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Abstract: In this paper we propose a test for a set of linear restrictions in a Vector
Autoregressive Moving Average (VARMA) model. This test is based on the autoregressive
metric, a notion of distance between two univariate ARMA models, M0 and M1, introduced
by Piccolo in 1990. In particular, we show that this set of linear restrictions is equivalent to a
null distance d(M0,M1) between two given ARMA models. This result provides the logical
basis for using d(M0,M1) = 0 as a null hypothesis in our test. Some Monte Carlo evidence
about the finite sample behavior of our testing procedure is provided and two empirical
examples are presented.
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1. Introduction

In this paper, we investigate the relationship between a set of linear restrictions on the parameters
of a Vector Autoregressive Moving Average (VARMA) model (see [1]) and the autoregressive metric
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(AR-metric hereafter), a notion of the distance between two univariate ARMA models introduced
by Piccolo [2]. In particular, we show that these linear restrictions are satisfied if and only if the distance
d between the two given ARMA models (say M0 and M1) is zero. This result provides the logical basis
for using d(M0,M1) = 0 as null hypothesis for testing this set of restrictions. Moreover, we show that the
set of linear restrictions considered is sufficient for the condition of Granger noncausality ([3]), while
in the VAR framework it becomes also a necessary condition (see [4]). This theoretical result allows
the implementation of an inferential procedure and a bootstrap algorithm. Our procedure is verified
by some Monte Carlo experiments also in a quite small sample. The paper is organized as follows.
Section 2 introduces the notion of the distance between ARMA models and specifies the relationship
between the AR metric and the set of linear restrictions considered for a VARMA model. Section 3
presents the inferential implication. Section 4 provides some Monte Carlo evidence about the finite
sample behavior of our testing procedure. Section 5 contains two empirical illustrations. Section 6 gives
some concluding remarks.

2. Linear Restrictions in a VARMA Model and AR-Metric

Let zt be a zero mean invertible ARMA model defined as

φ(L)zt = θ(L)εt

where φ(L) and θ(L) are polynomials in the lag operator L, with no common factors, and εt is
a white noise process with constant variance σ2. It is well-known that this process admits the
following representation:

π(L)zt = εt

where the AR(∞) operator is defined by

π(L) = φ(L)θ(L)−1 = 1−
∞∑
i=1

πiL
i

with
∑∞

i=1 |πi| <∞.
Let ` be the class of ARMA invertible models. If X ∈ ` and Y ∈ `, following Piccolo [2], the

AR-metric is defined as the Euclidean distance between the corresponding π-weights sequence, {πj},

d(X, Y ) =

[
∞∑
i=1

(πxi − πyi)2
] 1

2

(1)

The AR-metric d has been widely used in time series analysis (see, e.g., [5–10]). We observe that
Equation (1) is a well-defined measure because of the absolute convergence of the π-weights sequences.

Now, we consider the following VARMA model of order p, q, for an n × 1 vector time series
{wt; t ∈ Z}:

A(L)wt = B(L)εt (2)

where A(L) = In − A1L− A2L
2 − · · · − ApLp and B(L) = In − B1L− B2L

2 − · · · − BqL
q are two

n × n matrices of polynomials in the lag operator L, and εt is an n × 1 vector white noise process with
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positive definite covariance matrix Σ. We assume that det (A(z)) 6= 0 for |z| < 1. This condition allows
non-stationarity for the series, in the sense that the characteristic polynomial of the VARMA model
described by the equation det (A(z)) = 0 may have roots on the unit circle. Condition det (A(z)) 6= 0

for |z| < 1, however, excludes explicitly explosive processes from our consideration. We further assume
that the model Equation (2) satisfies the usual identifiability conditions. If B(L) = I , we obtain a pure
vector autoregressive (VAR) model of order p. If A(L) = I , we obtain a pure vector moving average
(VMA) model of order q. Consider the partition wt = (xt, y

′
t)
′ where xt is a scalar time series and yt is

an (n− 1)× 1 vector of time series. Accordingly, the model Equation (2) for the partition of wt can be
rewritten as:[

1− A11(L) A12(L)

A21(L) I − A22(L)

][
xt

yt

]
=

[
1−B11(L) B12(L)

B21(L) I −B22(L)

][
εxt
εyt

]
(3)

E

([
εxt
εyt

] [
εxs εys

])
=

{
Σ t = s

0 t 6= s

where Aij(L) =
∑p

h=1A
(h)
ij L

h and Bij(L) =
∑q

h=1B
(h)
ij L

h i, j = 1, 2 are matrix polynomials in the lag
operator L, with det(A22(L)) 6= 0. In this framework it is well-known (see, for example, [11]) that yt
does not Granger-cause xt if and only if

B12(L)− A12(L)A22(L)−1B22(L) = 0 (4)

and that a sufficient condition for Equation (4) to hold is

A12(L) = B12(L) = 0 (5)

We note that if the condition Equation (5) holds then xt follows a univariate ARMA model given by:

[1− A11(L)]xt = [1−B11(L)] εxt (6)

The main aim of this paper is to establish the implications of the set of linear restrictions Equation (5),
using the notion of the distance between ARMA models measured by Equation (1). In particular, we
will consider the distance between the ARMA(p, q) model Equation (6) (denoted M0) and the ARMA
model for the subprocess {xt; t ∈ Z} implied by the VARMA(p, q) model Equation (2) (denoted M1).

Following Lütkepohl [1], the implied ARMA model M1 can be obtained as follows. Premultiplying
both sides of Equation (2) by the adjoint of A(L), denoted as Adj (A(L)), we obtain

det (A(L))wt = Adj (A(L))B(L)εt (7)

We note that each component of Adj (A(L))B(L)εt is a sum of finite order MA processes, thus it is
a finite order MA process (see Proposition 11.1 in [1]). Hence, the subprocess {xt; t ∈ Z} follows an
ARMA model given by:

det (A(L))xt = δ(L)ut (8)

where ut is univariate white noise and δ(L) is an invertible polynomial in the lag operator L.
More precisely, δ(L) and ut are such that

δ(L)ut = C1(L)εt
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where C1(L) denotes the first row of the matrix C(L) = Adj (A(L))B(L). Finally, we observe that xt
has also the following autoregressive representation of infinite order:

ϕ(L)xt = ut

where
ϕ(L) =

det [A(L)]

δ(L)
= 1 + ϕ1L+ ϕ2L

2 + ...

2.1. Theoretical Results

We consider the distance according to Equation (1) between the model Equations (6) and (8)
M0 and M1:

d(M0,M1) =

[
∞∑
i=1

(λi − ϕi)2
] 1

2

where
λ(L) =

1− A11(L)

1−B11(L)
= 1 + λ1L+ λ2L

2 + ...

The following proposition provides a necessary and sufficient condition for the set of linear
restrictions Equation (5) in terms of the distance d(M0,M1).

Proposition 1. A12(L) = B12(L) = 0 if and only if d(M0,M1) = 0.

Proof of Proposition 1. (⇒) We have

det [A (L)] = (1− A11(L)) det
[
I − A22(L)− A21(L) (1− A11(L))−1A12(L)

]
and the first row the matrix C(L) is such that C1(L) = [C11(L), C12(L)] where

C11(L) = [det (A (L))D(L) (1−B11(L))− det (A (L))D(L)A12(L) (I − A22(L))−1B21(L)]

and

C12(L) = [det (A (L))D(L)B12(L)− det (A (L))D(L)A12(L) (I − A22(L))−1 (I −B22(L))]

with D(L) = [1− A11(L)− A12(L) (I − A22(L))−1A21(L)]−1

If A12(L) = B12(L) = 0, then

det (A(L)) = (1− A11(L)) det (I − A22(L))

and
C1(L) = [det (I − A22(L)) (1−B11(L)), 0]

Thus we have that ut = εxt (where this equality between random variables means equality with
probability 1) and δ(L) = det (I − A22(L)) (1−B11(L)). It follows that

ϕ(L) =
det (A(L))

δ(L)
=

1− A11(L)

1−B11(L)
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and hence d(M0,M1) = 0.

(⇐) We have to show that if d(M0,M1) = 0, then A12(L) = B12(L) = 0. We may have two cases:
A21(L) 6= 0 or A21(L) = 0.

First case: A21(L) 6= 0.
If d(M0,M1) = 0, then

ϕ(L) =
1− A11(L)

1−B11(L)

On the other hand, we have

ϕ(L) =
det (A(L))

δ(L)

and hence

1− A11(L)

1−B11(L)
=

(1− A11(L)) det
(
I − A22(L)− A21(L) (1− A11(L))−1A12(L)

)
δ(L)

Using the Schur’s formula, we get

1− A11(L)

1−B11(L)
=

det (I − A22(L))
(
1− A11(L)− A12(L) (I − A22(L))−1A21(L)

)
δ(L)

Thus δ(L) assume the following expression

δ(L) = det (C) (1−B11(L))− (1− A11(L))−1 det (C)A12(L) (I − A22(L))−1A21(L) (1−B11(L))

(9)
where C = I − A22(L).

Since the degree of polynomial δ(L) is finite

deg (δ(L)) <∞

Equation (9) implies that

deg
(
(1− A11(L))−1 det (I − A22(L))A12(L) (I − A22(L))−1A21(L) (1−B11(L))

)
<∞ (10)

Since
deg

(
(1− A11(L))−1

)
=∞

it follows for Equation (10) that it must be

A12(L) (I − A22(L))−1A21(L) = 0

Since by hypothesis A21(L) 6= 0, it follows that A12(L) = 0 and this in turn implies that

C1(L) = [det (I − A22(L)) (1−B11(L)) , det (I − A22(L))B12(L)]

and
δ(L) = det (I − A22(L)) (1−B11(L))
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On the other hand δ(L) is such that

δ(L)ut = det (I − A22(L)) (1−B11(L)) εxt + det (I − A22(L))B12(L)εyt

and hence
ut = εxt +

B12(L)

(1−B11(L))
εyt (11)

where this equality is with probability 1. Since ut is a white noise, Equation (11) implies that
B12(L) = 0.

Second case: A21(L) = 0.
By hypothesis A21(L) = 0, this implies that

det (A(L)) = (1− A11(L)) det (I − A22(L))

and the first row of the matrix C(L) is given by C1(L) = [C11(L), C12(L)] where

C11(L) = [det (I − A22(L)) (1−B11(L))− det (I − A22(L))A12(L) (I − A22(L))−1B21(L)]

C12(L) = [det (I − A22(L))B12(L)− det (I − A22(L))A12(L) (I − A22(L))−1 (I −B22(L))]

If d(M0,M1) = 0, then

1− A11(L)

1−B11(L)
=

(1− A11(L)) det (I − A22(L))

δ(L)

and hence
δ(L) = (1−B11(L)) det (I − A22(L))

The following equality then occurs with probability 1:

ut = εxt −
A12(L) (I − A22(L))−1B21(L)

1−B11(L)
εxt +

B12(L)

1−B11(L)
εyt

−A12(L) (I − A22(L))−1 (1−B22(L))

1−B11(L)
εyt

Since ut is a white noise, this implies that A12(L) = 0 and B12(L) = 0.

We have also the following corollaries.

Corollary 1. Let wt = (xt, y
′
t)
′ be a pure VAR(p) process. y does not Granger-cause x if and only if

d(M0,M1) = 0.

Proof of Corollary 1. (⇒) If y does not Granger-cause x, then A12(L) = 0. By hypothesis,
B12(L) = 0. Hence we have A12(L) = B12(L) = 0. It follows from Proposition 1 that d(M0,M1) = 0.

(⇐) If d(M0,M1) = 0, by Proposition 1, it follows that A12(L) = 0 and this, in a VAR framework,
implies that y does not Granger-cause x.

Corollary 2. Let wt = (xt, y
′
t)
′ be a pure VMA(q) process. y does not Granger-cause x if and only if

d(M0,M1) = 0.

Proof of Corollary 2. It is similar to the proof of Corollary 1.
�
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3. Inferential Implications

Proposition 1 allows us to test the set of linear restrictions Equation (5) considering the null hypothesis
H0 : d(M0,M1) = 0. Further, we observe that if the process {wt; t ∈ Z} follows a VAR model,
Corollary 1 establishes that the Granger noncausality from yt to xt is equivalent to the condition
d(M0,M1) = 0. Thus, in a VAR framework, we can test for Granger noncausality from yt to xt using
the null hypothesis d(M0,M1) = 0 without considering the nature of the involved variables. In fact, it
is well-known that the use of non-stationary data in causality tests can yield spurious causality results
(see, e.g., [12]). Thus, before testing for Granger causality, it is important to establish the properties
of the time series involved because different model strategies must be adopted when: the series are
I(0), the series are partly I(0) and partly I(1), the series are determined I(1) but not cointegrated, or the
series are cointegrated. Of course, the weakness of this strategy is that incorrect conclusions drawn from
preliminary analysis might be carried over into the causality tests. In the VAR framework an alternative
method is the so-called lag-augmented Wald test (see [13,14]), which is a modified Wald test that requires
the knowledge of the maximum order of integration of the involved variables. In this way, the proposed
test based on the AR-metric can be a valid alternative for a Granger noncausality test (see [4]), since it
does not require the exact knowledge of the series properties or the knowledge of the maximum order
of integration.

To conduct inference on the basis of Proposition 1, we need an asymptotic distribution for d(M0,M1).
In the class of ARMA processes, the asymptotic distribution of the maximum likelihood estimator d̂2 has
been studied, among others, in [5,15]. In this case, for two independent ARMA(p, q) processes X and
Y , under the null hypothesis d(X, Y ) = 0, the maximum likelihood estimator d̂2 has the following
asymptotic distribution:

d̂2 ∼ 2
K∑
j=1

λjχ
2
gj

where χ2
gj are independent χ2-distributions with gj degrees of freedom, λj are the eigenvalues of the

covariance matrix of (ϕ̂xi− ϕ̂yi) and K < p+ q. The evaluation of this distribution can be cumbersome;
hence approximations, as well as evaluation algorithms, have been proposed (see [15]). Anyhow, in
our framework, the ARMA models implied by Equation (6) and by the VARMA model Equation (8)
under the null hypothesis A12(L) = B12(L) = 0 are equal, so they cannot be considered independent.
Then, to conduct the inferential procedures, we suggest the bootstrap algorithm proposed by Di Iorio
and Triacca [4], which is described in the next section.

3.1. The Bootstrap Test Procedure

For an easy illustration of our bootstrap procedure, let us consider a bivariate VARMA(p, q) model
simply denoted as A(L)wt = B(L)εt where wt = (xt, yt)

′, εt = (εxt, εyt)
′ with covariance matrix Σ

and, based on Proposition 1, we want to test the null hypothesis H0 : A12(L) = B12(L) = 0 using
H0 : d(M0,M1) = 0

1. Estimate on the observed data the VARMA(p, q) and obtain Â(L), B̂(L), Σ̂ and the residuals ε̂t;
2. using the estimated parameters from Step 1, obtain the univariate ARMA implied by the estimated

VARMA for the subprocess xt;
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3. evaluate the AR(∞) representation truncated at some suitable lag p1 of the ARMA model in Step 2
(model M1);

4. estimate for xt, using the observed data, an ARMA(p, q) model under the null hypothesis H0 :

A12(L) = B12(L) = 0 and evaluate its AR(∞) representation truncated at some suitable lag p0
(model M0);

5. evaluate the distance d̂(M0,M1) between the AR(p0) and the AR(p1) obtained in Steps 3 and 4;
6. estimate the VARMA(p, q) model under the null hypothesis H0 : A12(L) = B12(L) = 0 to obtain

the estimates Ã(L), B̃(L) and Σ̃;
7. apply bootstrap to the re-centered residuals ε̂t and obtain the pseudo-residuals ε∗t ;
8. generate the pseudo-data (x∗t , y

∗
t )
′ obeying the null hypothesis using Ã(L)(x∗t , y

∗
t )
′ = B̃(L)ε∗t

with Σ̃;
9. using the pseudo-data (x∗t , y

∗
t )
′, repeat Steps 1–5 to obtain the bootstrap estimate of the distance

d∗(M0,M1);
10. repeat Steps 7–9 for b times;
11. evaluate the bootstrap p-value as the proportion of the b estimated bootstrap distance d∗ that

exceeds the same statistic evaluated on the observed data d̂, that is, pvalb = proportion(d∗ > d̂).
When this procedure is applied, two remarks concerning the pseudo-data generation and the modeling

of the dependency across the subprocess are in order. Firstly, in a well-specified model framework
(as well as during a simulation exercise), the estimated residuals ε̂t do not show any autocorrelation
structure, so we do not need any particular resampling scheme for dependent data to obtain pseudo-error
terms ε∗t , and we can then apply a simple resampling procedure. Besides, for empirical studies the
pseudo-data can be obtained considering several resampling strategies, as a block bootstrap algorithm
(see [16]). Secondly, in order to reproduce the dependency across the subprocess expressed by Σ in the
pseudo-data, we simply have to apply the resampling algorithm to the entire T×nmatrix of the estimated
residuals ε̂t.

4. Monte Carlo Experiments

The performance of the proposed inferential strategy can be investigated by means of a set of
Monte Carlo experiments. In particular, we consider the test for the set of linear restriction associated
to a Granger noncausality test for two different DGP: a stable bivariate VARMA(1, 1) model and a
cointegrated bivariate VAR(2) model. Our test will be compared with the performance of a Wald
test for the VARMA(1, 1) and with the lag-augmented Wald test suggested by Dolado et al. and
Toda et al. [13,14] for the cointegrated VAR model.

4.1. Bivariate VARMA(1, 1) Model

Consider the following stable VARMA(1, 1) model:[
1− 0.8L −α1L

−0.3L 1− 0.5L

][
xt

yt

]
=

[
1 −β1L

0.25L 1− 0.5L

][
εxt

εyt

]
(12)

with covariance matrix Σε =

[
4 3

3 6

]
.
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In our study, the tests of the null hypothesis

H0 : α1 = β1 = 0

were carried out using nominal significance levels of 1%, 5% and 10%. To analyze the power of the
test, we consider the two cases below to verify how the test reacts when the parameter values move away
from zero:

Power 1. α1 = 0.2, β1 = −0.7,

Power 2. α1 = 0.5, β1 = −0.7.

It is well-known that a maximum likelihood estimation of a VARMA model can be a challenging
task (see, e.g., [1,17]). For this reason we consider sample size T = 100 and T = 200, which are
quite large compared with what is usually found in empirical applications. Taking into account the
dimension of our exercise, we perform the maximum likelihood estimation using the Kalman filter
procedure implemented in Gretl (ver. 1.9.14) (see [18]). Therefore, due to computational time involved
by the maximum likelihood estimation of the VARMA model, the experiments are based on 400 Monte
Carlo replications and 400 bootstrap redrawings. We compare our results with the usual Wald test using,
for a proper comparison, also the bootstrap p-values obtained by the same bootstrap algorithm described
above. Finally, we verify by some preliminary experiments that a suitable value for p0 and p1 in Steps 3
and 4 in the bootstrap algorithm is 15. The results are reported in Table 1.

Table 1. VARMA(1, 1) AR-metric and Wald test. Size and Power.

AR–Metric Wald Wald

Boot p-Values Boot p-Values Asy p-Values

nom Size Power 1 Power 2 Size Power 1 Power 2 Size Power 1 Power 2

T = 100

0.01 0.01 0.15 0.45 0.01 0.85 0.89 0.01 0.97 0.99
0.05 0.09 0.48 0.90 0.06 0.90 0.90 0.06 0.99 100
0.10 0.14 0.62 0.97 0.12 0.90 0.90 0.11 0.99 100

T = 200

0.01 0.03 0.49 0.98 0.01 0.97 0.98 0.01 100 100
0.05 0.08 0.70 1.00 0.05 0.99 0.98 0.04 100 100
0.10 0.13 0.79 1.00 0.07 0.99 1.00 0.09 100 100

As we can see from Table 1, the size for the AR-metric test is quite satisfactory, and the power
increases with growing sample size and as the true parameter values move away from zero. In any
case, as expected, the difficulties of the maximum likelihood estimation for the VARMA model affect
the distance more than the Wald test, which shows a better power. In fact, as the bootstrap algorithm
underlines, the distance-based test is built on the autocovariances obtained by the estimated values of the
parameters. Hence, its performances are heavily dependent on the quality of these estimates.
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4.2. Bivariate Cointegrated VAR(2) Model

Most encouraging results are obtained with the second DGP. Consider the following cointegrated
bivariate VAR(2) model:[

1− 1.5L+ 0.5L2 −α1L− α2L
2

−0.8L+ 0.3L2 1− L+ 0.5L2

][
xt

yt

]
=

[
εxt

εyt

]
(13)

with covariance matrix Σε =

[
5 2

2 3

]
.

As before, the tests of the null hypothesis

H0 : α1 = α2 = 0

were carried out using nominal significance levels of 1%, 5% and 10%. To analyze the power of the test,
we consider again the two cases below:

Power 1. α1 = −α2 = 0.3

Power 2. α1 = −α2 = 0.6

In this case the parameter estimation is easier. To make our Monte Carlo experiment more relevant
for actual empirical applications, we consider sample size T = 50, a medium size in terms of annual
data but small size for a quarterly frequency, and T = 100, which is a time span large in terms of
annual data but pretty common for quarterly data. Now we compare the performances for our test with
the lag-augmented Wald test proposed by Dolado et al. and Toda et al. [13,14] in this framework.
The lag-augmented Wald test has an asymptotic χ2-distribution with p degrees of freedom when a
VAR(p+ dmax) is estimated, where dmax is the maximal order of integration for the series in the system.
However, it is well-known that the lag-augmented Wald test based on asymptotic critical values may
suffer from size distortion and low power especially for small samples [19,20]. Thus, to overcome this
problem, we apply the same bootstrap algorithm described above using the Wald test from an augmented
VAR(2 + amax), with augmentation order amax = 1, and we evaluate the bootstrap p-values.

For this DGP the experiment is based on 1000 Monte Carlo replications and 1000 Bootstrap
redrawings, and, as before, in Step 3 we set p0 = 15. The results are collected in Table 2. We note
that, for a nominal significance level of 5%, our results are rather similar to those of the second part of
Table 3 reported in Shukur and Mantalos [21]. The comparison of the power estimates for our test and
the lag-augmented Wald test of Toda et al. [14] shows that our test has relatively high power properties
in all situations, while the size is very close to the nominal values for both tests.
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Table 2. VAR(2) AR-metric and lag-augmented Wald test. Size and Power Bootstrap
p-values. Asy p-values.

AR-Metric Aug-Wald Aug-Wald

Boot p-Values Boot p-Values Asy p-Values

nom Size Power 1 Power 2 Size Power 1 Power 2 Size Power 1 Power 2

T = 50

0.01 0.02 0.22 0.64 0.01 0.05 0.35 0.01 0.06 0.36
0.05 0.07 0.42 0.82 0.04 0.18 0.62 0.04 0.17 0.61
0.10 0.12 0.56 0.89 0.08 0.27 0.73 0.08 0.26 0.72

T = 100

0.01 0.01 0.54 0.98 0.01 0.18 0.78 0.01 0.18 0.80
0.05 0.04 0.78 1.00 0.04 0.38 0.92 0.04 0.38 0.91
0.10 0.11 0.85 1.00 0.09 0.50 0.95 0.08 0.50 0.95

5. Empirical Applications

In this section we present two empirical examples to illustrate the application of the test suggested in
the paper. First, we consider a VAR model and in particular we examine the causal relationship between
the log of real per capita income and the inflation. Then, we consider a VARMA example based on the
SCC dataset discussed in [22].

To take into account any possible dependence structure in the residuals of the estimated models,
we use the Stationary Bootstrap ([23]) as resampling algorithm. The Stationary Bootstrap is a block
bootstrap scheme where the resampled pseudo-series are stationary; this scheme chains blocks of
observations of the original series starting at random locations, and the length of each block is randomly
chosen from a geometric distribution. Following Palm et al. [24], the mean block length can be computed
as a function of the length of the time sample; by some exploratory simulations we verify the robustness
of the tests to different block sizes, so we report results for blocks 1.75

√
T

3
.

To discuss the possible causal relationship between the log of real per capita income (y) and inflation
(∆p) we re-examined the dataset used by Ericsson et al. [25]. The dataset refers to United States
over the period 1953–1992 and can be downloaded from the Journal of Applied Econometrics Data
Archive. The VAR order selection is based on Bayesian Information Criterion and the following model
is estimated.

yt = 0.03
(0.21)

+ 0.93
(0.15)

yt−1 + 0.93
(0.16)

yt−2 − 0.82
(0.24)

∆pt−1 + 0.53
(0.23)

∆pt−2 + ε1t

∆pt = −0.35
(0.12)

+ 0.34
(0.09)

yt−1 − 0.33
(0.09)

yt−2 + 1.15
(0.13)

∆pt−1 − 0.33
(0.13)

∆pt−2 + ε2t

The computed d̂(M0,M1)-statistic is equal to 0.35 with a bootstrap p-value 0. This result indicates
the presence of Granger causality from output to inflation. This finding is in accordance with the results
of Ericsson et al. [25]. The same result is obtained using the lag-augmented Wald test.
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The SCC dataset discussed by Tiao and Box [22] considers the quarterly time series of the U.K.
Financial Time Ordinary Share Index, the U.K. Car Production and the U.K. Financial Time Commodity
Price from the III Quarter 1952 to the IV Quarter 1967. The goal is verify the possibility of predicting the
first variable from the lagged values of the last two. According to Tiao and Box [22], a VARMA(1, 1) is
the best model for this data, then a null hypothesis following Equation (5) will be the inferential base to
test just a sufficient condition on the predictability hypothesis. The VARMA(1, 1) maximum likelihood
parameter estimates using the Kalman filter procedure implemented in Gretl (ver. 1.9.9) are the following
(standard errors in bracket):

µ =


1.157
(1.178)

0.774
(0.879)

2.444
(1.941)

 A(L) =


0.853
(0.132)

0.117
(0.147)

−0.057
(0.07)

−0.034
(0.110)

0.960
(0.108)

−0.030
(0.051)

−0.091
(0.308)

0.153
(0.308)

0.843
(0.112)

 B(L) =


0.386
(0.134)

−0.488
(0.179)

−0.223
(0.097)

0.752
(0.164)

−0.782
(0.181)

−0.175
(0.117)

1.373
(0.353)

−0.820
(0.372)

−0.017
(0.185)


The estimates are quite similar to the values reported as “full model” in the Table 10 in [22], taking

into account the difference in the estimation algorithm and software. The computed d̂(M0,M1)-statistic
is equal to 4.58 with a bootstrap p-value 0.225, evaluated on 500 bootstrap replications, and this finding
is in accordance with the results of “final model” in the Table 10 in Tiao and Box [22]. We perform also
a Wald test on the same null hypothesis, the value is 36.684, which asymptotically rejects the null, but
with a bootstrap p-value 0.146 that sustains the results of our test.

6. Conclusions

In this paper we characterized a set of linear restrictions in a Vector Autoregressive Moving Average
(VARMA) model in terms of the notion of distance between ARMA models and we have derived a new
inferential procedure. In particular, this new procedure can be useful for a new Granger noncausality
test in a VAR framework. The advantage of this test is that it can be carried out irrespective of whether
the variables involved are stationary or not and regardless of the existence of a cointegrating relationship
among them. Our inferential procedure has been validated by a set of Monte Carlo experiments. In a
VARMA framework this procedure shows encouraging results even if a deeper investigation, made
complex by the computational time, is needed. In a cointegrated VAR framework our method for
detecting causality has provided better results, as the conducted simulation study has shown that our
test exhibits good performance in terms of size and power properties, even in small samples. Finally, we
have shown that this test can be usefully applied in practical situations to test causality between economic
time series.
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