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Abstract We give an explicit description of the homology H∗(Q) of the universal
Steenrod algebra Q for any odd prime p, extending the work done for the p = 2 case.
We also exhibit an isomorphism with a certain coalgebra of invariants �.
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1 Introduction

Let p be any prime and Fp the field with p elements. In [14] May introduced the
universal Steenrod algebra Q over the field Fp as the algebra of all cohomology
operations in the category of H∞-ring spectra. This algebra is also known as the
algebra of all generalized Steenrod operations [13] or the extended Steenrod algebra
[6]. It is closely related to other well known algebras, such as the opposite �opp

of the � algebra introduced in [1], the Steenrod algebra A in [15] and the Steenrod
algebra for simplicial restricted Lie algebras AL in [14]. The algebra Q has extensively
been studied in [2–5,7,8] and [12]. In particular the papers [7] and [12] contain an
invariant-theoretic description of Q and a computation of the diagonal cohomology
D∗(Q) = ⊕Extq,q

Q (Fp,Fp) for p = 2 and for any odd prime p, respectively. In [4] the
authors prove that Q, which is a non-locally finite homogeneous quadratic algebra, is
an example of a good PBW-algebra, hence it is koszul, i.e. the cohomology H∗,∗(Q) =
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⊕Exts,t
Q (F,F) is purely diagonal. The analogous for the homology H∗,∗(Q) holds:

T ors,t
Q (Fp,Fp) = 0 if s �= t . In [8] there is an explicit description of the non trivial

part of the homology of Q, D∗(Q) = ⊕Hq,q(Q), for the p = 2 case. The classical
bar construction is used to get our main results: the mod p homology of Q and its
description in terms of invariant theory. In Sect. 2 we recall the basic results of invariant
theory. Section 3 is devoted to the computation of the diagonal homology D∗(Q) of Q.
In Sect. 4 we prove that D∗(Q) is isomorphic to the coalgebra � of certain invariants
with respect to the action of the general linear group GL(n,Fp).

2 Preliminaries on invariant theory

Let�n = (E(x1, . . . , xn)⊗Fp[y1, . . . , yn])[L−1
n ] be the localization out of the Euler

class Ln of H∗(B(Zp)
n). The general linear group GLn = GL(n,Fp) acts on�n . Let

Bn be the Borel subgroup of GLn of all upper triangular matrices and Tn the subgroup
of Bn of all matrices with 1 on the main diagonal. We are interested on the invariant
rings

�n = �Tn
n , �n = �Bn

n , �n = �GLn
n .

We know from [9] (Corollary 1.3) that

�n = E(u1, . . . , un)⊗ Fp[v±1
1 , . . . v±1

n ],

where ui and vi have degree |ui | = 1, |vi | = 2 for 1 ≤ i ≤ n.
Combining results from [11] and [7] (Proposition 1.2), we get

�n = E(u1, . . . , un)⊗ Fp[w±1
1 , . . . w±1

n ],

where

ui = (−1)i uiv
−1
i , wi = v

p−1
i ,

|ui | = −1, |wi | = 2(p − 1), (2.1)

for 1 ≤ i ≤ n.
In [9] (Corollary 1.2, item (ii)), we find

�n = E(Rn,0, . . . , Rn,n−1)⊗ Fp[Q±1
n,0, Qn,1, . . . , Qn,n−1],

|Rn,i | = 2(pn − pi )− 1, |Qn,i | = 2(pn − pi ). Moreover, the following proposition
gives recursive formulas for the generators of �n .

Proposition 2.1 (1) Qn,i = Q p
n−1,i−1 + Q p−1

n−1,0 Qn−1,iv
p−1
n = Q p

n−1,i−1 + Q p−1
n−1,0

Qn−1,iwn.
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(2) Rn,i = Q p−1
n−1,0(Rn−1,iv

p−1
n + Qn−1,i unv

p−2
n ); in terms of Bn invariants, Rn,i =

Q p−1
n−1,0(Rn−1,i + (−1)n Qn−1,i un)wn .

Proof See Proposition 1.4 in [9]. �	
By convention, Qn,i = 0 for either i < 0 or n < i, Qn,n = 1 and Rn,i = 0 for

either i < 0 or i ≥ n.
In particular we have

Q1,0 = v
p−1
1 = w1, R1,0 = u1v

p−2
1 = −u1w1, (2.2)

Q2,0 = Q p
1,0v

p−1
2 = w

p
1w2,

Q2,1 = Q p
1,0 + Q p−1

1,0 v
p−1
2 = w

p−1
1 (w1 + w2),

R2,0 = Q p−1
1,0 (R1,0v

p−1
2 + Q1,0u2v

p−2
2 ) = (u2 − u1)w

p
1w2, (2.3)

R2,1 = Q p−1
1,0 u2v

p−2
2 = u2w

p−1
1 w2.

Set

� = ⊕n≥0�n, � = ⊕n≥0�n, � = ⊕n≥0�n .

Here, �0 = �0 = �0 = Fp.
For any non-negative integers n, q, t such that q + t = n, we define

ψq,t : �n → �q ⊗�t

by setting

ψq,t (ui )=
{

ui ⊗ 1, 1 ≤ i ≤ q

1 ⊗ ui−q , q < i ≤ n,
ψq,t (vi ) =

{
vi ⊗ 1, 1 ≤ i ≤ q

1 ⊗ vi−q , q < i ≤ n.
(2.4)

The map ψq,t turns out to be an isomorphism of algebras and � turns out to be a
coalgebra with comultiplication ψ : � → � ⊗ � induced by the maps ψq,t and
defined by

ψ(δ) =
∑

q+t=n

ψq,t (δ)

for any δ ∈ �n .

Proposition 2.2 For any q, t, n such that q + t = n, ψq,t (�n) ⊂ �q ⊗�t , so � is
a subcoalgebra of �.

Proof According to (2.1),

ψq,t (ui )=
{

ui ⊗ 1, 1 ≤ i ≤ q

1 ⊗ ui−q , q < i ≤ n,
ψq,t (wi )=

{
wi ⊗ 1, 1 ≤ i ≤ q

1 ⊗ wi−q , q < i ≤ n.
(2.5)

�	
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Proposition 2.3 For any q, t, n such that q + t = n, the following relations hold

(1) ψq,t (Qn,i ) = ∑
j≥0 Q pt −p j

q,0 Q p j

q,i− j ⊗ Qt, j ;

(2) ψq,t (Rn,i ) = Q pt −1
q,0 Rq,i ⊗ Qt,0 + ∑

j≥0 Q pt −p j

q,0 Q p j

q,i− j ⊗ Rt, j .

Proof See Proposition 3.3 in [9]. �	
Corollary 2.4 ψ(�) ⊂ � ⊗ �, so � is a subcoalgebra of � and of �.

Proof For any f ∈ �n, ψ( f ) = ∑
q+t=n ψq,t ( f ) belongs to�q ⊗�t , so the restriction

to � of the comultiplication ψ : � → �⊗� defines a comultiplication on �. �	

3 The homology of Q over F p

The universal Steenrod algebra Q at odd primes is generated as an Fp-algebra by

F = { zε,i | ε ∈ {0, 1}, i ∈ Z } ∪ {1} with deg zε,i = 2i(p − 1)+ ε,

subject to the following generalized Adem relations:

zε,pk−1−nz0,k =
∑

j

A(n, j) zε,pk−1− j z0,k−n+ j , (3.1)

z1−ε,pk−nz1,k =
∑

j

A(n, j) z1−ε,pk− j z1,k−n+ j + ε
∑

j

B(n, j) z1,pk− j z0,k−n+ j ,

(3.2)

for each (k, n) ∈ Z × N0, where A(n, j) and B(n, j) are respectively equal to

(−1) j+1
(
(p − 1)(n − j)− 1

j

)
and (−1) j

(
(p − 1)(n − j)

j

)
.

Such presentation already appeared in [7] where the authors also proved that

B = {zε1,i1 . . . zεh ,ih | i j ≥ pi j+1 + ε j+1 for each j = 1, . . . , h − 1} ∪ {1}

is a basis of Q, called the basis of admissible monomials.
Let T denote the associative algebra freely generated by the Fp-module with basis

F . We consider the map d : T → T given by d(zε,i ) = zε,i−1, such that d(τ1τ2) =
d(τ1)τ2 + τ1d(τ2) for any τ1, τ2 ∈ T . Then d is a derivation in T . We write ds for the
s-iterated of d. Let L be the two-sided ideal generated by the set

{ds(z0,ph−1z0,h), ds(z1,ph−1z0,h), ds(z0,phz1,h − z1,phz0,h), ds(z1,phz1,h) }

for all s ∈ N0, h ∈ Z.
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On the homology of the universal Steenrod algebra at odd primes S79

Proposition 3.1 The algebras Q and T/L are isomorphic.

Proof Q and T/L are both isomorphic to �/(�2); the isomorphisms are established
by Proposition 2.5 and Proposition 2.3 of [7], respectively. �	

If zε1,i1 . . . zεh ,ih ∈ B, the string I = ((ε1, i1), (ε2, i2), . . . , (εh, ih)) ∈ ({0, 1}×Z)h

will be called the label of zε1,i1 . . . zεh ,ih and we write zI instead of zε1,i1 . . . zεh ,ih . We
say that zI has length h and total degree ε1 +· · ·+ εh +2(p −1)(i1 +· · ·+ ih); hence
Q is a bigraded algebra. It is also an augmented algebra through the map ε : Q → Fp

which vanishes on the monomials of positive length and is the identity over Fp ⊂ Q.
Let us denote by J the augmentation ideal J = ker(ε).

Let B(Q) = T (J ) = ⊕s∈N0 J ⊗ · · · ⊗ J . Thus B(Q) is generated by elements of
the form zI1 ⊗ · · · ⊗ zIs where zI j ∈ J . Such elements are written simply as

[zI1 | · · · |zIs ] = [zε1,i1 . . . zεt1 ,it1
|zεt1+1,it1+1 . . . zεt2 ,it2

| · · · |zεts−1+1,its−1+1 . . . zεts ,its
]

and are trigraded: s is the homological degree, t = ts is the length and d = 2(p −
1)

∑ts
k=1 ik +∑ts

k=1 εk is the total degree, which we usually disregard in notations. Let
Bs(Q)t be the submodule generated by elements of bidegree (s, t). Given a generator
z = [zI1 | · · · |zIs ] of Bs(Q), for any j = 1, . . . , s − 1, let

∂s, j : Bs(Q) → Bs−1(Q)

be the map defined by

∂s, j (z) = [zI1 | · · · |zI j z I j+1 | · · · |zIs ].

Then we consider the following differential ∂ for B(Q):

∂s : Bs(Q) → Bs−1(Q)

defined by

∂s(z) =
s−1∑
j=1

(−1)eI j ∂s, j (z),

where eI j = j + ∑ j
k=1 |zIk |, being |zIk | the total degree of zIk . The chain com-

plex (B(Q), ∂), known as the reduced bar construction, computes the homology of
Q, Hs,t (Q) = TorQs,t (Fp,Fp). We know by [4] that TorQs,t (Fp,Fp) = 0 when s �= t ,
so we are only interested on the diagonal part of the homology:

D∗(Q) = ⊕k≥0 Dk(Q) = ⊕k≥0 Hk,k(Q).

The group Dk(Q) turns out simply to be ker(∂k) : Bk(Q)k → Bk−1(Q)k , since there
exist no non-zero (k + 1)-chains of length k. The following Theorem helps to identify
the elements
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z =
∑

I

f I [zε1,i1 | · · · |zεk ,ik ] (3.3)

in Bk(Q)k belonging to Dk(Q) = ker(∂k). Note that only a finite number of Fp-
coefficients f I in (3.3) is non-zero.

Theorem 3.2 The element z = ∑
I f I [zε1,i1 | · · · |zεk ,ik ] ∈ Bk(Q)k is a cycle if

and only if for each j (1 ≤ j ≤ k − 1) and each ((ε1, s1), . . . , (ε j−1, s j−1)) ∈
({0, 1} × Z) j−1, ((ε j+2, s j+2), . . . , (εk, sk)) ∈ ({0, 1} × Z)k− j−1, the following con-
dition holds: ∑

I

f I ze j ,i j ze j+1,i j+1 = 0,

where the summation runs over all I ’s such that

((e1, i1), . . . (e j−1, i j−1)) = ((ε1, s1), . . . , (ε j−1, s j−1))

and

((e j+2, i j+2), . . . (ek, ik)) = ((ε j+2, s j+2), . . . , (εk, sk)).

Proof One can follow the same argument used to prove Theorem 1 in [8]. �	
As a consequence of this result we have the following Corollary. It can be proved

by an argument similar to that for p = 2 in Corollary 2 of [8].

Corollary 3.3 Suppose that z = ∑
I f I [zε1,i1 | · · · |zεk ,ik ] ∈ Bk(Q)k is a cycle. For

each S = ((e1, s1), . . . , (eq , sq)) ∈ ({0, 1}×Z)q and S′ = ((eq+1, sq+1), . . . , (ek, sk))

∈ ({0, 1} × Z)k−q , let zS equal to

∑
I

f I [zεq+1,iq+1 | · · · |zεk ,ik ],

where the summation runs over the labels I such that

(ε1, i1) = (e1, s1), . . . , (εq , iq) = (eq , sq),

and zS′ equal to

∑
I

f I [zε1,i1 | · · · |zεq ,iq ],

where the summation runs over the labels I such that

(εq+1, iq+1) = (eq+1, sq+1), . . . , (εk, ik) = (ek, sk).

Then zS is a cycle of Bk−q(Q)k−q and zS′ is a cycle of Bq(Q)q .
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Proposition 3.4 Set

R(k, n, ε) = [zε,pk−1−n|z0,k] −
∑

j

A(n, j) [zε,pk−1− j |z0,k−n+ j ]

and

S(k, n, ε) = [z1−ε,pk−n|z1,k] −
∑

j

A(n, j) [z1−ε,pk− j |z1,k−n+ j ]

+ ε
∑

j

B(n, j) [z1,pk− j |z0,k−n+ j ].

Then D2(Q) has {R(k, n, ε), S(k, n, ε)}k∈Z,n∈N0,ε∈{0,1} as a linear Fp-basis.

Proof To see this, observe that

∂2([zε1,i1 |zε2,i2 ]) = (−1)1+ε1+2i1(p−1)[zε1,i1 zε2,i2 ] = (−1)1+ε1 [zε1,i1 zε2,i2 ].

Then ∂2(R(k, n, ε)) and ∂2(S(k, n, ε)) vanish since they correspond to the generating
relations (3.1) and (3.2) of Q. �	
Now we give some examples of cycles constructed by iterating the following gener-
alized Adem relations:

z0,pk−1z0,k = 0, z1,pk z1,k = 0, z1,pk−1z0,k = 0.

They are

z = [z
0,pm−1k− pm−1−1

p−1
|z

0,pm−2k− pm−2−1
p−1

| · · · |z0,pk−1|z0,k]

and

z′ = [z1,pm−1k |[z1,pm−2k | · · · |z1,pk |z1,k],

both elements of Dm(Q).
Further, for any 1 ≤ j < m, we get another element of Dm(Q) given by the

following chain:

z′′
j = [z1,αm−1 | · · · |z1,α j+1 |z1,α j |z0,α j−1 | · · · |z0,α1 |z0,α0 ],

where

αt =
{

pt k − pt −1
p−1 if 0 ≤ t ≤ j − 1

pt k − pt− j+1 p j−1−1
p−1 if j ≤ t ≤ m − 1

(3.4)

Then, using the Adem relation z0,pk z1,k = z1,pk z0,k in addition to the others above,
we get the following cycle of D3(Q):
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z3 = [z0,p2k |z1,pk |z1,k] + [z1,p2k |z0,pk |z1,k] + [z1,p2k |z1,pk |z0,k]

and two examples of cycles in D4(Q):

z4 = [zε,p3k−1|z0,p2k |z1,pk |z1,k] + [z1,p3k |z1,p2k |z0,pk |z1,k]
+ [z1,p3k |z1,p2k |z1,pk |z0,k],

z′
4 = [z1,p3k |z0,p2k |z1,pk |z1,k] + [z1,p3k |z1,p2k |z0,pk |z1,k]

+ [z1,p3k |z1,p2k |z1,pk |z0,k] + [z0,p3k |z1,p2k |z1,pk |z1,k].

Theorem 3.5 The diagonal homology D∗(Q) has a coalgebra structure given by

ψn : Dn(Q) → ⊕q+t=n(Dq(Q)⊗ Dt (Q)),
z =

∑
I

f I [zε1,i1 |zε2,i2 | · · · |zεn ,in ] �→ z ⊗ 1 + 1 ⊗ z +
∑

z′ ⊗ z′′,

where the cycles z′ and z′′ are obtained by splitting all the summands of z and suitably
grouping the common terms.

Proof According to Corollary 3.3, the elements z′ and z′′, coming from the procedure
described in the statement above, are cycles. �	

4 The isomorphism between D∗( Q) and �

We want to show that the diagonal homology of Q is isomorphic to �. To this purpose,
let us consider the Fp-linear maps πn,q : �n → Bn−1(Q)n , for n ≥ 2 and q =
1, . . . , n − 1, defined as follows: given uEw I = uε1

1 . . . u
εn
n w

i1
1 . . . w

in
n ∈ �n,

πn,q(u
Ew I ) = [z1−ε1,i1 | · · · |z1−εq−1,iq−1 |z1−εq ,iq z1−εq+1,iq+1 | · · · |z1−εn ,in ].

We begin by looking at the map π2,1.

Proposition 4.1 ker π2,1 = �2.

Proof The map π2,1 : �2 → B1(Q)2 acts as follows:

π2,1(u
ε1
1 uε2

2 w
i1
1 w

i2
2 ) = [z1−ε1,i1 z1−ε2,i2 ].

Using relations (2.3) and the linearity of π2,1, we get

π2,1(Q
k
2,0 Qs

2,1) = π2,1
(
w

pk+(p−1)s
1 wk

2(w1 + w2)
s)

= π2,1

⎛
⎝ s∑

j=0

(
s

j

)
w

p(k+s)−s+ j
1 w

k+s− j
2

⎞
⎠
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=
s∑

j=0

(
s

j

)
π2,1

(
w

p(k+s)−s+ j
1 w

k+s− j
2

)

=
s∑

j=0

(
s

j

)
[z1,p(k+s)−(s− j)z1,k+s− j ]

= [ds(z1,p(k+s)z1,k+s)],

and ds(z1,p(k+s)z1,k+s) = 0 according to Proposition 3.1. In a similar way, one can
also prove that

π2,1(R2,0 R2,1 Qk
2,0 Qs

2,1) = −[ds(z0,p(k+s+2)−1z0,k+s+2)] = 0,

π2,1(R2,1 Qk
2,0 Qs

2,1) = [ds(z1,p(k+s+1)−1z0,k+s+1)] = 0,

π2,1(R2,0 Qk
2,0 Qs

2,1) = [ds(z1,p(k+s+1)z0,k+s+1 − z0,p(k+s+1)z1,k+s+1] = 0,

that is the elements of �2 ⊂ �2 correspond to the defining relations of Q in terms of
d. Hence �2 is the kernel of π2,1. �	
Lemma 4.2 For any n ≥ 2 and q = 1, . . . , n − 1:

kerπn,q = �q−1 ⊗ �2 ⊗�n−q−1.

Proof For any t ∈ N, we define πt : �t → Bt (Q)t as

πt (u
ε1
1 . . . u

εt
t w

i1
1 . . . w

it
t ) = [z1−ε1,i1 | · · · |z1−εt ,it ].

We write f for the composition (ψq−1,2 ⊗ 1) ◦ ψq+1,n−q−1:

f : �n → �q−1 ⊗�2 ⊗�n−q−1.

Then

πn,q = (πq−1 ⊗ π2,1 ⊗ πn−q−1) ◦ f.

Our result follows from Proposition 4.1 and the fact that f, πq−1 and πn−q−1 are
Fp-linear isomorphisms. �	
Lemma 4.3 The general linear group GLn(Fp) is generated by all matrices of the
form

M =
⎛
⎝ Iq−1 O O

O A O
O O In−q−1

⎞
⎠ ,

where A ∈ GL2(Fp).
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Proof This result follows from the fact that every invertible matrix admits an elemen-
tary bidiagonal factorization (see [10]). �	

According to the previous Lemma,

�n = ∩n−1
q=1�q−1 ⊗ �2 ⊗�n−q−1.

Combining with Lemma 4.2, we arrive at

�n = ∩n−1
q=1 kerπn,q . (4.1)

We write hn for the Fp-linear isomorphism inverse to πn,

hn = π−1
n : Bn(Q)n → �n, hn([zε1,i1 | · · · |zεn ,in ]) = u1−ε1

1 . . . u1−εn
n w

i1
1 . . . w

in
n .

We observe that, for any q = 1, . . . , n − 1, ∂n,q : Bn(Q)n → Bn−1(Q)n is the result
of the composition πn,q ◦ hn . We are going to use this fact in the proof of our main
result.

Theorem 4.4 � and D∗(Q) are isomorphic as coalgebras.

Proof The maps { hn }n∈N establish a map of coalgebras

h : ⊕n∈N Bn(Q)n → �.

A chain z ∈ Bn(Q)n represents a cycle if and only if ∂n,q(z) = (πn,q ◦ hn)(z) = 0
for any q = 1, . . . , n − 1. This holds if and only if hn(z) ∈ ∩n−1

q=1 kerπn,q , that is
hn(z) ∈ �n according to (4.1). Then hn restricts to an isomorphism of coalgebras

hn : Dn(Q) → �n .

�	
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