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Abstract  For any titration, the titration error is, by definition, the difference between the volume of titrant added 
to reach the end point and the volume of titrant necessary to reach a stoichiometrically defined equivalent point. A 
graphical approach is presented, which allows a smooth and far reaching quantitative discussion of the systematic 
titration error of Acid-Base titrations, on the basis of the Logarithmic Acid-Base Diagram representing the titrated 
solution. Considerations and relations are developed which connect this diagram to the titration error. Examples are 
fully developed, which show that the procedure suggested unavoidably goes beyond the technical or practical topic 
of evaluating the systematic titration error, and it can be especially rewarding from an educational point of view. 
Finally, for the reader’s convenience, algebraic expressions and brief instructions to draw Logarithmic Acid-Base 
Diagrams (also known as Sillén’s diagrams), by using a spreadsheet, are provided. 
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1. Introduction 
Logarithmic Acid-Base Diagrams (in the following 

called, for brevity, LABD) were introduced in a pre 
computer era, [1], as an alternative to algebraic 
calculations, for the evaluation of pH and equilibrium 
concentrations of all species present in a specified 
(aqueous) solution of acids and/or bases.  

In the computer era, there is no need for plots to 
calculate the equilibrium concentrations of species present 
in whatever solution (if the pertinent data are available). 

However, graphical equilibrium calculations based on 
LABDs are still popular and very useful because of their 
recognized capabilities of transferring chemical 
knowledge and enhancing understanding of concepts 
related to Acid-Base reactions. Books are available which 
deal with this topic, [2,3,4]. Please note that, in reference 
[4], Logarithmic Acid-Base Diagrams are called Sillén’s 
diagrams. 

Then, we shall go beyond the subject of using LABDs 
for graphical pH calculations, in order to focus on the 
topic of systematic errors which can bias analytical results 
derived from Acid-Base titrations (especially visual Acid-
Base titrations).  

We shall discuss how LABD of the titrated solution can 
assist in the process of introducing, detecting, evaluating 

and, eventually, avoiding the systematic titration error for 
a specified Acid-Base titration, because we believe that 
this argument, if presented in an attractive way, is 
eminently suitable to promote a deep understanding of a 
broad range of concepts related to Acid-Base reactions 
and titrations. 

In dealing with chemical equilibrium is fundamental to 
distinguish analytical concentrations of substances 
dissolved to prepare any given solution from equilibrium 
concentrations of species present in the solution.  

Although there is an agreed and convenient symbol to 
indicate molar equilibrium concentrations (i.e., [X], where 
X symbolizes any species in the considered solution), 
there is no established symbol to indicate analytical molar 
concentrations. Therefore, we shall use the custom symbol 
[[Y]], to indicate the molar analytical concentration of 
any substance Y which has been dissolved to prepare the 
considered solution. By way of example, we can prepare a 
solution in which [[HCl]] = 0.1 M; however, because HCl 
is fully dissociated, in this solution [HCl] ≈ 0 and [Cl–] = 
0.1 M. 

Furthermore, for the dissociation constants of weak 
acids, which are necessary to achieve our aims, we shall 
consistently use throughout the values at 25°C and zero 
ionic strength. These can, eventually, be substituted with 
practical or custom dissociation constants. The same 
applies to transition intervals of Acid-Base indicators. 
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2. Acid-Base Titrations, Logarithmic 
Acid-Base Diagrams and Systematic 
Titration Error 

2.1. Acid-Base Titrations and Logarithmic 
Acid-Base Diagrams 

Whatsoever solution of acids and/or bases can be 
represented by a Logarithmic Acid-Base Diagram 
(LABD),  which is constructed by drawing in the plane 
log[j]→pH a curve for each species, j, present in the 
considered solution at the equilibrium concentration [j]. 

Instructions and algebraic expressions for developing a 
MS Excel file designed for drawing any required LABD 
are postponed, for convenience, to §4. In addition, a 
Windows Forms application for drawing appealing 
LABDs is supplied on a CD attached to reference [2]. 

For the present, it is sufficient to assume that the LABD 
representing any given solution is readily available. 

LABD of pure water is the simplest one, since it is 
constituted by only two curves (actually two lines) 
representing log[H+] and log[OH–], respectively (see 
Figure 1). In Figure 1, line identified with label H has 
slope -1 and represents log[H+] (= -pH); line with label 
OH has slope +1 and represents log[OH–] (= - pKw + pH). 
pKw is the ion product of water. The two lines intersect at 
pH = 7.0, which is the pH of pure water at 25°C. 
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Figure 1. Logarithmic Acid-Base diagram of pure water at 25 °C. Line 
identified with label H represents log[H+] and  line with label OH 
represents log[OH–] as functions of pH 

As we add to water solutes having Acid-Base properties, 
additional curves must be added in order to represent the 
new species which are formed in the solution. 

For instance, if we add a monoprotic acid, HA, of 
specified pKa and analytical concentration [[HA]], two 
new curves will appear in the LABD representing the 
solution. These, curves represent log[HA] and log[A–], 
respectively, and the LABD will expose four curves 
identified by labels H, OH, HA and A–. 

For instance, Figure 2 is a LABD which represents a 
solution 0.100 M of acetic acid. This means that, for 

Figure 2, [[CH3COOH]] = 0.100 M. Curve with label 
CH3COOH represents log[CH3COOH] and curve with 
label CH3COO– represents log[CH3COO–]. The 
CH3COOH curve meets CH3COO– curve at pH = pKa = 
4.75 (pKa is the dissociation constant of acetic acid). The 
horizontal asymptote to the curves of CH3COOH (or of 
CH3COO–) intersects the log[j] axis at log[[CH3COOH]]. 
This diagram embodies the acetic acid dissociation 
equilibrium and mass balance, but not the charge balance. 
This implies that Figure 2. also represents a 0.100 M 
solution of acetate (i.e., [[CH3COO–]] = 0.100 M) or any 
other solution in which [CH3COOH] + [CH3COO–] = 
0.100 M. 
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Figure 2. Logarithmic Acid-Base diagram of 0.100 M acetic acid, at 
25°C. Curve with label CH3COOH represents log[CH3COOH] and curve 
with label CH3COO– represents log[CH3COO–] as a function of pH 

In general, a LABD exposes as many curves as the 
number of species in the solution which it represents, 
becoming, by consequence, more and more crowded as 
the complexity of the considered solution increases.  

In the following, we shall assume that the reader has a 
general knowledge of the significance of Logarithmic 
Acid-Base Diagrams as presented in references [1,2,3,4]. 

On the other side, the solution represented in a LABD 
can be titrated with the standard solution of a strong base 
(e.g., NaOH → alkalimetric titrations) or with the 
standard solution of a strong acid (e.g., HCl → 
acidimetric titrations).  

As a matter of fact, a titration amounts, in a figurative 
way, to traversing the LABD of the titrated solution from 
its initial pH, pHin, to a final pH, pHend.  

In practice, the evolution of the pH during an Acid-
Base titration is caused by the stepwise addition of 
increasing volumes, ml

tV , of the titrant solution to an 

initial volume, ml
0V , of the titrated solution. 

The target of an analytical Acid-Base titration is the 
determination of the equivalent volume, ml

eqV , which, by 
definition, is the volume of titrant solution which contains 
a number of moles exactly equal (or stoichiometrically 
equivalent) to the number of moles of the titrated 
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substance in the titrated solution. In general, ml
eqV  is used 

to derive the analytical concentration or number of moles 
of the titrated substance by means of simple stoichiometric 
calculations presented in any standard general or 
analytical chemistry textbook, [5].  

By definition, analytical results derived by using the 
equivalent volume are absolutely accurate and free from 
systematic error. 

In addition, by definition, when a volume of titrant 
exactly equal to ml

eqV  has been added, the titrated 
solution’s pH assumes a value which is the equivalent 
point pH, pHeq. 

However, during Visual Acid-Base Titrations (VABT), 
the colour change of an Acid-Base indicator is used as a 
signal to stop the titration. When a VABT is discontinued, 
the pH of the solution, indicated with pHend, coincides 
with either pH value delimiting the transition interval of 
the indicator.  

To be more specific, for an alkalimetric titration, pHend 
coincides with the upper limit of the transition interval of 
the indicator. For an acidimetric titration, pHend coincides 
with the lower limit of the transition interval.  

Standard transition intervals for common Acid-Base 
indicators are readily available from analytical chemistry 
textbooks, [5], or from the Web. 

The volume of titrant solution consumed to reach pHend 
is the end point volume, ml

endV , which can be read from the 
burette when the Acid-Base titration is ended. 

It must be understood that, once we have specified the 
indicator, pHend is automatically set and that, if not by 
chance, pHend is different from pHeq. 

Of course, we can change pHend by selecting a different 
indicator, but we have only a limited or no control on pHeq, 
which is fixed by the analytical composition of the titrated 
solution. 

2.2. Systematic Titration Error 
Suppose that 25.00 ml of the 0.100 M solution of acetic 

acid represented in Figure 2 are titrated with a standard 
solution 0.1000 M of NaOH (i.e., [[NaOH]] = 0.1000 M), 
in presence of phenolphthalein as an indicator (transition 
interval {8.2, 9.5}). 

This titration starts at pHin ≈ 2.9, which is the pH of a 
solution [[CH3COOH]] = 0.1 M. This pH is easily read 
from Figure 2, because it corresponds to the pH at the 
intersection point between curves representing log[H+] 
and log[CH3COO–]. By the way of example, this is a 
simple demonstration of how a LABD can help in pH 
calculations. From this point, we move towards higher 
pHs and we meet pHeq ≈ 8.9, which is the pH 
corresponding to the intersection point between the curve 
representing log[CH3COOH] and the curve representing 
log[OH–]. This is because, by neglecting the small change 
in volume of the titrated solution, pHeq is, for our purposes, 
not significantly different from the pH of a 0.1 M solution 
of sodium acetate.  By the way, changes in volume of the 
titrated solutions will be neglected throughout.  

We should then stop the titration when pHeq is reached 
and read ml

eqV  from the burette.  
However, during the VABD with phenolphthalein, we 

do not stop at pHeq, but continue to pHend ≈ 9.5, which is 

the upper limit of the phenolphthalein transition interval. 
After that, what we read from the burette is ml

endV , which 

of course is, in abstract, larger than ml
eqV .  

For any specified VABT, we define the variables 

titΔpH  and ml
tΔV  according to equations (1) and (2): 

 tit end eqΔpH pH pH= −  (1) 

 ml ml ml
t end eqΔV V V= −  (2) 

In general, for whatever VABT, both, titΔpH  and 
ml
tΔV , will be different from zero. 

titΔpH  is easily evaluated for a planned titration. In 
fact, endpH  is set by the chosen indicator and, on the 
other side, the evaluation of eqpH  is a standard pH 
calculation which is most readily performed graphically 
using the LABD of the titrated solution (as we have done 
above) or algebraically (as described in standard textbooks, 
[4,5]). 

Although the fact that titΔpH 0≠  is the primordial 
origin of the systematic titration error, the accuracy of a 
planned titration cannot be assessed simply on the basis of 
the value of titΔpH .  

Obviously, a lower titΔpH  value is not worse than a 
higher value, but not always it is better or necessary.  

On the contrary, the most direct and physically 
significant measure of the titration accuracy is ml

tΔV . 

In fact, in the following, we shall identify ml
tΔV  with 

the systematic titration error and our target will be to show 
how it can be evaluated. 

Obviously, the primordial systematic error, ml
tΔV , will 

propagate to the analytical results derived from the 
titration data.  

Once ml
tΔV  has been evaluated, it will be very easy to 

assess its effects on analytical results. 
To this end, we note that to perform a titration we use a 

burette to deliver the titrant. Whatever burette has a 
limited precision which we shall indicate with ml

burδ . 

This implies that ml
endV  is affected by an uncertainty 

(casual error) which is at least ml
burδ± . For instance, a 

typical Class A burette might have ml
bur 0.05mlδ = , so that 

whatever volume read from this burette carries an 
uncertainty which is not less than ±0.05 ml. 

The casual error on ml
endV  will then propagates as a 

casual error on the analytical results.  
The key point is that we need to worry about the 

systematic error only in the case ml ml
t burΔV δ> . In fact, in 

the opposite case, i.e., if ml ml
t burΔV δ< , the effects of the 

systematic error will be embedded in the casual error of 
the burette and will not produce any practical effect on 
analytical results. 

An obvious corollary of this is that it is of no use to 
make efforts to reduce ml

tΔV  to the absolute zero; in fact, 
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it is only necessary, in practice, to reduce, if it is possible, 
ml
tΔV  to a value lower than ml

burδ . 

2.2.1. Evaluation of the Systematic Titration Error 
Expressed as ml

tΔV  
Figure 3, which is the simulated titration curve of the 

above described titration of 25.00 ml of the acetic acid 
solution represented in Figure 2 (performed with a 0.1000 
M standard solution of NaOH), shows the characteristic 
shape of a simple titration curve.  
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Figure 3. Alkalimetric titration curve of 25.00 ml of a solution 0.100 M 
acetic acid with a standard 0.1000 M solution of NaOH 

In general, a titration curve has a slope which depends 
on the pH, and which we shall indicate with 

ml
pH pH t

def
d dVξ

 
=  

 
. If the titration curve has been 

drawn in the ml
tpH V→  plane, pHξ  carries the 

dimensions of ml-1.  
For any specified titration, there is a relation between 

titΔpH  and ml
tΔV , which involves the slope of the 

titration curve and which, for the present purposes, can be 
formulated, in an approximate but very simple and useful 
way, as in equation (3):  

 ml tit
t

pHend

ΔpH
ΔV

ξ
≈  (3) 

In practice, pHendξ , which is, by definition, the slope 
of the titration curve at the titration end point, can be 
regarded as a conversion factor, which converts the 
readily evaluated titΔpH  in the corresponding Δ tV  
(which is a measure of the systematic error). 

Obviously, for the use of equation (3), we need to 
evaluate pHendξ  and, for this purpose, we shall use the 
LABD of the titrated solution. 

To this end, it is necessary to select in the LABD 
representing the titrated solution the curve representing a 
particular species, which we shall call the Slope 
Determining Species (SDS). 

At each selected pH, the curve representing the SDS, in 
a LABD, is the one that lays highest in the diagram and 
which at the selected pH has a non zero slope. 

For instance, with reference to Figure 2, the SDS at pH 
= 1, 4, 8 and 10 coincides, in the order, with H+, 
CH3COO–, CH3COOH and OH–. It is evident that the SDS 
will always be H+, at sufficient low pH, and OH– at 
sufficient high pH. 

Actually, what we need for the use of equation (3) it is 
to pinpoint the SDS at the end point of the titration, that is 
to say when endpH pH= . After that, pHendlog[SDS]  is 
readily read from the LABD of the titrated solution. 

Finally, pHendξ  can be evaluated from relation (4): 

 
[ ]

pH pHend end ml
0

log log[SDS] log
2.3

TitrantConc

V
ξ

  − +
×

≈  (4) 

In equation (4), [[TitrantConc]] stands for the known 
titrant analytical concentration (e.g., [[NaOH]] for 
alkalimetric and [[HCl]] for acidimetric titrations) and 

ml
0V , is the initial volume of the titrated solution (usually 

between 10 and 50 ml). 
Equation (4) holds both for alkalimetric and acidimetric 

titrations. However, since acidimetric titration curves have 
negative slope, pHendξ  must be, in such a case, 
interpreted as the absolute value of the slope. In other 
words, for an acidimetric titration, the sign of pHendξ , 
calculated from equation (4), must be inverted. 

For instance, for the above considered titration of 25.00 
ml of [[CH3COOH]] = 0.100 M with [[NaOH]] = 0.100 M, 
performed using phenolphthalein as an indicator, we need 
to pinpoint, from Figure 2, the SDS at pHend ≈ 9.5.  

We see that SDS OH−≡  and, by consequence: 

 pH 9.5 pH 9.5log[SDS] log[OH ] 4.5−
= == = −  

Using this value and other titration data in equation (4), 
we calculate pH 9.5ξ = : 

 

[ ]
pH 9.5 pH 9.5 ml

0

pH 9.5

pH 9.5

[ NaOH ]
log log[OH ] log

2.3
0.1log 4.5 log

2.3 25
log 4.5 2.76 1.74

yields
V

yields

ξ

ξ

ξ

−
= =

=

=

= − +
×

= + +
×

= + − =





 

And finally: 

 1.74 1
pH 9.5 10 55.0mlξ −

= = =  

Since, from equation (1), we have: 

 titpH 9.5 8.8 0.7∆ ≈ − =  

the systematic titration error of this titration is, from 
equation (3), evaluated to be: 

 ml tit
t

pHend

ΔpH 0.7Δ 0.012ml
55.0

V
ξ

≈ = = +  

The interpretation of this result is straightforward. If the 
titration is performed with a burette which can measure 
volumes within ± 0.05 ml, then the systematic titration 
error is negligible. The uncertainty on the concentration or 
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number of moles of acetic acid calculated from the 
titration data is governed by the precision of the burette 
and is calculated from relation (5):  

 
ml
bur
ml

eq
% 100Uncertainty

V
δ±

= ×  (5) 

For the current case relation (5) yields: 

 0.05% 100 0.2%
25

Uncertainty yields±
= × = ±



 

In contrast with the above result, consider the titration 
of 25.00 ml of 0.100 M hypochlorous acid (i.e., [[HClO]] 
= 0.100 M) with [[NaOH]] = 0.100 M in presence of 
phenolphthalein as an indicator (pHend ≈ 9.5, as it was 
before). 

The LABD of the titrated solution is presented in 
Figure 4, from which we can see that pHeq ≈ 10.3 (this is 
the pH corresponding to the intersection point of the 
curves representing log[HClO] and log[OH–]). 
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Figure 4. Logarithmic Acid-Base diagram of 0.100 M hypochlorous acid 
(pKa = 7.53) at 25°C. 

Therefore, titΔpH 0.8= − , which means that the 
titration is ended before the equivalent point. In principle, 
we add less NaOH than required and this is an omen for a 
systematic error in defect on the concentration or number 
of moles of HClO determined from the titration. 

However, as we have demonstrated in the previous 
example, this error will be practically important only if its 
absolute value exceeds ml

burδ . 
For this reason we repeat the above procedure to 

evaluate the systematic error, ml
tΔV . 

From Figure 4, we can smoothly see that the SDS at pH 
≈ 9.5 is HClO and that log[HClO] = -3.0. Then, for 

pH 9.5ξ =  we have:  

 1
pH 9.5 pH 9.5

0.1log 3.0 log 1.7ml
2.3 25

yieldsξ ξ −
= == + =

× 

 

and finally: 

 ml
t

0.8Δ 0.47ml
1.7

V −
≈ = −  

It is obvious that this titration is affected by a 
systematic error which largely exceeds the uncertainty 
introduced by the precision of the burette.  

In this case, the uncertainty introduced by the limited 
precision of the burette is irrelevant and the % systematic 
error on the concentration or number of moles of 
hypochlorous acid is calculated from relation (6): 

 
ml
t
ml

eq

Δ
% 100

V
SystematicError

V
= ×  (6) 

Equation (6), for the current case, yields: 

 0.47% 100 2%
25

SystematicError −
= × ≈ −  

In practice, if we titrate, in the way we have described 
above, 25.00 ml of a solution in which [[HClO]] = 0.100 
M, our experimental result will be: [[HClO]] ≈ 0.098 M.  

2.2.2. The Exceptional Case of StrongAcid ↔ 
StrongBase Titrations 

In the following we shall consider NaOH as a prototype 
for strong bases and HCl as a prototype for strong acids. 
This is made only for convenience, since whichever strong 
base can be substituted for NaOH and, analogously, any 
strong acid for HCl. 

Then, under the label StrongAcid ↔ StrongBase 
titrations are included alkalimetric titrations of HCl 
solutions with standard solutions of NaOH, and, vice 
versa, acidimetric titrations of NaOH solutions with a 
standard solution of HCl. 

Within the frame developed above for the systematic 
titration error, the LABD of the titrated solution serves 
both qualitative and quantitative purposes.  

In a qualitative way, by observing the LABD at pHend, 
the nature of the SDS can be established.  

Then, the value of pHendlog[SDS] , to be used in 
equation (4), can promptly be read from the LABD.  

Furthermore, the LABD of the titrated solution is used 
for the graphical evaluation of pHeq (although this is 
outside the subject of this paper) which is needed to 
establish titpH∆ . 

In general, pHeq depends on the composition (i.e., the 
concentration of acid and/or base) in the titrated solution 
and so does titpH∆ . In addition, the LABD of the titrated 
solution and, by consequence, pHendlog[SDS]  depend on 
the composition of the titrated solution. The outcome is 
that, in general, the systematic titration error cannot be 
evaluated a priori, without an assumption on the 
analytical composition of the titrated solution. 

The sense of the discussion on the systematic titration 
error is to show that the titration of a given acid or base 
can be performed with a negligible systematic error at 
least for a number of assumed values of its analytical 
concentration, so that one can be confident about the 
titration error when an actual sample, of unknown 
concentration, is titrated. Nevertheless, titrations of the 
same substance at different concentrations will have 
different systematic errors, even if all other titration data 
are kept unchanged. 
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Now, please consider the LABD in Figure 5, which 
represents a 0.05 M solution of HCl. The horizontal line at 
log[[HCl]]  = log0.05 = -1.3 represents log[Cl–]. The 
simplicity of the LABD of HCl depends on the fact that, 
being HCl a strong acid, [HCl] never assumes significant 
values (at least when we consider diluted solutions of the 
acid). 

Analogously, the LABD of a NaOH solution exposes 
only a horizontal line, located at log[[NaOH]], which 
represents log[Na+], since, [NaOH] is insignificant in any 
diluted solution of sodium hydroxide.  

From this, we see that the plot of Figure 5 also 
represents a solution in which [[NaOH]] = 0.05 M, if the 
horizontal line is interpreted as representing log[Na+]. 
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Figure 5. Logarithmic Acid-Base diagram of 0.05 M HCl (or 0.05 M 
NaOH) at 25°C 

Many of the very special features of StrongAcid ↔ 
StrongBase titrations depend on the simplicity of the plot 
of the titrated solution. 

As it is apparent from Figure 5, the SDS during the 
StrongAcid ↔ StrongBase titrations is either H+ or OH–. 
This is for the simple reason that there are no curves (or 
lines) with non zero slope in the LABD of the titrated 
solution, except lines representing log[H+] and log[OH–]. 

Then, SDS ≡ OH―, and pH endendlog[SDS] 14 pH=− − , 
if the StrongAcid ↔ StrongBase titration is ended a pH > 
7.  

By inserting this constraint in equation (4) we have: 

 
[ ]

pH endend ml
0

log 14 pH log
2.3

TitrantConc

V
ξ

  ≈ − +
×

 (7) 

On the other side, when the StrongAcid ↔ StrongBase 
titration is ended at pH < 7, then SDS ≡ H+. In such a case 

pH endendlog[SDS] pH=−  and equation (4) becomes: 

 
[ ]

pH endend ml
0

log pH log
2.3

TitrantConc

V
ξ

  ≈ +
×

 (8) 

From equations (7) and (8) we see that the slope of the 
StrongAcid ↔ StrongBase titration curve at endpH  is 

always the same, regardless of the analytical 
concentrations of the titrated StrongAcid or StrongBase, 
(e.g., [[HCl]] or [[NaOH]] in the titrated solution). 

In practice, equation (7) applies to all titrations which 
are ended at alkaline pH, whenever the SDS coincides 
with OH–. This happens to be the case for a number of 
alkalimetric titrations of weak acids, e.g., for the 
alkalimetric acetic acid titration presented in the previous 
paragraph (but not for the alkalimetric titration of 
hypochlorous acid). 

Analogously, equation (8) applies to all titrations which 
are ended in the acidic range, whenever the SDS coincides 
with H+. This often happens for acidimetric titrations of 
weak bases. 

Nevertheless, StrongAcid ↔ StrongBase titrations have 
a unique feature which, strictly, is never found in titrations 
of weak acids or bases. We allude to the fact that 
StrongAcid ↔ StrongBase titrations have an invariant 
pHeq ≈ 7, independent on the concentration of the titrated 
StrongAcid or StrongBase. Within our framework, the 
consequence of this is that equation (1) becomes: 

 tit endΔpH pH 7= −  

When all this (i.e., equations (3), (7), (8) and (9)) is 
considered, we deduce that any StrongAcid ↔ StrongBase 
titration has a constant systematic error, ml

tΔV , which is 
independent on the concentration of the titrated 
StrongAcid or StrongBase. ml

tΔV  only depends on 
variables that are under the full control of the operator, i.e.,  
the chosen indicator, the titrant concentration and the 
initial volume of titrated solution. The implication of this 
is that, unlikely all other cases, the systematic titration 
error of StrongAcid ↔ StrongBase titrations can be 
evaluated a priori, without knowledge of the amount of 
StrongAcid or StrongBase in the titrated solutions. 

↙ 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 ↘ 
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Figure 6. Plot of the systematic titration error ml
0V  for StrongAcid ↔ 

StrongBase titrations calculated for ml
0V  = 50 ml and [ ][ ] TitrantConc  

= 0.1000 M. [ ][ ] TitrantConc  symbolizes [[NaOH]] in alkalimetric 
titrations and [[HCl]] in acidimetric titrations 
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Plots of ml
tΔV  as a function of titΔpH  for alkalimetric 

and acidimetric StrongAcid ↔ StrongBase titrations are 
presented in Figure 6 (which has been calculated from the 
above relations assuming [ ]TitrantConc    = 0.1000 M 

and ml
0V  = 50 ml, which are typical values). 

If we assume for the burette a precision of ± 0.05 ml, 
which is a very common case, from Figure 6 we see that 
StrongAcid ↔ StrongBase titrations can be ended (under 
the assumed conditions) anywhere in the range 

tit2.3 ΔpH 2.3−    without the systematic error 
exceeding the precision of the burette.  

This implies that almost all the common indicators 
(except a few) are suitable for the StrongAcid ↔ 
StrongBase titration. 

For instance, whichever indicator with an upper limit of 
its transition interval falling between pH ≈ 4.7 ad pH ≈ 9.3 
(e.g., bromocresol green, methyl red, bromothymol blue, 
phenol red, phenolphthalein, etc..) is a suitable indicator 
for the alkalimetric titration of a StrongAcid.  

Phenolphthalein, which strictly corresponds to 
titΔpH 2.5≈ , is on the border, since, as can be easily 

evaluated, yields ml
tΔV  ≈ + 0.09 ml. This is a small 

systematic error which can be tolerated for many purposes 
and which, in practice, can altogether be avoided by 
stopping the titration in correspondence of the legendary 
phenolphthalein’s pale red.  

Although, strictly, the value of ml
tΔV  depends on the 

particular indicator chosen, from the practical viewpoint, 
all the mentioned indicators will produce the same results, 
which are dominated by the uncertainty introduced by the 
burette limited precision.   

3. Attractive Examples  

3.1. Acid-Base Titrations of Amino Acids 
In this paragraph, we consider the problem of 

evaluating, within the framework developed above for the 
systematic titration error, the utility of Acid-Base titrations 
as a method for determining accurately the amount of an 
amino acid in a given solution. 

Although this may appear a matter of mere academic 
interest, it offers, on the one side, a beautiful chance to 
expose a number of general questions which can arise (or 
may intentionally be raised) while coping with Acid-Base 
reactions and titrations. On the other side, it is a way to 
penetrate deeply in the Acid-Base chemistry of amino 
acids, which is a worthy undertaking because amino acids 
are ubiquitous in biology and biochemistry. 

As it is well known, natural amino acids are described 
by the general formula H2NCHRCOOH, in which R 
represents the amino acid side chain bonded to the alpha 
carbon atom, which also bears the basic amino group 
(―NH2) and the acid carboxylic group (―COOH).  

Simple amino acids which do not bear in the side chain 
additional functional groups with Acid-Base properties 
will be called GlycineType amino acids (this group 
includes several natural amino acids, e.g., Alanine, Valine, 
Leucine, etc.). Natural amino acids bearing an additional 
acidic function in the side chain are classified below as 

AsparticAcidType amino acids (for instance, Glutamic 
acid). Finally, natural amino acids with a basic group in 
the side chain are classified as LysineType amino acids 
(for instance, Ornithine).  

3.1.1. GlycineType Amino Acids 
Two dissociation constants (respectively, pKa1 and pKa2) 

are associated with GlycineType amino acids. pKa1 and 
pKa2 connect three different species according to the 
scheme in Figure 7. 

+H3NCαHCOOH
R

+H3NCαHCOO―

R

H2NCαHCOO―

R

-H+

pKa1 →2-3

-H+

pKa2 →8-10
 

Figure 7. Schematic presentation of the Acid-Base properties of 
GlycineType amino acids 

For instance, for Alanine, pKa1 = 2.31 and pKa2 = 9.7. 
pKa1 and pKa2 are much the same for all natural 
GlycineType amino acids. 

From the above scheme, it must result that, in water, the 
neutral species, i.e., H2NCHRCOOH ≡ +H2NCHRCOO―, 
is amphiprotic and can react both with acids or bases. 

In the context of Acid-Base titrations, this must be 
interpreted to signify that, in abstract, an amino acid can 
be titrated either alkalimetrically or acidimetrically. The 
question is: of the two possible titration modes, which one 
would provide more accurate results? 

Of course, the answer is incorporated in the pKa1 and 
pKa2 values characterizing the Acid-Base behaviour of the 
amino acid, but it requires an extra bit of thinking. 

We take Alanine as representative of GlycineType 
natural amino acids and consider a solution containing 
0.05 M Alanine (i.e., [[Alanine]] = 0.05 M).  

LABD of this solution is exposed in Figure 8. The 
neutral amino acid is denoted HAla, to show that Alanine 
has an acidic proton which can be dissociated. The 
dissociation of the proton from Alanine produces the 
conjugated base, Ala–. H2Ala+ is the conjugated acid of 
HAla formed upon protonation of the neutral species. In 
Figure 8, the curves representing H2Ala+ and HAla 
intersect at pH = pKa1 = 2.31, while curves of HAla and 
Ala– intersect at pH = pKa2 = 9.7. 

To solve the above dilemma, we observe that the initial 
pH of the Alanine solution is about 6, which graphically 
corresponds to the point where the curve of H2Ala+ meets 
the curve of Ala–. 

An acidimetric titration amounts to traversing the 
Alanine LABD, from pHin ≈ 6, towards lower pH. In this 
journey we meet pHeq1 ≈ 1.9 (which graphically 
corresponds to the crossing point between curves 
representing H+ and HAla). 

Symmetrically, an alkalimetric titration starts at pHin ≈ 
6 and reaches the equivalent point at pHeq2 ≈ 11.2 (which 
graphically corresponds to the crossing point between 
curves representing HAla and OH–). 

Even a superficial consideration of these statements, 
within the frame of Figure 8, will show that an 
alkalimetric titration is, of the two, the more convenient. 
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In fact, from the LABD in Figure 8, we see at a glance 
that, if our target is the acidimetric equivalent point, the 
SDS must be selected between H+, HAla and H2Ala+. On 
the other side, if our target is the alkalimetric equivalent 
point, the SDS will be either OH– or HAla. Since any 
possible SDS around the acidimetric equivalent point has 
an higher concentration than that of any possible SDS 
around the alkalimetric equivalent point, pHendξ  will be 
higher, and the systematic error lower, if we select an end 
point around pHeq2 ≈ 11.2 rather than around pHeq1 ≈ 1.9. 

Furthermore, we can easily predict that even the 
alkalimetric titration (although certainly more favourable 
than the acidimetric) will not produce very accurate results 
because of the rather large concentrations of HAla and 
OH– (which are the potential SDS around pHeq2). This 
prognosis can easily be verified. 
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Figure 8. Logarithmic Acid-Base diagram of 0.05 M Alanine, at 25 °C. 
Label HAla stands for the neutral amino acid 

To this end, the most appropriate indicator (among 
common Acid-Base indicators), is thymolphthalein 
(transition interval {9.4, 10.6}).  

This choice amounts to fixing pHend ≈ 10.6 and 
titΔpH ≈  10.6 - 11.2 = - 0.6 (which is an omen for a 

systematic error in defect). 
In any case, by taking for the NaOH titrating solution 

[[NaOH]] = 0.1000 M and ml
0V  = 50 ml for the initial 

volume of titrated solution, calculations are as it follows: 

 1
pH 10.6 pH 10.6

pH 10.6 pH 10.6

t

0.1
log 2.3 log 0.18ml

2.3 50

log[SDS] log[HAla] 2.3

0.6Δ 3.3ml
0.18

yields

V

ξ ξ −
= =

= =

≈ + ≈
×

= = −

−
≈ = −



 

Since in the titration are consumed about 25 ml of 
NaOH, this amounts to a % systematic error, on the 
concentration or number of moles of Alanine, of about -
13%. 

The limitations of visual Acid-Base titrations with 
respect to the determination of GlycineType amino acids 
(e.g., Glycine, Valine, Leucine, etc.) are quite evident. 

However, the above described Alanine titration is 
eminently suitable for a laboratory experiment aimed to 
demonstrate impressively the effects of systematic error. 

Suppose that we weight accurately, at the analytical 
balance, an amount of pure Alanine (which is easily 
available) close to ≈ 0.0025 moles (for the evaluations 
below we assume a weight of 0.2227 g, which correspond 
exactly to 0.0025 moles of Alanine). After that, we 
transfer the weighted sample to a titration flask with about 
50 ml distilled water. After adding the thymolphthalein 
indicator, the Alanine solution is titrated, with standard 
0.1000 M NaOH, until the full blue colour of the indicator 
has been developed. 

The stoichiometric equivalent volume corresponding to 
0.0025 moles of Alanine is calculated to be 25.00 ml. 
However, on the basis of the above evaluations, we shall 
measure a smaller end point volume: ml ml ml

end eq tΔV V V≈ −  
≈ 22 ml. By using 22 ml to calculate the number of moles 
of Alanine we obtain ≈ 10-3×22×[[NaOH]] = 0.0022 moles 
(instead of 0.0025). Finally, the molecular weight of 
Alanine, MWAlanine, is calculated by dividing its weight 
(0.2227 g) by ≈ 0.0022 moles. The result will be: 
MWAlanine ≈ 0.2227/0.0022 = 101 u.m.a.. When this value 
is compared to the real one (i.e., MWAlanine = 89.09 u.m.a.), 
one is memorably impressed that the difference between 
the two amounts about to adding a carbon atom to the 
Alanine formula. 

3.1.2. AsparticAcidType Amino Acids 
However, as it happens, thinks may change if the amino 

acid side chain contains an additional acidic functional 
group, which implies that the neutral molecule bears two 
dissociable protons according to the scheme in Figure 9. 

+H3NCαHCOOH
RH

+H3NCαHCOO―

RH

+H3NCαHCOO―

R―

-H+

pKa1 →2-3

-H+

pKa2 →4-6
-H+

pKa3 →8-10 H2NCαHCOO―

R―

 

Figure 9. Schematic presentation of the Acid-Base properties of 
AsparticAcidType amino acids. 

In this case, four species, which differ in the number of 
bonded protons, are produced in the solution.  

Aspartic acid itself (pKa1 = 1.94, pKa2 = 3.7 and pKa3 = 
9.62) is a good representative of this class of amino acids. 

In abstract, a solution of the neutral amino acid not only 
could be titrated acidimetrically or alkalimetrically, as in 
the case of Alanine (in fact, Aspartic acid is, as all the 
amino acids, an amphiprotic substance). But a further 
question can be raised which attains to the fact that 
Aspartic acid is de facto a diprotic acid. Then, in principle, 
an alkalimetric titration of Aspartic acid can be performed 
up to a first stoichiometric equivalent point or continued 
to a second stoichiometric equivalent point (this dilemma 
arises with all multiprotic acids).  

After excluding the acidimetric titration (on the basis of 
what we have seen for Alanine), the question is: an 
alkalimetric Aspartic acid titration yields more accurate 
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results if targeted at the first or at the second equivalent 
point? 

For evaluations below, we assume the usual typical 
values (i.e., [[AsparticAcid]] = 0.05 M, [[NaOH]] = 
0.1000 M, ml

0V  = 50 ml). 
LAMD of the titrated solution is presented in Figure 10, 

in which H2Asp symbolizes the neutral amino acid. By 
consequence, the conjugated acid of H2Asp is H3Asp+, 
while the bases derived from the stepwise dissociation of 
the two acidic protons from the neutral species are HAsp– 
and Asp2–. The curves representing H3Asp+ and H2Asp 
intersect at pH = pKa1 = 1.94; curves of H2Asp and HAsp– 
intersect at pH = pKa2 = 3.7; curves of HAsp– and Asp2– 
intersect at pH = pKa3 = 9.62. 

In order to discuss the raised question, we begin 
locating in the LABD the initial pH of the titrated solution, 
pHin.  
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Figure 10. Logarithmic Acid-Base diagram of 0.05 M Aspartic acid, at 
25 °C. Label H2Asp stands for the neutral amino acid 

At a glance we obtain pHin ≈ 2.8, corresponding to the 
crossing point between curves representing H3Asp+ and 
HAsp–. 

By traversing the LABD from pHin towards higher pH 
we must meet two stoichiometric equivalent points.  

The first equivalent point corresponds to the conversion 
H2Asp→HAsp– and is reached at pHeq1 ≈ 6.7 
(corresponding to the crossing point between curves 
representing H2Asp and Asp2–).  

The second equivalent point corresponds to the 
conversion H2Asp→Asp2– and is reached at pHeq2 ≈ 11.1 
(corresponding to the crossing point between curves 
representing HAsp– and OH–).  

Then, if we target the titration at the first equivalent 
point, an indicator must be chosen with an upper limit of 
its transition interval close to pHeq1. Otherwise, an 
indicator with its upper limit of its transition interval 
around pHeq2 must be employed. 

From Figure 10, it is seen at a glance that the 
alkalimetric titration of Aspartic acid must be targeted at 
pHeq1 ≈ 6.7, simply because, around pHeq1, any possible 
SDS (i.e., H2Asp and Asp2–) has a much lower 

concentration than that of any possible SDS (i.e., HAsp– 
and OH–) around pHeq2 ≈ 11.1. 

Then, the answer to the above question is that Aspartic 
acid is best titrated as a monoprotic acid fixing pHend as 
close as possible to pHeq1 ≈ 6.7. 

A suitable indicator for this titration is methyl red 
(transition interval: {4.4, 6.3}). This implies pHend ≈ 6.3 
and titΔpH  ≈ 6.3 – 6.7 = - 0.4 (which is a warning for a 
systematic error in defect). 

However, from Figure 10, evaluations are as it follows: 

 pH 6.3 2 pH 6.3log[SDS] log[H Asp] 3.9= == = −  

 1
pH 6.3 pH 6.3

0.1log 3.9 log 6.9ml
2.3 50

yieldsξ ξ −
= == + =

× 

 

 t
0.4Δ 0.06ml

6.9
V −

≈ = −  

From this we can smoothly see that, unlike Alanine and 
congeners, Aspartic acid can be determined 
alkalimetrically, practically without the systematic error 
exceeding the precision of the burette. 

The above titration has another favourable feature, 
which relates to the fact that, for a selected indicator, 

titΔpH  is independent on the concentration of Aspartic 
acid and, by consequence, can be calculated a priori. This 
is because pHeq1, in a broad range of concentrations, is 
independent on the concentration of Aspartic acid.  

For instance pHeq1 would still be ≈ 6.7 for the 
alkalimetric titration of a 0.005 M solution of Aspartic acid.  

This can be seen considering that the LABD of a 
solution, in which [[AsparticAcid]] ≠ 0.05 M, can be 
generated from the one in Figure 10, by translating, as a 
single group, the curves representing H3Asp+, H2Asp, 
HAsp– and Asp2– either upward or downward. Obviously, 
whatever simultaneous vertical translation of these curves 
does not modify the abscissa of the intersection point 
between the curves of H2Asp+ and Asp2―, which 
determines pHeq1.  

It is also useful to mention that chemically, the 
independence of pHeq1 from the Aspartic acid 
concentration is due to the fact that HAsp–, which is 
produced at the first equivalent point, is an amphiprotic 
species. This rule can be extended to all titrations in which 
the species produced by the Acid-Base reaction between 
the titrant and the titrated substance is amphiprotic.  

3.1.3. LysineType Amino Acids 
Acid-Base properties of LysineType amino acids are 

described by scheme in Figure 11. 

+H3NCαHCOOH
RH+

+H3NCαHCOO―

RH+

H2NCαHCOO―

RH+

-H+

pKa1 →2-3

-H+

pKa2 →8-10
-H+

pKa3 →10-11 H2NCαHCOO―

R

 

Figure 11. Schematic presentation of the Acid-Base properties of 
LysineType amino acids 
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We take Lysine as representative of its own class. The 
neutral species will be indicated by HLys to expose its 
acidic dissociable proton. Dissociation of the HLys proton 
produces the singly charged base Lys–. HLys can accept 
up to two protons producing the acidic species H2Lys+ and 
then the fully protonated and double charged species 
H3Lys2+. 

With respect to Acid-Base titrations, we can raise for 
Lysine questions analogous to those raised above for 
GlycineType and AsparticAcidType amino acids. 

They are formulated as it follows:  
Must we titrate a Lysine solution acidimetrically or 

alkalimetrically?  
If, for a given choice of the titration mode, it exists 

more than one stoichiometric equivalent point, which one 
should we target at? 

For evaluations below, we assume as usual the typical 
value, i.e., [[Lysine]] = 0.05 M, for the amino acid 
solution to be titrated. LABD of this solution is presented 
in Figure 12. Curves representing H3Lys2+ and H2Lys+ 
intersect at pH = pKa1 = 2.19; curves of H2Lys+ and HLys 
intersect at pH = pKa2 = 9.12; curves of HLys and Lys– 
intersect at pH = pKa3 = 10.68. 
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Figure 12. Logarithmic Acid-Base diagram of 0.05 M Lysine, at 25 °C. 
Label HLys stands for the neutral amino acid 

We start by observing that a lysine solution has an 
alkaline pH, which can easily be found graphically since it 
corresponds to the intersection point between curves of 
H2Lys+ and Lys–. From the diagram we read pHin ≈ 9.9, 
and this high initial pH, per se, excludes the alkalimetric 
titration. Then, we consider the acidimetric titration and 
find that there are, in abstract, two stoichiometric 
equivalent points corresponding to the conversions 
HLys→H2Lys+ and HLys→H3Lys2+. When the first 
equivalent point has been reached HLys has been 
stoichiometrically converted to H2Lys+. So pHeq1 is the pH 
of an H2Lys+ solution, which graphically corresponds to 
the point where the curve of H3Lys2+ intersects the curve 
of HLys (i.e., pHeq1 ≈ 5.7). pHeq1 does not depend on the 
concentration of Lysine since species H2Lys+ is 
amphiprotic. 

The second equivalent point is reached when the initial 
HLys has been stoichiometrically converted to the fully 
protonated H3Lys2+ acid and it corresponds to the 
intersection point between curves of H2Lys+ and H+ (i.e., 
pHeq2 ≈ 1.8). 

From LABD in Figure 12, we see at a glance that the 
acidimetric titration of Lysine is by far more accurate if 
stopped around pHeq1. This is because, around the first 
acidimetric equivalent point (pHeq1 ≈ 5.7), the SDS is 
either H3Lys2+ or HLys; while around the second 
acidimetric point (pHeq2 ≈ 1.8) the SDS is either H2Lys+ 
or H+; then it can be seen that the concentration of the 
SDS will be lowest if we select an end point around pHeq1 
≈ 5.7. Furthermore, around pH ≈ 5.7, [H3Lys2+] and [HLys] 
are so low that we can predict very accurate results.   

Between the common indicators, bromothymol blue 
(transition interval: {6.0, 7.0}) is an appropriate choice. In 
fact, this corresponds to pHend ≈ 6 and titΔpH  ≈ 6.0 – 5.7 
= 0.3. At pH ≈ 6.0, SDS ≡ HLys and evaluations are as it 
follows: 

 pH 6 pH 6log[SDS] log[HLys] 4.45= == = −  

 1
pH 6 pH 6

0.1log 4.45 log 24.5ml
2.3 50

yieldsξ ξ −
= =≈ + ≈

× 

 

 t
0.3Δ 0.01ml
24.5

V ≈ ≈ +  

There is no doubt that this titration is capable of great 
accuracy and that the uncertainty on the results will be 
fully controlled by the precision of the burette. 

This conclusion extrapolates to all LysineType natural 
amino acids. 

Please note that Lysine and its congeners are very often 
sold in the form of the corresponding hydrochloride salts. 

What we have demonstrated above does not apply to a 
solution of Lysine×HCl (Lysine hydrochloride). 

A 0.05 M solution of Lysine×HCl is still represented by 
the LABD of Figure 12, but the key point is that pHin ≈ 
5.7. Then, from Figure 12, we see that a Lysine 
hydrochloride solution cannot be accurately titrated 
neither acidimetrically nor alkalimetrically. 

3.2. Titrations of Bicarbonate and Carbonate 
Mixtures with the “Two Indicators Method” 

The Acid-Base titration of solutions containing 
mixtures of carbonate and bicarbonate is a classical 
experiment suggested in many analytical textbooks. 

The very elegant two indicators method for the 
determination of carbonate and bicarbonate consists in the 
acidimetric titration of their mixtures (usually with an HCl 
standard solution).  

First, phenolphthalein is added to the titrated solution, 
which at the beginning appears intensely red, and the 
acidimetric titration is interrupted when the red colour 
disappears. After reading the volume of titrant delivered 
(i.e., ml

end1V ), the solution is coloured in blue by adding 
bromocresol green and the titration continued until the 
blue colour turns yellow. The volume of the HCl solution 
consumed to reach the bromocresol end point is ml

end2V . 
Consequently, two end points volumes are elegantly 

collected in a single titration, which are then used, with 
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other titration data, to evaluate the concentrations (i.e., 
[[CO3

2–]] and [[HCO3
–]]) or the number of moles of 

carbonate and bicarbonate in the titrated solution.  
The moles of HCl consumed to reach the 

phenolphthalein end point (pHend1 ≈ 8.2) are assumed to 
convert the carbonate to bicarbonate. Then we have: 

 [ ]2 3 ml
3 end1CO 10 HClmol V− −  = ×   (10) 

At the bromocresol end point ((pHend2 ≈ 4), carbonate and 
bicarbonate have been converted to carbonic acid. Then, 
the number of moles of HCl consumed is related to the 
number of moles of carbonate and bicarbonate by the 
obvious relation (11): 

 [ ]2 3 ml
3 3 end2HCO 2 CO 10 HClmol mol V− − −  + = ×   (11) 

By combining relations (10) and (11), one obtains 
relation (12), from which the number of moles of 
bicarbonate can be calculated: 

 [ ] ( )3 ml ml
3 end2 end1HCO 10 HCl 2mol V V− −  = × −   (12) 

Although the two indicators method appears very 
simple and elegant, it is not the method of choice and 
various authors, [5], suggest alternative methods (which 
require more manipulations and reactants). The question is: 
what is the problem with the two indicator method? 

In the following we shall answer within the framework 
of the systematic titration error. 

For convenience, for evaluations below, we assume that 
50.0 ml of a solution containing [[CO3

2–]] = [[HCO3
–]] = 

0.025 M, are titrated with standard 0.1000 M HCl. 
LABD representing the assumed carbonate + 

bicarbonate solution is presented in Figure 13. 
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Figure 13. Logarithmic Acid-Base diagram of 0.05 M carbonic acid, at 
25°C. Curve representing carbonic acid (H2CO3) intersects curve 
representing bicarbonate (HCO3

–) at pH = pKa1 = 6.35; bicarbonate curve 
and carbonate (CO3

2–) curve intersect at pH = pKa2 = 10.33 

On the basis of the titration data and of Figure 13, we 
deduce the following stoichiometric values: 
→First stoichiometric equivalent point↓:  
pHeq1 ≈ 8.4 (→crossing point between curves of H2CO3 
and CO3

2–); 

 [ ]ml 2 ml
eq1 3 0CO HCl 12.50ml;V V−    = × =    

 

→→Second stoichiometric equivalent point↓: 
pHeq2 ≈ 3.8 (→crossing point between curves of HCO3

– 
and H+); 

( ) [ ][ ]ml 2 ml
eq2 3 3 02 CO [ HCO ] * HCl 37.50ml;V V− −= + =    

      

It can be appreciated that the phenolphthalein end point 
at pHend1 ≈ 8.2, is, in effect, very close to pHeq1 ( tit1ΔpH  = 
8.2 - 8.4 = - 0.2), and so does the bromocresol end point at 
pHend2 ≈ 4 ( tit1ΔpH  = 3.8 – 4 = - 0.2).  

From Figure13, evaluations for ml
t1ΔV  are as it follows: 

pH 8.2 2 3 pH 8.2

1
pH 8.2 pH 8.2

t1

log[SDS] log[H CO ] 3.2

0.1log 3.2 log 1.4ml
2.3 50

0.2Δ 0.15ml
1.4

yields

V

ξ ξ

= =

−
= =

− = = −

≈ + ≈ −
×

−
≈ ≈ +
−



 

Analogously, evaluations for ml
t2ΔV  are as it follows: 

pH 4.0 3 pH 4.0

1
pH 4.0 pH 4.0

t2

log[SDS] log[HCO ] 3.7

0.1log 3.7 log 4.4ml
2.3 50

0.2Δ 0.05ml
4.4

yields

V

ξ ξ

−
= =

−
= =

− = = −

≈ + ≈ −
×

−
≈ ≈ −
−



 

Obviously, there is a systematic error on the number of 
moles of carbonate which, from equation (6), is evaluated 
at about + 1.2%.  

On the other side, the number of moles of bicarbonate 

depends on ( )ml ml
end2 end12V V− . This difference carries a 

negative systematic error which is about -0.4 ml 
t2 t1( Δ 2Δ )V V= − . This implies that the concentration or 

number of moles of bicarbonate is affected by a % 
systematic error of about -3%. 

These evaluations are based on Figure 13 (which has 
been drawn by using values at 25° and zero ionic strength 
for the dissociation constants of carbonic acid, i.e., pKa1 = 
6.35 and pKa2 = 10.33), on standard transition ranges for 
the indicators and on the specified titration data.  

In practice, changes on the assumed values can have 
effects on the accuracy (in either direction). Nevertheless, 
it is evident that the original sin of the two indicators 
method is the systematic error in excess on the carbonate 
which then propagates unfavourably to the bicarbonate 
through equation (12). 

Some authors, [6], suggest the use of methyl red instead 
of bromocresol green in the above procedure. This 
amounts to taking pHend2 ≈ 4.4. From Figure 2, we see that 
this choice makes the error on ml

end2V  more negative and, 
by consequence cannot, in general, be justified (unless 
much lower concentrations of total carbonate are 
considered than assumed in the present example). 

Although bicarbonate cannot be determined very 
accurately when carbonate is present in a given solution, 
the acidimetric titration of bicarbonate to the bromocresol 
end point produces very accurate results. This is easily 
seen as a special case of the two indicators method, in 



 World Journal of Chemical Education 19 

 

which the cause of inaccuracy (i.e., the large error on 
ml

end1V ) is removed since, by definition, ml
end1V  = 0, in 

absence of carbonate. 
The same can be said for the determination of carbonate 

in absence of bicarbonate, since in such a case ml
end2V  can 

be directly connected to the number moles of carbonate 
through relation (13):  

 [ ]2 3 ml
3 end2

1CO 10 HCl
2

moles V− −  = × ×   (13) 

which is obtained from equation (11) when it can be 
assumed that 3HCOmol −  = 0. 

4. Using MS Excel for Drawing 
Logarithmic Acid-Base Diagrams 

Table 1 provides algebraic expressions needed for 
drawing LABDs for solutions containing monoprotic 
(HA), diprotic (H2D) and triprotic (H3T) acids. 
Table 1. Algebraic expressions for drawing Logarithmic Acid-Base 
Diagrams* 
1 

↓Water: 2H O H OH
KW + −+→  

2 
[ ]

[ ]
WK

OH
H

−
+

=  

3 
↓Monoprotic acid: aHA A

K −→  
4 

[ ] a

[ ]
[ ] HAC H
HA

H K

+

+
=

+
 

5 

[ ]
a

a

[ ] HAC K
A

H K
−

+
=

+
 

6 
↓Diprotic acid: 2

2
a1 a2H D HD D

K K− −→ →  
7 

[ ]
[ ] [ ]

2
H D2

2 2
a1 a1 a2

[ ]C H
H D

H K H K K

+

+ +
=

+ +
 

8 

[ ]
[ ] [ ]

H D a12
2

a1 a1 a2

[ ]C K H
HD

H K H K K

+
−

+ +
=

+ +
 

9 
[ ]

[ ] [ ]
H D a1 a222

2
a1 a1 a2

C K K
D

H K H K K
−

+ +
=

+ +
 

10 ↓Triprotic acid:  

2 3
3 2

a1 a2 a3H T H T HT T
K K K− − −→ → →  

11 

[ ] [ ] [ ]

3
H T3

3 3 2
a1 a1 a2 a1 a2 a3

[ ]
[ ]

H

C H
H T

H K K K H K K K

+

+ + +
=

+ + +
 

12 

[ ]
[ ] [ ] [ ]

2
H T a13

2 3 2
a1 a1 a2 a1 a2 a3

[ ]

H

C K H
H T

H K K K H K K K

+
−

+ + +
=

+ + +
 

13 

[ ]
[ ]

[ ] [ ] [ ]
H T a1 a232

3 2
a1 a1 a2 a1 a2 a3H

C K K H
HT

H K K K H K K K

+
−

+ + +
=

+ + +
 

14 
[ ]

[ ] [ ] [ ]
H T a1 a2 a333

3 2
a1 a1 a2 a1 a2 a3

C K K K
T

H K H K K H K K K
−

+ + +
=

+ + +
 

* HAC , H D2
C  and H T3

C  represent total analytical concentrations. 

Species which differ only in the number of bonded 
protons constitute an Acid-Base group. For instance there 
are four different species in the Acid-Base group of any 
triprotic acid. The variables HAC , H D2C  and H T3C  

which appear in Table 1, are analytical group 
concentrations.  

For instance, H CO2 3C , would represent the total 
concentration of carbonic acid Acid-Base group. So, in 
abstract, if a solution is prepared dissolving specified 
analytical concentrations of 2 3H CO , 3NaHCO  and 

2 3Na CO , H CO2 3C  is interpreted as:  

 [ ] [ ]H CO 2 3 3 2 32 3 [[H CO ]] NaHCO [ Na CO ]C  = + +   

However, in most cases an Acid-Base group is 
introduced in the solution through a single substance, so 
that only one of the analytical concentrations, i.e., [[...]], 
in the group is different from zero. For instance, a solution 
of sodium bicarbonate has: [ ]H CO 32 3 NaHCOC =    ; but 
for a mixture of sodium carbonate and bicarbonate (as the 
one described in the previous paragraph) we have: 

[ ] [ ]H CO 3 2 32 3 NaHCO [ Na CO ]C   + = . In practice, in a 
given solution, the analytical concentration of an Acid-
Base group coincides with the sum of the equilibrium 
concentrations, [...], of all species belonging to the group. 
Naturally, analytical group concentrations are deduced 
from the amount of the various substances employed to 
prepare the considered solution. 

In a given solution, each Acid-Base group is considered 
independently and its analytical concentration and acid 
dissociation constants (which connect the species in a 
group) are fixed. Then, the equilibrium concentration of 
any species in the considered group can be calculated as a 
function of [H+] (or, which is the same, of pH) from the 
appropriate expression in Table 1. 

If a solution contains several Acid-Base groups, the 
above procedure is repeated for all Acid-Base groups, 
since the LABD representing such a solution is simply the 
superposition of the LABDs of each Acid-Base group. 

Then, a MS Excel .xlxs file, which we shall call 
myLABD.xlxs, for drawing the logarithmic Acid-Base 
diagram representing any solution containing one or 
several Acid-Base groups is readily developed using 
functions in Table1. 

One can start with an Excel file exposing four sheets 
which, for convenience, are renamed: Sheet1 → 
MonoproticAcid, Sheet2 → DiproticAcid, Sheet3 → 
TriproticAcid, Sheet4 → myPlot. 

In the MonoproticAcid sheet the first row is reserved to 
labels. Cells from A1 up to I1 are labelled in the order: pH, 
log[H+], [H+], log[OH–], [OH–], [HA], log[HA], [A–], 
log[A–], pKw, pKa, CHA. 

Under cell labelled pKw (i.e., cell J2) we input the water 
self dissociation constant, pKw (e.g., 14 at 25 °C); then, in 
cell K2, under label pKa, we input the value of pKa (for 
instance, 9.25 for an ammonia solution). It is useful also to 
have values for Kw and Ka, which are readily obtained 
inserting in cells J3 and K3, respectively, the functions 10-

pKw (=10^-J2) and 10-pKa (=10^-K2). 
In column A (starting with cell A2) of the 

MonoproticAcid sheet we generate 140 pH values, from 0 



20 World Journal of Chemical Education  

 

to 14, spaced 0.1 pH units. Under label log[H+], cell B2, 
we input the function –pH ( =-A2). In cell C2 (under label 
[H+]) we input the function 10-pH (i.e., =10^-A2). Then, 
we extend the functions in cells, B2 and C2 up to cells 
B142 and C142. Under cell log[OH–], cell D2, we input 
the function pH - pKw (=A2-$J$2); please note the 
absolute reference to cell J2, written $J$2. Then, we 
extend the content of cell D2 up to cell D142. 

Under the cell [OH–], cell E2, we input the function 
10logOH (i.e., = 10^D2) and extend its contents up to cell 
E142. 

In cell F2 (under the label [HA]) we now input the [H+] 
function in row 4 of Table 1. To do so we need a value for 
the Acid-Base group concentration, which is written in 
cell L2 under cell labelled CHA. For instance we use CHA = 
0.1(→in cell L2). 

Specifically, in cell F2 we write: 
=($L$2*C2)/(C2+$K$3) and extend its content up to cell 
F142. Then, in cell G2 (under label log[HA]), we input 
function log10[HA] (=LOG10(F2)) and its content is 
extended up to cell G142. 

In cell H2 (under label [A–]) we input function in row 5 
of Table 1 (=($L$2*$K$3)/(C2+$K$3)) and extend the 
function up to cell H142. Then, under label log[A–] (cell 
I2), we input the function log10[A–] (=LOG10(H2)) and 
we extend the function up to cell I142. 

Finally, we have in the MonoproticAcid sheet values 
necessary for drawing curves for log[H+], log[OH–], 
log[HA] and log[A–]. Changing pKa in cell K2 and/or CHA 
in cell L2 will automatically update all values in the sheet. 

In order to visualize the LABD, an empty dispersion 
plot is inserted in the myPlot sheet. Then, data to be 
plotted are selected from the MonoproticAcid sheet. 
Values in the first column of the MonoproticAcid sheet 
(i.e., pH) represent the abscissa for all the curves to be 
drawn. Then, for each curve to be drawn we select the 
appropriate column in the MonoproticAcid sheet, i.e., 
columns with labels log[H+], log[OH–], log [HA], log[A–]. 
The Excel plot appears like the one in Figure 14. 

It represents a solution in which the Acid-Base group 
myHA/myA–, characterized by pKa = 9.25 has a 0.1 M 
total analytical concentration. 

The coordinates, (pH, log[j]) of any point on any curve 
in the original LABD, exposed in the myPlot sheet, can be 
read within 0.1 log units by positioning the mouse pointer 
on the selected point.  

The procedure we have shown above for the 
monoprotic acid can be easily extended, introducing the 
appropriate changes, to develop the sheet DiproticAcid, 
using [H+] functions in rows 7, 8 and 9 in Table 1. Finally, 
one can develop the sheet TriproticAcid on the basis of 
functions in rows 11, 12, 13 and 14 (of Table 1). 

LAMD of any solution of acids and bases are drawn in 
myPlot sheet selecting the appropriate columns in 
MonoproticAcid, DiproticAcid and TriproticAcid sheets, 
with the usual Excel operations. 

Obviously, there are infinite ways to personalize plots 
using the standard Excel tools. 
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Figure 14. Logarithmic Acid-Base diagram representing the 0.1 M 
solution of a monoprotic acid (having pKa = 9.25) drawn in MS Excel 

5. Conclusions 
If an Acid-Base titration is considered within the frame 

of the Logarithmic Acid-Base Diagram of the titrated 
solution, the topic of systematic titration error, which is 
generally treated in a qualitative way, can smoothly be 
transferred at the quantitative level, without lengthy 
algebraic manipulations which would otherwise be 
required. 
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