inter-species variability in the structure and function of the
immune system, high costs and relatively low throughput
of in vivo tests, and ethical concerns about animal use
underscore the need for trustworthy in vitro assays.
In conclusion, MeNPs represent a technological ad-

vancement that may also help the development of new
and more potent therapeutic tools. However, in this review
we show that their non-intentional exposure might cause,
at least theoretically, effects on the immune system.
This fact represents a paradox that toxicologists and

developers have to overcome by the production and the
dispersion of nanoparticles in work and living environ-
ments, and their entry in the food chain. This is a major
issue that makes these technologies to be improved from
the point of view of minimizing the associated risk. As-
sessment of bioavailability and exposure of workers and
general population appear to be a must for a successful
and safe forthcoming development and application of
nanotechnology.
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