On the homology of the universal Steenrod algebra at odd primes

A. Ciampella

Received: 19 May 2014 / Accepted: 21 June 2014 / Published online: 30 July 2014
© Università degli Studi di Napoli "Federico II" 2014

Abstract

We give an explicit description of the homology $H_{*}(\mathcal{Q})$ of the universal Steenrod algebra \mathcal{Q} for any odd prime p, extending the work done for the $p=2$ case. We also exhibit an isomorphism with a certain coalgebra of invariants Γ.

Keywords Universal Steenrod algebra • Invariant theory • Koszul algebras • Bar resolutions • Homology of algebras • Modular invariants

Mathematics Subject Classification 13A50 55S10

1 Introduction

Let p be any prime and \mathbb{F}_{p} the field with p elements. In [14] May introduced the universal Steenrod algebra \mathcal{Q} over the field \mathbb{F}_{p} as the algebra of all cohomology operations in the category of H_{∞}-ring spectra. This algebra is also known as the algebra of all generalized Steenrod operations [13] or the extended Steenrod algebra [6]. It is closely related to other well known algebras, such as the opposite $\Lambda^{o p p}$ of the Λ algebra introduced in [1], the Steenrod algebra \mathcal{A} in [15] and the Steenrod algebra for simplicial restricted Lie algebras A_{L} in [14]. The algebra \mathcal{Q} has extensively been studied in [2-5,7,8] and [12]. In particular the papers [7] and [12] contain an invariant-theoretic description of \mathcal{Q} and a computation of the diagonal cohomology $D^{*}(\mathcal{Q})=\oplus E x t_{\mathcal{Q}}^{q, q}\left(\mathbb{F}_{p}, \mathbb{F}_{p}\right)$ for $p=2$ and for any odd prime p, respectively. In [4] the authors prove that \mathcal{Q}, which is a non-locally finite homogeneous quadratic algebra, is an example of a good PBW-algebra, hence it is koszul, i.e. the cohomology $H^{*, *}(\mathcal{Q})=$

[^0]A. Ciampella (\boxtimes)

Dipartimento di Matematica e applicazioni, Università di Napoli "Federico II", Piazzale Tecchio 80, 80125 Napoli, Italy
e-mail: ciampell@unina.it
$\oplus E x t_{\mathcal{Q}}^{s, t}(\mathbb{F}, \mathbb{F})$ is purely diagonal. The analogous for the homology $H_{*, *}(\mathcal{Q})$ holds: $\operatorname{Tor}_{\mathcal{Q}}^{s, t}\left(\mathbb{F}_{p}, \mathbb{F}_{p}\right)=0$ if $s \neq t$. In [8] there is an explicit description of the non trivial part of the homology of $\mathcal{Q}, D_{*}(\mathcal{Q})=\oplus H_{q, q}(\mathcal{Q})$, for the $p=2$ case. The classical bar construction is used to get our main results: the $\bmod p$ homology of \mathcal{Q} and its description in terms of invariant theory. In Sect. 2 we recall the basic results of invariant theory. Section 3 is devoted to the computation of the diagonal homology $D_{*}(\mathcal{Q})$ of \mathcal{Q}. In Sect. 4 we prove that $D_{*}(\mathcal{Q})$ is isomorphic to the coalgebra Γ of certain invariants with respect to the action of the general linear group $G L\left(n, \mathbb{F}_{p}\right)$.

2 Preliminaries on invariant theory

Let $\Phi_{n}=\left(E\left(x_{1}, \ldots, x_{n}\right) \otimes \mathbb{F}_{p}\left[y_{1}, \ldots, y_{n}\right]\right)\left[L_{n}^{-1}\right]$ be the localization out of the Euler class L_{n} of $H^{*}\left(B\left(\mathbb{Z}_{p}\right)^{n}\right)$. The general linear group $G L_{n}=G L\left(n, \mathbb{F}_{p}\right)$ acts on Φ_{n}. Let B_{n} be the Borel subgroup of $G L_{n}$ of all upper triangular matrices and T_{n} the subgroup of B_{n} of all matrices with 1 on the main diagonal. We are interested on the invariant rings

$$
\Delta_{n}=\Phi_{n}^{T_{n}}, \quad \bar{\Delta}_{n}=\Phi_{n}^{B_{n}}, \quad \Gamma_{n}=\Phi_{n}^{G L_{n}} .
$$

We know from [9] (Corollary 1.3) that

$$
\Delta_{n}=E\left(u_{1}, \ldots, u_{n}\right) \otimes \mathbb{F}_{p}\left[v_{1}^{ \pm 1}, \ldots v_{n}^{ \pm 1}\right]
$$

where u_{i} and v_{i} have degree $\left|u_{i}\right|=1,\left|v_{i}\right|=2$ for $1 \leq i \leq n$.
Combining results from [11] and [7] (Proposition 1.2), we get

$$
\bar{\Delta}_{n}=E\left(\bar{u}_{1}, \ldots, \bar{u}_{n}\right) \otimes \mathbb{F}_{p}\left[w_{1}^{ \pm 1}, \ldots w_{n}^{ \pm 1}\right],
$$

where

$$
\begin{align*}
\bar{u}_{i} & =(-1)^{i} u_{i} v_{i}^{-1}, \quad w_{i}=v_{i}^{p-1}, \\
\bar{u}_{i} \mid & =-1, \quad\left|w_{i}\right|=2(p-1), \tag{2.1}
\end{align*}
$$

for $1 \leq i \leq n$.
In [9] (Corollary 1.2, item (ii)), we find

$$
\Gamma_{n}=E\left(R_{n, 0}, \ldots, R_{n, n-1}\right) \otimes \mathbb{F}_{p}\left[Q_{n, 0}^{ \pm 1}, Q_{n, 1}, \ldots, Q_{n, n-1}\right]
$$

$\left|R_{n, i}\right|=2\left(p^{n}-p^{i}\right)-1,\left|Q_{n, i}\right|=2\left(p^{n}-p^{i}\right)$. Moreover, the following proposition gives recursive formulas for the generators of Γ_{n}.

Proposition 2.1 (1) $Q_{n, i}=Q_{n-1, i-1}^{p}+Q_{n-1,0}^{p-1} Q_{n-1, i} v_{n}^{p-1}=Q_{n-1, i-1}^{p}+Q_{n-1,0}^{p-1}$ $Q_{n-1, i} w_{n}$.
(2) $R_{n, i}=Q_{n-1,0}^{p-1}\left(R_{n-1, i} v_{n}^{p-1}+Q_{n-1, i} u_{n} v_{n}^{p-2}\right)$; in terms of B_{n} invariants, $R_{n, i}=$ $Q_{n-1,0}^{p-1}\left(R_{n-1, i}+(-1)^{n} Q_{n-1, i} \bar{u}_{n}\right) w_{n}$.
Proof See Proposition 1.4 in [9].
By convention, $Q_{n, i}=0$ for either $i<0$ or $n<i, Q_{n, n}=1$ and $R_{n, i}=0$ for either $i<0$ or $i \geq n$.

In particular we have

$$
\begin{align*}
& Q_{1,0}=v_{1}^{p-1}=w_{1}, \quad R_{1,0}=u_{1} v_{1}^{p-2}=-\bar{u}_{1} w_{1} \tag{2.2}\\
& Q_{2,0}=Q_{1,0}^{p} v_{2}^{p-1}=w_{1}^{p} w_{2} \\
& Q_{2,1}=Q_{1,0}^{p}+Q_{1,0}^{p-1} v_{2}^{p-1}=w_{1}^{p-1}\left(w_{1}+w_{2}\right) \\
& R_{2,0}=Q_{1,0}^{p-1}\left(R_{1,0} v_{2}^{p-1}+Q_{1,0} u_{2} v_{2}^{p-2}\right)=\left(\bar{u}_{2}-\bar{u}_{1}\right) w_{1}^{p} w_{2}, \tag{2.3}\\
& R_{2,1}=Q_{1,0}^{p-1} u_{2} v_{2}^{p-2}=\bar{u}_{2} w_{1}^{p-1} w_{2} .
\end{align*}
$$

Set

$$
\Delta=\oplus_{n \geq 0} \Delta_{n}, \quad \bar{\Delta}=\oplus_{n \geq 0} \bar{\Delta}_{n}, \quad \Gamma=\oplus_{n \geq 0} \Gamma_{n}
$$

Here, $\Delta_{0}=\bar{\Delta}_{0}=\Gamma_{0}=\mathbb{F}_{p}$.
For any non-negative integers n, q, t such that $q+t=n$, we define

$$
\psi_{q, t}: \Delta_{n} \rightarrow \Delta_{q} \otimes \Delta_{t}
$$

by setting

$$
\psi_{q, t}\left(u_{i}\right)=\left\{\begin{array}{ll}
u_{i} \otimes 1, & 1 \leq i \leq q \tag{2.4}\\
1 \otimes u_{i-q}, & q<i \leq n,
\end{array} \quad \psi_{q, t}\left(v_{i}\right)= \begin{cases}v_{i} \otimes 1, & 1 \leq i \leq q \\
1 \otimes v_{i-q}, & q<i \leq n\end{cases}\right.
$$

The map $\psi_{q, t}$ turns out to be an isomorphism of algebras and Δ turns out to be a coalgebra with comultiplication $\psi: \Delta \rightarrow \Delta \otimes \Delta$ induced by the maps $\psi_{q, t}$ and defined by

$$
\psi(\delta)=\sum_{q+t=n} \psi_{q, t}(\delta)
$$

for any $\delta \in \Delta_{n}$.
Proposition 2.2 For any q, t, n such that $q+t=n, \psi_{q, t}\left(\bar{\Delta}_{n}\right) \subset \bar{\Delta}_{q} \otimes \bar{\Delta}_{t}$, so $\bar{\Delta}$ is a subcoalgebra of Δ.

Proof According to (2.1),

$$
\psi_{q, t}\left(\bar{u}_{i}\right)=\left\{\begin{array}{ll}
\bar{u}_{i} \otimes 1, & 1 \leq i \leq q \tag{2.5}\\
1 \otimes \bar{u}_{i-q}, & q<i \leq n,
\end{array} \quad \psi_{q, t}\left(w_{i}\right)= \begin{cases}w_{i} \otimes 1, & 1 \leq i \leq q \\
1 \otimes w_{i-q}, & q<i \leq n .\end{cases}\right.
$$

Proposition 2.3 For any q, t, n such that $q+t=n$, the following relations hold
(1) $\psi_{q, t}\left(Q_{n, i}\right)=\sum_{j \geq 0} Q_{q, 0}^{p^{t}-p^{j}} Q_{q, i-j}^{p^{j}} \otimes Q_{t, j}$;
(2) $\psi_{q, t}\left(R_{n, i}\right)=Q_{q, 0}^{p^{t}-1} R_{q, i} \otimes Q_{t, 0}+\sum_{j \geq 0} Q_{q, 0}^{p^{t}-p^{j}} Q_{q, i-j}^{p^{j}} \otimes R_{t, j}$.

Proof See Proposition 3.3 in [9].
Corollary $2.4 \psi(\Gamma) \subset \Gamma \otimes \Gamma$, so Γ is a subcoalgebra of $\bar{\Delta}$ and of Δ.
Proof For any $f \in \Gamma_{n}, \psi(f)=\sum_{q+t=n} \psi_{q, t}(f)$ belongs to $\Gamma_{q} \otimes \Gamma_{t}$, so the restriction to Γ of the comultiplication $\psi: \Delta \rightarrow \Delta \otimes \Delta$ defines a comultiplication on Γ.

3 The homology of \mathcal{Q} over \mathbb{F}_{p}

The universal Steenrod algebra \mathcal{Q} at odd primes is generated as an \mathbb{F}_{p}-algebra by

$$
\mathcal{F}=\left\{z_{\varepsilon, i} \mid \varepsilon \in\{0,1\}, i \in \mathbb{Z}\right\} \cup\{1\} \text { with } \operatorname{deg} z_{\varepsilon, i}=2 i(p-1)+\varepsilon,
$$

subject to the following generalized Adem relations:

$$
\begin{align*}
& z_{\varepsilon, p k-1-n} z_{0, k}=\sum_{j} A_{(n, j)} z_{\varepsilon, p k-1-j} z_{0, k-n+j}, \tag{3.1}\\
& z_{1-\varepsilon, p k-n} z_{1, k}=\sum_{j} A_{(n, j)} z_{1-\varepsilon, p k-j} z_{1, k-n+j}+\varepsilon \sum_{j} B_{(n, j)} z_{1, p k-j} z_{0, k-n+j}, \tag{3.2}
\end{align*}
$$

for each $(k, n) \in \mathbb{Z} \times \mathbb{N}_{0}$, where $A_{(n, j)}$ and $B_{(n, j)}$ are respectively equal to

$$
(-1)^{j+1}\binom{(p-1)(n-j)-1}{j} \text { and }(-1)^{j}\binom{(p-1)(n-j)}{j} .
$$

Such presentation already appeared in [7] where the authors also proved that

$$
\mathcal{B}=\left\{z_{\varepsilon_{1}, i_{1}} \ldots z_{\varepsilon_{h}, i_{h}} \mid i_{j} \geq p i_{j+1}+\varepsilon_{j+1} \text { for each } j=1, \ldots, h-1\right\} \cup\{1\}
$$

is a basis of \mathcal{Q}, called the basis of admissible monomials.
Let T denote the associative algebra freely generated by the \mathbb{F}_{p}-module with basis \mathcal{F}. We consider the map $d: T \rightarrow T$ given by $d\left(z_{\varepsilon, i}\right)=z_{\varepsilon, i-1}$, such that $d\left(\tau_{1} \tau_{2}\right)=$ $d\left(\tau_{1}\right) \tau_{2}+\tau_{1} d\left(\tau_{2}\right)$ for any $\tau_{1}, \tau_{2} \in T$. Then d is a derivation in T. We write d^{s} for the s-iterated of d. Let L be the two-sided ideal generated by the set

$$
\left\{d^{s}\left(z_{0, p h-1} z_{0, h}\right), d^{s}\left(z_{1, p h-1} z_{0, h}\right), d^{s}\left(z_{0, p h} z_{1, h}-z_{1, p h} z_{0, h}\right), d^{s}\left(z_{1, p h} z_{1, h}\right)\right\}
$$

for all $s \in \mathbb{N}_{0}, h \in \mathbb{Z}$.

Proposition 3.1 The algebras \mathcal{Q} and T / L are isomorphic.
Proof \mathcal{Q} and T / L are both isomorphic to $\bar{\Delta} /\left(\Gamma_{2}\right)$; the isomorphisms are established by Proposition 2.5 and Proposition 2.3 of [7], respectively.

If $z_{\varepsilon_{1}, i_{1}} \ldots z_{\varepsilon_{h}, i_{h}} \in \mathcal{B}$, the string $I=\left(\left(\varepsilon_{1}, i_{1}\right),\left(\varepsilon_{2}, i_{2}\right), \ldots,\left(\varepsilon_{h}, i_{h}\right)\right) \in(\{0,1\} \times \mathbb{Z})^{h}$ will be called the label of $z_{\varepsilon_{1}, i_{1}} \ldots z_{\varepsilon_{h}, i_{h}}$ and we write z_{I} instead of $z_{\varepsilon_{1}, i_{1}} \ldots z_{\varepsilon_{h}, i_{h}}$. We say that z_{I} has length h and total degree $\varepsilon_{1}+\cdots+\varepsilon_{h}+2(p-1)\left(i_{1}+\cdots+i_{h}\right)$; hence \mathcal{Q} is a bigraded algebra. It is also an augmented algebra through the map $\varepsilon: \mathcal{Q} \rightarrow \mathbb{F}_{p}$ which vanishes on the monomials of positive length and is the identity over $\mathbb{F}_{p} \subset \mathcal{Q}$. Let us denote by J the augmentation ideal $J=\operatorname{ker}(\varepsilon)$.

Let $\bar{B}(\mathcal{Q})=T(J)=\oplus_{s \in \mathbb{N}_{0}} J \otimes \cdots \otimes J$. Thus $\bar{B}(\mathcal{Q})$ is generated by elements of the form $z_{I_{1}} \otimes \cdots \otimes z_{I_{s}}$ where $z_{I_{j}} \in J$. Such elements are written simply as

$$
\left[z_{I_{1}}|\cdots| z_{I_{s}}\right]=\left[z_{\varepsilon_{1}, i_{1}} \ldots z_{\varepsilon_{t_{1}}, i_{t_{1}}}\left|z_{\varepsilon_{t_{1}+1}, i_{t_{1}+1}} \ldots z_{\varepsilon_{t_{2}}, i_{t_{2}}}\right| \cdots \mid z_{\varepsilon_{t_{s-1}+1}, i_{t_{s-1}+1}} \ldots z_{\varepsilon_{t_{s}}, i_{t_{s}}}\right]
$$

and are trigraded: s is the homological degree, $t=t_{s}$ is the length and $d=2(p-$ 1) $\sum_{k=1}^{t_{s}} i_{k}+\sum_{k=1}^{t_{s}} \varepsilon_{k}$ is the total degree, which we usually disregard in notations. Let $\bar{B}_{s}(\mathcal{Q})_{t}$ be the submodule generated by elements of bidegree (s, t). Given a generator $z=\left[z_{I_{1}}|\cdots| z_{I_{s}}\right]$ of $\bar{B}_{s}(\mathcal{Q})$, for any $j=1, \ldots, s-1$, let

$$
\partial_{s, j}: \bar{B}_{s}(\mathcal{Q}) \rightarrow \bar{B}_{s-1}(\mathcal{Q})
$$

be the map defined by

$$
\partial_{s, j}(z)=\left[z_{I_{1}}|\cdots| z_{I_{j}} z_{I_{j+1}}|\cdots| z_{I_{s}}\right]
$$

Then we consider the following differential ∂ for $\bar{B}(\mathcal{Q})$:

$$
\partial_{s}: \bar{B}_{s}(\mathcal{Q}) \rightarrow \bar{B}_{s-1}(\mathcal{Q})
$$

defined by

$$
\partial_{s}(z)=\sum_{j=1}^{s-1}(-1)^{e_{I_{j}}} \partial_{s, j}(z)
$$

where $e_{I_{j}}=j+\sum_{k=1}^{j}\left|z_{I_{k}}\right|$, being $\left|z_{I_{k}}\right|$ the total degree of $z_{I_{k}}$. The chain complex $(\bar{B}(\mathcal{Q}), \partial)$, known as the reduced bar construction, computes the homology of $\mathcal{Q}, H_{s, t}(\mathcal{Q})=\operatorname{Tor}_{s, t}^{\mathcal{Q}}\left(\mathbb{F}_{p}, \mathbb{F}_{p}\right)$. We know by [4] that $\operatorname{Tor}_{s, t}^{\mathcal{Q}}\left(\mathbb{F}_{p}, \mathbb{F}_{p}\right)=0$ when $s \neq t$, so we are only interested on the diagonal part of the homology:

$$
D_{*}(\mathcal{Q})=\oplus_{k \geq 0} D_{k}(\mathcal{Q})=\oplus_{k \geq 0} H_{k, k}(\mathcal{Q})
$$

The group $D_{k}(\mathcal{Q})$ turns out simply to be $\operatorname{ker}\left(\partial_{k}\right): \bar{B}_{k}(\mathcal{Q})_{k} \rightarrow \bar{B}_{k-1}(\mathcal{Q})_{k}$, since there exist no non-zero $(k+1)$-chains of length k. The following Theorem helps to identify the elements

$$
\begin{equation*}
z=\sum_{I} f_{I}\left[z_{\epsilon_{1}, i_{1}}|\cdots| z_{\epsilon_{k}, i_{k}}\right] \tag{3.3}
\end{equation*}
$$

in $\bar{B}_{k}(Q)_{k}$ belonging to $D_{k}(Q)=\operatorname{ker}\left(\partial_{k}\right)$. Note that only a finite number of $\mathbb{F}_{p^{-}}$ coefficients f_{I} in (3.3) is non-zero.

Theorem 3.2 The element $z=\sum_{I} f_{I}\left[z_{\epsilon_{1}, i_{1}}|\cdots| z_{\epsilon_{k}, i_{k}}\right] \in \bar{B}_{k}(Q)_{k}$ is a cycle if and only if for each $j(1 \leq j \leq k-1)$ and each $\left(\left(\epsilon_{1}, s_{1}\right), \ldots,\left(\epsilon_{j-1}, s_{j-1}\right)\right) \in$ $(\{0,1\} \times \mathbb{Z})^{j-1},\left(\left(\epsilon_{j+2}, s_{j+2}\right), \ldots,\left(\epsilon_{k}, s_{k}\right)\right) \in(\{0,1\} \times \mathbb{Z})^{k-j-1}$, the following condition holds:

$$
\sum_{I} f_{I} z_{e_{j}, i_{j}} z_{e_{j+1}, i_{j+1}}=0
$$

where the summation runs over all I's such that

$$
\left(\left(e_{1}, i_{1}\right), \ldots\left(e_{j-1}, i_{j-1}\right)\right)=\left(\left(\epsilon_{1}, s_{1}\right), \ldots,\left(\epsilon_{j-1}, s_{j-1}\right)\right)
$$

and

$$
\left(\left(e_{j+2}, i_{j+2}\right), \ldots\left(e_{k}, i_{k}\right)\right)=\left(\left(\epsilon_{j+2}, s_{j+2}\right), \ldots,\left(\epsilon_{k}, s_{k}\right)\right)
$$

Proof One can follow the same argument used to prove Theorem 1 in [8].
As a consequence of this result we have the following Corollary. It can be proved by an argument similar to that for $p=2$ in Corollary 2 of [8].

Corollary 3.3 Suppose that $z=\sum_{I} f_{I}\left[z_{\epsilon_{1}, i_{1}}|\cdots| z_{\epsilon_{k}, i_{k}}\right] \in \bar{B}_{k}(Q)_{k}$ is a cycle. For each $S=\left(\left(e_{1}, s_{1}\right), \ldots,\left(e_{q}, s_{q}\right)\right) \in(\{0,1\} \times \mathbb{Z})^{q}$ and $S^{\prime}=\left(\left(e_{q+1}, s_{q+1}\right), \ldots,\left(e_{k}, s_{k}\right)\right)$ $\in(\{0,1\} \times \mathbb{Z})^{k-q}$, let z_{S} equal to

$$
\sum_{I} f_{I}\left[z_{\epsilon_{q+1}, i_{q+1}}|\cdots| z_{\epsilon_{k}, i_{k}}\right]
$$

where the summation runs over the labels I such that

$$
\left(\epsilon_{1}, i_{1}\right)=\left(e_{1}, s_{1}\right), \ldots,\left(\epsilon_{q}, i_{q}\right)=\left(e_{q}, s_{q}\right),
$$

and $z_{S^{\prime}}$ equal to

$$
\sum_{I} f_{I}\left[z_{\epsilon_{1}, i_{1}}|\cdots| z_{\epsilon_{q}, i_{q}}\right]
$$

where the summation runs over the labels I such that

$$
\left(\epsilon_{q+1}, i_{q+1}\right)=\left(e_{q+1}, s_{q+1}\right), \ldots,\left(\epsilon_{k}, i_{k}\right)=\left(e_{k}, s_{k}\right)
$$

Then z_{S} is a cycle of $\bar{B}_{k-q}(Q)_{k-q}$ and $z_{S^{\prime}}$ is a cycle of $\bar{B}_{q}(Q)_{q}$.

Proposition 3.4 Set

$$
R(k, n, \varepsilon)=\left[z_{\varepsilon, p k-1-n} \mid z_{0, k}\right]-\sum_{j} A_{(n, j)}\left[z_{\varepsilon, p k-1-j} \mid z_{0, k-n+j}\right]
$$

and

$$
\begin{aligned}
S(k, n, \varepsilon)= & {\left[z_{1-\varepsilon, p k-n} \mid z_{1, k}\right]-\sum_{j} A_{(n, j)}\left[z_{1-\varepsilon, p k-j} \mid z_{1, k-n+j}\right] } \\
& +\varepsilon \sum_{j} B_{(n, j)}\left[z_{1, p k-j} \mid z_{0, k-n+j}\right]
\end{aligned}
$$

Then $D_{2}(\mathcal{Q})$ has $\{R(k, n, \varepsilon), S(k, n, \varepsilon)\}_{k \in \mathbb{Z}, n \in \mathbb{N}_{0}, \varepsilon \in\{0,1\}}$ as a linear \mathbb{F}_{p}-basis.
Proof To see this, observe that

$$
\partial_{2}\left(\left[z_{\varepsilon_{1}, i_{1}} \mid z_{\varepsilon_{2}, i_{2}}\right]\right)=(-1)^{1+\varepsilon_{1}+2 i_{1}(p-1)}\left[z_{\varepsilon_{1}, i_{1}} z_{\varepsilon_{2}, i_{2}}\right]=(-1)^{1+\varepsilon_{1}}\left[z_{\varepsilon_{1}, i_{1}} z_{\varepsilon_{2}, i_{2}}\right] .
$$

Then $\partial_{2}(R(k, n, \epsilon))$ and $\partial_{2}(S(k, n, \epsilon))$ vanish since they correspond to the generating relations (3.1) and (3.2) of \mathcal{Q}.

Now we give some examples of cycles constructed by iterating the following generalized Adem relations:

$$
z_{0, p k-1} z_{0, k}=0, \quad z_{1, p k} z_{1, k}=0, \quad z_{1, p k-1} z_{0, k}=0
$$

They are

$$
z=\left[z_{0, p^{m-1} k-\frac{p^{m-1}-1}{p-1}}\left|z_{0, p^{m-2} k-\frac{p^{m-2}-1}{p-1}}\right| \cdots\left|z_{0, p k-1}\right| z_{0, k}\right]
$$

and

$$
z^{\prime}=\left[z_{1, p^{m-1} k} \mid\left[z_{1, p^{m-2}}|\cdots| z_{1, p k} \mid z_{1, k}\right]\right.
$$

both elements of $D_{m}(\mathcal{Q})$.
Further, for any $1 \leq j<m$, we get another element of $D_{m}(\mathcal{Q})$ given by the following chain:

$$
z_{j}^{\prime \prime}=\left[z_{1, \alpha_{m-1}}|\cdots| z_{1, \alpha_{j+1}}\left|z_{1, \alpha_{j}}\right| z_{0, \alpha_{j-1}}|\cdots| z_{0, \alpha_{1}} \mid z_{0, \alpha_{0}}\right]
$$

where

$$
\alpha_{t}= \begin{cases}p^{t} k-\frac{p^{t}-1}{p-1} & \text { if } \quad 0 \leq t \leq j-1 \tag{3.4}\\ p^{t} k-p^{t-j+1} \frac{p^{j-1}-1}{p-1} & \text { if } \quad j \leq t \leq m-1\end{cases}
$$

Then, using the Adem relation $z_{0, p k} z_{1, k}=z_{1, p k} z_{0, k}$ in addition to the others above, we get the following cycle of $D_{3}(\mathcal{Q})$:

$$
z_{3}=\left[z_{0, p^{2} k}\left|z_{1, p k}\right| z_{1, k}\right]+\left[z_{1, p^{2} k}\left|z_{0, p k}\right| z_{1, k}\right]+\left[z_{1, p^{2} k}\left|z_{1, p k}\right| z_{0, k}\right]
$$

and two examples of cycles in $D_{4}(\mathcal{Q})$:

$$
\begin{aligned}
z_{4}= & {\left[z_{\epsilon, p^{3} k-1}\left|z_{0, p^{2} k}\right| z_{1, p k} \mid z_{1, k}\right]+\left[z_{1, p^{3} k}\left|z_{1, p^{2} k}\right| z_{0, p k} \mid z_{1, k}\right] } \\
& +\left[z_{1, p^{3} k}\left|z_{1, p^{2} k}\right| z_{1, p k} \mid z_{0, k}\right], \\
z_{4}^{\prime}= & {\left[z_{1, p^{3} k}\left|z_{0, p^{2} k}\right| z_{1, p k} \mid z_{1, k}\right]+\left[z_{1, p^{3} k}\left|z_{1, p^{2} k}\right| z_{0, p k} \mid z_{1, k}\right] } \\
& +\left[z_{1, p^{3} k}\left|z_{1, p^{2} k}\right| z_{1, p k} \mid z_{0, k}\right]+\left[z_{0, p^{3} k}\left|z_{1, p^{2} k}\right| z_{1, p k} \mid z_{1, k}\right] .
\end{aligned}
$$

Theorem 3.5 The diagonal homology $D_{*}(\mathcal{Q})$ has a coalgebra structure given by

$$
\begin{aligned}
& \psi_{n}: D_{n}(\mathcal{Q}) \rightarrow \oplus_{q+t=n}\left(D_{q}(\mathcal{Q}) \otimes D_{t}(\mathcal{Q})\right), \\
& z=\sum_{I} f_{I}\left[z_{\varepsilon_{1}, i_{1}}\left|z_{\varepsilon_{2}, i_{2}}\right| \cdots \mid z_{\varepsilon_{n}, i_{n}}\right] \mapsto z \otimes 1+1 \otimes z+\sum z^{\prime} \otimes z^{\prime \prime}
\end{aligned}
$$

where the cycles z^{\prime} and $z^{\prime \prime}$ are obtained by splitting all the summands of z and suitably grouping the common terms.

Proof According to Corollary 3.3, the elements z^{\prime} and $z^{\prime \prime}$, coming from the procedure described in the statement above, are cycles.

4 The isomorphism between $D_{*}(Q)$ and Γ

We want to show that the diagonal homology of \mathcal{Q} is isomorphic to Γ. To this purpose, let us consider the \mathbb{F}_{p}-linear maps $\pi_{n, q}: \bar{\Delta}_{n} \rightarrow \bar{B}_{n-1}(\mathcal{Q})_{n}$, for $n \geq 2$ and $q=$ $1, \ldots, n-1$, defined as follows: given $\bar{u}^{\mathcal{E}} w^{I}=\bar{u}_{1}^{\varepsilon_{1}} \ldots \bar{u}_{n}^{\varepsilon_{n}} w_{1}^{i_{1}} \ldots w_{n}^{i_{n}} \in \bar{\Delta}_{n}$,

$$
\pi_{n, q}\left(\bar{u}^{\mathcal{E}} w^{I}\right)=\left[z_{1-\varepsilon_{1}, i_{1}}|\cdots| z_{1-\varepsilon_{q-1}, i_{q-1}}\left|z_{1-\varepsilon_{q}, i_{q}} z_{1-\varepsilon_{q+1}, i_{q+1}}\right| \cdots \mid z_{1-\varepsilon_{n}, i_{n}}\right] .
$$

We begin by looking at the map $\pi_{2,1}$.
Proposition 4.1 ker $\pi_{2,1}=\Gamma_{2}$.
Proof The map $\pi_{2,1}: \bar{\Delta}_{2} \rightarrow \bar{B}_{1}(\mathcal{Q})_{2}$ acts as follows:

$$
\pi_{2,1}\left(\bar{u}_{1}^{\epsilon_{1}} \bar{u}_{2}^{\epsilon_{2}} w_{1}^{i_{1}} w_{2}^{i_{2}}\right)=\left[z_{1-\varepsilon_{1}, i_{1}} z_{1-\varepsilon_{2}, i_{2}}\right] .
$$

Using relations (2.3) and the linearity of $\pi_{2,1}$, we get

$$
\begin{aligned}
\pi_{2,1}\left(Q_{2,0}^{k} Q_{2,1}^{s}\right) & =\pi_{2,1}\left(w_{1}^{p k+(p-1) s} w_{2}^{k}\left(w_{1}+w_{2}\right)^{s}\right) \\
& =\pi_{2,1}\left(\sum_{j=0}^{s}\binom{s}{j} w_{1}^{p(k+s)-s+j} w_{2}^{k+s-j}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{j=0}^{s}\binom{s}{j} \pi_{2,1}\left(w_{1}^{p(k+s)-s+j} w_{2}^{k+s-j}\right) \\
& =\sum_{j=0}^{s}\binom{s}{j}\left[z_{1, p(k+s)-(s-j)} z_{1, k+s-j}\right] \\
& =\left[d^{s}\left(z_{1, p(k+s)} z_{1, k+s}\right)\right],
\end{aligned}
$$

and $d^{S}\left(z_{1, p(k+s)} z_{1, k+s}\right)=0$ according to Proposition 3.1. In a similar way, one can also prove that

$$
\begin{aligned}
& \pi_{2,1}\left(R_{2,0} R_{2,1} Q_{2,0}^{k} Q_{2,1}^{s}\right)=-\left[d^{s}\left(z_{0, p(k+s+2)-1} z_{0, k+s+2}\right)\right]=0, \\
& \pi_{2,1}\left(R_{2,1} Q_{2,0}^{k} Q_{2,1}^{s}\right)=\left[d^{s}\left(z_{1, p(k+s+1)-1} z_{0, k+s+1}\right)\right]=0, \\
& \pi_{2,1}\left(R_{2,0} Q_{2,0}^{k} Q_{2,1}^{s}\right)=\left[d^{s}\left(z_{1, p(k+s+1)} z_{0, k+s+1}-z_{0, p(k+s+1)} z_{1, k+s+1}\right]=0,\right.
\end{aligned}
$$

that is the elements of $\Gamma_{2} \subset \bar{\Delta}_{2}$ correspond to the defining relations of \mathcal{Q} in terms of d. Hence Γ_{2} is the kernel of $\pi_{2,1}$.

Lemma 4.2 For any $n \geq 2$ and $q=1, \ldots, n-1$:

$$
\operatorname{ker} \pi_{n, q}=\bar{\Delta}_{q-1} \otimes \Gamma_{2} \otimes \bar{\Delta}_{n-q-1} .
$$

Proof For any $t \in \mathbb{N}$, we define $\pi_{t}: \bar{\Delta}_{t} \rightarrow \bar{B}_{t}(\mathcal{Q})_{t}$ as

$$
\pi_{t}\left(\bar{u}_{1}^{\varepsilon_{1}} \ldots \bar{u}_{t}^{\varepsilon_{t}} w_{1}^{i_{1}} \ldots w_{t}^{i_{t}}\right)=\left[z_{1-\varepsilon_{1}, i_{1}}|\cdots| z_{1-\varepsilon_{t}, i_{t}}\right] .
$$

We write f for the composition $\left(\psi_{q-1,2} \otimes 1\right) \circ \psi_{q+1, n-q-1}$:

$$
f: \bar{\Delta}_{n} \rightarrow \bar{\Delta}_{q-1} \otimes \bar{\Delta}_{2} \otimes \bar{\Delta}_{n-q-1} .
$$

Then

$$
\pi_{n, q}=\left(\pi_{q-1} \otimes \pi_{2,1} \otimes \pi_{n-q-1}\right) \circ f .
$$

Our result follows from Proposition 4.1 and the fact that f, π_{q-1} and π_{n-q-1} are \mathbb{F}_{p}-linear isomorphisms.

Lemma 4.3 The general linear group $G L_{n}\left(\mathbb{F}_{p}\right)$ is generated by all matrices of the form

$$
M=\left(\begin{array}{ccc}
I_{q-1} & O & O \\
O & A & O \\
O & O & I_{n-q-1}
\end{array}\right)
$$

where $A \in G L_{2}\left(\mathbb{F}_{p}\right)$.

Proof This result follows from the fact that every invertible matrix admits an elementary bidiagonal factorization (see [10]).

According to the previous Lemma,

$$
\Gamma_{n}=\cap_{q=1}^{n-1} \bar{\Delta}_{q-1} \otimes \bar{\Gamma}_{2} \otimes \bar{\Delta}_{n-q-1} .
$$

Combining with Lemma 4.2, we arrive at

$$
\begin{equation*}
\Gamma_{n}=\cap_{q=1}^{n-1} \operatorname{ker} \pi_{n, q} . \tag{4.1}
\end{equation*}
$$

We write h_{n} for the \mathbb{F}_{p}-linear isomorphism inverse to π_{n},

$$
h_{n}=\pi_{n}^{-1}: \bar{B}_{n}(\mathcal{Q})_{n} \rightarrow \bar{\Delta}_{n}, \quad h_{n}\left(\left[z_{\varepsilon_{1}, i_{1}}|\cdots| z_{\varepsilon_{n}, i_{n}}\right]\right)=\bar{u}_{1}^{1-\varepsilon_{1}} \ldots \bar{u}_{n}^{1-\varepsilon_{n}} w_{1}^{i_{1}} \ldots w_{n}^{i_{n}} .
$$

We observe that, for any $q=1, \ldots, n-1, \partial_{n, q}: \bar{B}_{n}(\mathcal{Q})_{n} \rightarrow \bar{B}_{n-1}(\mathcal{Q})_{n}$ is the result of the composition $\pi_{n, q} \circ h_{n}$. We are going to use this fact in the proof of our main result.

Theorem 4.4 Γ and $D_{*}(\mathcal{Q})$ are isomorphic as coalgebras.
Proof The maps $\left\{h_{n}\right\}_{n \in \mathbb{N}}$ establish a map of coalgebras

$$
h: \oplus_{n \in \mathbb{N}} \bar{B}_{n}(\mathcal{Q})_{n} \rightarrow \bar{\Delta} .
$$

A chain $z \in \bar{B}_{n}(\mathcal{Q})_{n}$ represents a cycle if and only if $\partial_{n, q}(z)=\left(\pi_{n, q} \circ h_{n}\right)(z)=0$ for any $q=1, \ldots, n-1$. This holds if and only if $h_{n}(z) \in \cap_{q=1}^{n-1} \operatorname{ker} \pi_{n, q}$, that is $h_{n}(z) \in \Gamma_{n}$ according to (4.1). Then h_{n} restricts to an isomorphism of coalgebras

$$
\bar{h}_{n}: D_{n}(\mathcal{Q}) \rightarrow \Gamma_{n} .
$$

References

1. Bousfield, A.K., Curtis, E.B., Kan, D.M., Quillen, D.G., Rector, D.L., Schlesinger, J.W.: The mod p lower central series and the Adams spectral sequence. Topology 5, 331-342 (1966)
2. Brunetti, M., Ciampella, A., Lomonaco, L.A.: The cohomology of the universal Steenrod algebra. Manuscr. Math. 118, 271-282 (2005)
3. Brunetti, M., Ciampella, A., Lomonaco, L.A.: An embedding for the E_{2}-term of the Adams spectral sequence at odd primes. Acta Math. Sin. Engl. Ser. 22(6), 1657-1666 (2006)
4. Brunetti, M., Ciampella, A.: A Priddy-type koszulness criterion for non-locally finite algebras. Colloq. Math. 109(2), 179-192 (2007)
5. Brunetti, M., Ciampella, A., Lomonaco, L.A.: Homology and cohomology operations in terms of differential operators. Bull. Lond. Math. Soc. 42, 53-63 (2010)
6. Chataur, D., Livernet, M.: Adem-Cartan operads. Commun. Algebra 33, 4337-4360 (2005)
7. Ciampella, A., Lomonaco, L.A.: The universal Steenrod algebra at odd primes. Commun. Algebra 32(7), 2589-2607 (2004)
8. Ciampella, A., Lomonaco, L.A.: Homological computations in the universal Steenrod algebra. Fund. Math. 183(3), 245-252 (2004)
9. Hung, N.H.V., Sum, H.: On singer's invariant-theoretic description of the lambda algebra: a mod p analogue. J. Pure Appl. Algebra 99, 297-329 (1995)
10. Johnson, Charles R., Olesky, D.D., van den Driessche, P.: Elementary bidiagonal factorizations. Linear Algebra Appl. 292, 233-244 (1999)
11. Li, H.H., Singer, W.M.: Resolutions of modules over the Steenrod algebra and the classical theory of invariants. Mathematische Zeitschrift 81, 268-286 (1982)
12. Lomonaco, L.A.: The diagonal cohomology of the universal Steenrod algebra. J. Pure Appl. Algebra 121, 315-323 (1997)
13. Mandell, M.A.: E_{∞} algebras and p-adic homotopy theory. Topology 40, 43-94 (2001)
14. May, J.P.: A General Approach to Steenrod Operations, Lecture Notes in Mathematics. Springer, Berlin (1970)
15. Steenrod, N.E.: Cohomology Operations, Lectures Written and Revised by D. B. A. Epstein, Ann. of Math. Studies 50. Princeton Univ. Press, Princeton (1962)

[^0]: Communicated by Salvatore Rionero.

