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Abstract We give an explicit description of the homology H.(Q) of the universal
Steenrod algebra Q for any odd prime p, extending the work done for the p = 2 case.
We also exhibit an isomorphism with a certain coalgebra of invariants I".
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1 Introduction

Let p be any prime and IF,, the field with p elements. In [14] May introduced the
universal Steenrod algebra Q over the field IF, as the algebra of all cohomology
operations in the category of Hso-ring spectra. This algebra is also known as the
algebra of all generalized Steenrod operations [13] or the extended Steenrod algebra
[6]. It is closely related to other well known algebras, such as the opposite A°PP
of the A algebra introduced in [1], the Steenrod algebra 4 in [15] and the Steenrod
algebra for simplicial restricted Lie algebras Ay, in [14]. The algebra Q has extensively
been studied in [2-5,7,8] and [12]. In particular the papers [7] and [12] contain an
invariant-theoretic description of Q and a computation of the diagonal cohomology
D*(Q) = @Extgq (Fp,F,) for p = 2 and for any odd prime p, respectively. In [4] the
authors prove that O, which is a non-locally finite homogeneous quadratic algebra, is
an example of a good PBW-algebra, hence it is koszul, i.e. the cohomology H**(Q) =
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@Extsét (F, IF) is purely diagonal. The analogous for the homology H. .(Q) holds:

TorSQ’t (Fp,Fp) = 0if s # . In [8] there is an explicit description of the non trivial
part of the homology of Q, D,(Q) = ®H, 4(Q), for the p = 2 case. The classical
bar construction is used to get our main results: the mod p homology of Q and its
description in terms of invariant theory. In Sect. 2 we recall the basic results of invariant
theory. Section 3 is devoted to the computation of the diagonal homology D, (Q) of O.
In Sect. 4 we prove that D, (Q) is isomorphic to the coalgebra I" of certain invariants
with respect to the action of the general linear group GL(n, IFp,).

2 Preliminaries on invariant theory

Let ®, = (E(x1,...,x) ®F,ly1, ..., y,,])[L;l] be the localization out of the Euler
class L, of H*(B(Zp)"). The general linear group GL, = GL(n,F)) actson ®,. Let
B, be the Borel subgroup of G L,, of all upper triangular matrices and 7,, the subgroup
of B, of all matrices with 1 on the main diagonal. We are interested on the invariant
rings

Ay =", A, =B T, =00
We know from [9] (Corollary 1.3) that
Ay = Eui,...,uy) @ F,[vF", .. vEl],

where u; and v; have degree |u;| = 1, |vj| =2for 1 <i <n.
Combining results from [11] and [7] (Proposition 1.2), we get

Ay = E@@y, ..., 1) @Fplwf!, .. wih,

where

_ P —1
i = (—D'wiv; ', w =0,

luil = =1, |wil =2(p = 1), 2.0

forl <i <n.
In [9] (Corollary 1.2, item (ii)), we find

Fn = E(Rn,Oa s Rn,nfl) & Fp[Q,f}y Qn,h ceey Qn,nfl],

[Ryi| = 2(p" — pH—1, |On.il =2(p" — p'). Moreover, the following proposition
gives recursive formulas for the generators of I',.

aqe —1 —1 —1
Pl'OpOSlthll 2.1 (1) Qn,i = Q,I;,I’ifl + Q,l;,],()anl,ivilz) = Q,Ilj,lyifl + Q,Ii,]’o
Qn—l,iwn-
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(2) Ry = Qf:ll’O(Rn,l,ivf + Q- 1,unvn ) in terms of B, invariants, R, ; =
—1
0r o(Ru—1i + (=1)" Qp1.ilhn) Wy
Proof See Proposition 1.4 in [9]. O

By convention, Q,; = 0 for eitheri < Oorn < i, Q,, = 1and R,; = 0 for
eitheri < Qori > n.
In particular we have

Q10 = vf_l = wl» Rip = ulvf_z = —uwi, (2.2)
020 = Q1 oy = wfwz,

021 =07,+ 01, 027 = p71(w1 + w2),

Ry = Q% (Riovy~ '+ 0 ouavy” %) = @ — upwhw,, (2.3)

p— p=2 _ = p—l
Ry = 0] 1.0 u2v2 =uw, ws.

Set

A= ®nZOA711 K = Ganzozn, I' = eanZOFn'

Here, Ag = Ag =y = F,.
For any non-negative integers n, g, t such that ¢ + ¢t = n, we define

Yar:Ap = Ag @ A
by setting

u; @1, 1<i<gq

1®ui—g, qg<i=<n,

; 1, 1<i<
v ® SE=4 0 o
I1®viy, g<i=<n.

Ilfq,r(ui)=[ Vg1 (Vi) =[

The map v, turns out to be an isomorphism of algebras and A turns out to be a
coalgebra with comultiplication ¢ : A — A ® A induced by the maps v, and
defined by

V@) = D Vg
qg+t=n
forany § € A,,.

Proposition 2.2 For any q,t,n such that g +t = n, ¥g;(Ay) C Ay ® Ay, s0 Ais
a subcoalgebra of A.

Proof According to (2.1),

u®l, 1<i=<g

1Qig. q<i<n

w; ® 1, 1<i=<gq

. (2.5)
1®wi—y, g<i=<n.

Wq,t(ﬁi)=i V.1 (w;) =[

O
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Proposition 2.3 For any q, t, n such that g + t = n, the following relations hold
t_pi i
(1) 1/fq,l(Qn,i) = szO Qs,() P Q;),i—j & Qt,j;
1 !l J
(2) Ygu(Rui) = 0F o Rgi ® Qo+ 22000 0" OF i ;@R
Proof See Proposition 3.3 in [9]. m]

Corollary 2.4 y(I') C T T, so I is a subcoalgebra of A and of A.

Proof Forany f e I'),, ¥ (f) = Z‘H_,Zn Vg, (f) belongstoI'; ®T';, so the restriction
to I' of the comultiplication ¥ : A — A ® A defines a comultiplication on I'. O

3 The homology of Q over IF),

The universal Steenrod algebra Q at odd primes is generated as an I ,-algebra by
F={zei|le€{0,1}, i €eZ}U {1} with degz.; =2i(p—1)+s¢,

subject to the following generalized Adem relations:

Ze, pk—1-n20,k = Z A, ) Ze, pk—1—j20,k—n+j » 3.1
J

Zl—g, pk—nZlk = Z A, j) 21—, pk—jZl k—n+j + € Z B, j) 21, pk—j20,k—n+j »
J J
(3.2)

for each (k, n) € Z x Ny, where A, ) and B, ;) are respectively equal to

(_I)HI((p— D0 = )= 1) - (_1),»(@— D —j)).
J J

Such presentation already appeared in [7] where the authors also proved that
B={ze iy ---Zep.ip 11j = pij4+1 +ejp1foreach j=1,...,h—1}U({1}
is a basis of 9, called the basis of admissible monomials.
Let T denote the associative algebra freely generated by the F,,-module with basis
F. We consider the mapd : T — T given by d(z¢,;) = z¢,i—1, such that d(t;12) =

d(t1)m + 11d(1) for any 71, 72 € T. Then d is a derivation in 7. We write d* for the
s-iterated of d. Let L be the two-sided ideal generated by the set

{d* (20, ph—120.n)> d* (21, ph—120,1)+ d°(20,phZ1,h — 21, ph20,n)> d* (21, ph21.h) }

for all s € Ny, h € Z.
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On the homology of the universal Steenrod algebra at odd primes S79

Proposition 3.1 The algebras Q and T /L are isomorphic.
Proof Q and T/L are both isomorphic to A/(I';); the isomorphisms are established

by Proposition 2.5 and Proposition 2.3 of [7], respectively. O
Ifze i) .- 2ey.0, € Bithestring I = ((e1, i1), (e2,102), ..., (en, in)) € ({0, l}xZ)h
will be called the label of z, ;, . . . Z¢,,;, and we write z; instead of zg, j, . . . Zg,.i;, - WE

say that z; has length h and fotal degree e1 +- - -+¢€, +2(p —1)(i1 +- - - +1ij); hence
Q is a bigraded algebra. It is also an augmented algebra through the mape : @ — F,
which vanishes on the monomials of positive length and is the identity over I, C Q.
Let us denote by J the augmentation ideal J = ker(e).

Let B(Q) = T(J) = ®yen,J ® - -+ ® J. Thus B(Q) is generated by elements of
the form z;, ® - - - ® z;, where z I € J. Such elements are written simply as

lzn |- |z ] = [Zep iy - Zepy g R v o1 -+ - Zenyuing |+ |Zeg syt -+ - Zeging )

and are trigraded: s is the homological degree, t = tq is the length and d = 2(p —
1) thj:l i+ Z;j:] & 1s the total degree, which we usually disregard in notations. Let
B, (Q); be the submodule generated by elements of bidegree (s, 7). Given a generator
z=1lzy| - |z1,] of B5(Q), forany j =1,...,5 — 1, let

ds.j : Bs(Q) = Bs_1(Q)
be the map defined by
0s,j(2) = lzn |- lzrzrp |- -zl
Then we consider the following differential o for B(Q):
0 : Bs(Q) — Bs-1(Q)

defined by

s—1

ds(2) = D (=1)"8,,(2),

j=1

where ¢, = j + Z,{zl |zy, |, being |zj, | the total degree of z;,. The chain com-
plex (E(Q), d), known as the reduced bar construction, computes the homology of
Q, Hy ;(Q) = TorZ (F,, F,). We know by [4] that Tor (F,, F,)) = 0 when s # 1,
so we are only interested on the diagonal part of the homology:

D (Q) = ®>0Dr(Q) = Br>0Hi 1 (Q).
The group Dy (Q) turns out simply to be ker(dx) : Bx(Q)x — Bi—1(Q)x, since there

exist no non-zero (k + 1)-chains of length k. The following Theorem helps to identify
the elements
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= ZfI[Ze],hl"' |Z€k,ik] (33)
1

in Ek(Q)k belonging to Dy (Q) = ker(dx). Note that only a finite number of [F,-
coefficients f7 in (3.3) is non-zero.

Theorem 3.2 The element z = > ; frlze il - |ze.it] € Bi(Q)x is a cycle if
and only if for each j(1 < j < k — 1) and each ((e1,51),...,(€j-1,5j-1)) €
({0, 1} x Z)7 71, ((€j42, 5j42), - -+, (ek, 51)) € ({0, 1} x Z)K=I =1 the following con-
dition holds:

z fIZEj,ijZ€j+1,i_,'+1 =Ov
1

where the summation runs over all 1’s such that

((e1,11), ... (ej—1,ij-1)) = ((€1,81)s ..., (€j—1,5j-1))
and
((ejt2,ij42), - - (ek, ik)) = (€42, Sj+2)s - - - » (€k, SK))-
Proof One can follow the same argument used to prove Theorem 1 in [8]. O

As a consequence of this result we have the following Corollary. It can be proved
by an argument similar to that for p = 2 in Corollary 2 of [8].

Corollary 3.3 Suppose that z = 2", filze,.iy| - |zeic] € Bi(Q)x is a cycle. For
each S = ((e1, 51), ..., (eq,5¢)) € ({0, 1}xZ)7 and S’ = ((eg+1,8¢+1) - - - (€x, 5k))
e ({0, 1} x Z)¥4, let z5 equal to

Z f] [Z€q+1,iq+| | e |Z€k,ik]v
1

where the summation runs over the labels I such that
(e1,i1) = (e1, S1), ..., (gq,1q) = (eq, 5¢),

and zg equal to

D filzeri ] lzegiy )

1

where the summation runs over the labels I such that
(€g+1,ig+1) = (eq+1, Sq+1), -+ - (€k, i) = (e, Sk).

Then zs is a cycle ofﬁk_q(Q)k_q and zg is a cycle oqu(Q)q.
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On the homology of the universal Steenrod algebra at odd primes S81

Proposition 3.4 Set
R(k,n, &) = [ze, pk—1-nlz0.k] — ZA(n,j) [z, pk—1—j|20,k—n+j]
J

and

Sk, n, &) = [21—¢, pk—nlz1,k] — ZA(n,j) [21-¢, pk—jl21 k—n+j]
J

+e Z B, j) (21, pk—j120,k—n+j]1-
J

Then Dy(Q) has {R(k,n, &), S(k,n, &)}kez neNy.cc0,1} as a linear IF ,-basis.

Proof To see this, observe that
82([Z81,i1 |Zaz,i2]) = (_1)1+€1+2”(pil)[Zt?l,ilZsz,iz] = (_1)1+€1 [Z81,i1182,i2]'

Then 9(R(k, n, €)) and 9> (S (k, n, €)) vanish since they correspond to the generating
relations (3.1) and (3.2) of O. O

Now we give some examples of cycles constructed by iterating the following gener-
alized Adem relations:

20,pk—120,k = 0, z1,pk21,k =0, 21, pk—120,k = 0.
They are

7=z m—1_ |z

0 pm*lk_l’ : m=2_1 | e |Z0,Pk71 |Z07k]
s =

2P
0,p™ k‘ﬁ

and

2= lzy pr1llzy pm2gel - - 121, prlz1 k],

both elements of D,,(Q).
Further, for any 1 < j < m, we get another element of D,,(Q) given by the
following chain:

i
Zj = [Zl,olm,1| e |Zl,0lj+1 |Z1,Olj|ZO,C(j_1 | e |Z0,011 |ZO,C{0]7
where
g — 21 if 0<r<j—1
e ==/ 34
=1 t—jip T -l e 3.4
pk—p J ? if ]Stfm—l

Then, using the Adem relation zo, )k 21,k = 21, pk20,x in addition to the others above,
we get the following cycle of D3(Q):
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23 = [z, p2elz1, pilzi k] + (21, p2xl20, prlz1 k] + (21 p2icl 21, prlzo,k]

and two examples of cycles in D4(Q):

24 = [z¢ p3r—1lzo, p2elz1, plz1k] + (21 p3xlzy, p2elzo, picl 21 k]
+ 21, p3xlzy, p2xlzt, pilzokl,

2y = 21, 3120, prel 21, prlziad + (21 3k |21 p2x 120, prl 21 4]
+ (21, p3elzi, p2xlz1, picl 2ok + (20, 3k 121, p2icl 21, piel21 k]

Theorem 3.5 The diagonal homology D.(Q) has a coalgebra structure given by

Vn : Dn(Q) = Bgt1=n(Dg(Q) ® D;(Q)),
2= filzeri[Zenin| 2o > 2@ 1+ 1@ 24+ > 7 @7,
1

where the cycles 7' and 7" are obtained by splitting all the summands of 7 and suitably
grouping the common terms.

Proof According to Corollary 3.3, the elements z" and z”, coming from the procedure
described in the statement above, are cycles. O

4 The isomorphism between D, (Q) and T’

We want to show that the diagonal homology of Q is isomorphic to I'. To this purpose,

let us consider the F-linear maps 7, 4 : A, — B,_1(Q),, forn > 2 and q =

1,...,n — 1, defined as follows: given #°w! = uLutwl L wy € Ay,

—E 1
nn,q(“ w') = [Zlfsl,i1| te |Zlfsq_|,iq_1 |Zlfsq,iqzlfsq+1,iq+| [--- |Zlfs,,,in]-

We begin by looking at the map 72 ;.
Proposition 4.1 ker w1 = I'.
Proof The map w2 1 : As — B1(Q); acts as follows:

—€1—€ i1, T
ﬂz,l(ulluzzwll w22) = [Zl—al,ilzl—sz,iz]-

Using relations (2.3) and the linearity of 5 |, we get

k s k+(p—Ds_ k K
1,103,005 1) = w1 (wf tp=1) ws (Wi + w2)*)
u S
(k+s)—s+j_  k+s—j
=721 E ( )wf ]w2 /
=0
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)
s o
_ Z ( .)7T2,1 (wf(kJrs) s+j w12<+s j)
=0
N
s
=> ( .)[Zl,p(k+s)—(s—j)zl,k+sj]
=0 M

= [d* (21, pht5) 21, k+5)],

and d° (21, p(k+s)21,k+s) = 0 according to Proposition 3.1. In a similar way, one can
also prove that

72,1 (Ro,0R2,1 05 005 1) = —[d° (20, pk+s42)-120k+5+2)] = O,
2.1 (R2,1 05,005 1) = [d° (21 plkas+1)—120.k45+1)] = 0,

k
72.1(R2,003005.1) = [d° (21, plkts+1)20.k+5+1 = 20, p(k-+s+1) 21 k+s+11 = 0,

that is the elements of ', C As correspond to the defining relations of Q in terms of
d. Hence I'; is the kernel of 75 ;. |

Lemma 4.2 Foranyn >2andqg =1,...,n—1:

kerm, 4 = Kq_1 ® I ®K,,_q_1.
Proof Forany t € N, we define 77, : A; — B,(Q); as

(! ...ﬁf’wi‘ cwl) = [Zi—ey ] [Z1—¢,.i,]-

We write f for the composition (V412 ® 1) o Yy41,n—g—1:

Fihn = A1 @M@ Ay_y_1.
Then

Tng = (Tg—1 @ mM21 @ My—g—1) © f.

Our result follows from Proposition 4.1 and the fact that f, 7, and m,_,_ are
[F,-linear isomorphisms. O

Lemma 4.3 The general linear group GL,(F)) is generated by all matrices of the
form

where A € GLy(IF)p).
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Proof This result follows from the fact that every invertible matrix admits an elemen-
tary bidiagonal factorization (see [10]). O

According to the previous Lemma,
1 = -
r, = mZ: Aq—l RN An—q—1~
Combining with Lemma 4.2, we arrive at
—1
r, = ﬂZ:l kerm, 4. 4.1)
We write h,, for the F,-linear isomorphism inverse to 7;,,

1 = — _1- 1 ] ;
hy =70, Bau(Qn = Any ey iy| 26,0, ) =7 L wi )y
We observe that, forany g = 1,...,n — 1,8, 4 : By(Q)n — Bu—1(Q), is the result
of the composition 7, 4, o h,. We are going to use this fact in the proof of our main
result.

Theorem 4.4 I" and D, (Q) are isomorphic as coalgebras.

Proof The maps { h, },eN establish a map of coalgebras

h: ®neN En(Q)n - A.

A chain z € B, (Q), represents a cycle if and only if On,q(2) = (g 0 hy)(z) =0
forany ¢ = 1,...,n — 1. This holds if and only if /,(z) € ﬂg;% ker m, 4, that is
h,(z) € I'), according to (4.1). Then h,, restricts to an isomorphism of coalgebras

Ry 2 Dp(Q) = Ty
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