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a  b s t  r a  c t

A  virus  was  isolated  from  potted plants of an  unidentified  species of Aeonium,  a  succulent  ornamental  very

common  in Southern  Italy,  showing  chlorotic  spots and rings on both leaf surfaces.  It  was  successfully

transmitted  by sap  inoculation  to a limited range  of hosts,  including  Nicotiana  benthamiana  which was

used  for ultrastructural  observations and  virus purification. Virus  particles are  isometric,  ca. 30 nm in

diameter,  have a single type of  coat  protein (CP) subunits  54  kDa  in size, that encapsidate singlestranded

positivesense RNA  species of 7549  (RNA1) and 4010  (RNA2) nucleotides.  A third  RNA molecule  3472 nts

in  size entirely derived from  RNA2 was  also  found.  The  structural  organization  of both genomic RNAs and

the  cytopathological  features were  comparable  to  those  of  nepoviruses. In  addition,  amino acid  sequence

comparisons  of CP  and  the  ProPol  region (a  sequence  containing  parts of the proteinase and  polymerase)

with  those  of other nepoviruses  showed that  the  Aeonium  virus belongs to  the subgroup A  of the  genus

Nepovirus  and  is phylogenetically  close  to, but serologically distinct from  tobacco ringspot  virus  (TRSV).

Based on  the  species  demarcation  criteria for  the  family  Secoviridae,  the virus  under  study appears to be a

novel member of the genus Nepovirus  for which  the name  of Aeonium  ringspot virus  (AeRSV) is proposed.

© 2013 Elsevier B.V. All rights reserved.

Crassulaceae (Class Magnoliopsida, Order Saxifragales), a family
of  widely grown succulent ornamental plants  comprises several
genera, among which the genus Aeonium,  a native of the Canary
Islands that includes 37 species, most  of which are herbaceous and
perennial.

Recently, chlorotic spots  and rings on both leaf surfaces were
observed on several potted plants of an unidentified Aeonium

species growing in private gardens of the city  of  Scafati (Campania,
Italy) (Supplementary Fig. 1). An  isometric virus  was  recovered by
sap inoculation from symptomatic plants. On the basis of a pre
liminary sequence analysis of  ca. 400 nucleotides (nt) of  the 3′

untranslated (UTR) region of the viral genome (Sorrentino et al.,
2012), it was identified as a strain or a variant of  tobacco ringspot
virus (TRSV), the type species of the genus Nepovirus (family Sec

oviridae, order Picornavirales;  Sanfaç on et  al., 2012). However, as
the studies progressed, it  became evident that the properties of
the virus under study,  hereafter referred to with the provisional
name of Aeonium ringspot virus (AeRSV), differed enough from
those of TRSV to warrant a  more exhaustive characterization, which
constitutes the object of this  paper.
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Sap from symptomatic Aeonium  leaves was  inoculated to a
herbaceous host range comprising 19 species in  six families. Inoc
ulated plants were kept in a greenhouse at ca. 25 ◦C and observed
up to four weeks for symptom expression. Most  of the inoculated
plants were infected showing overt  symptoms (Table S1). In  par
ticular, Nicotiana benthamiana reacted with chlorotic/necrotic local
lesions on inoculated leaves, frequently in the  shape of  ringspots,
followed seven to ten days  after inoculation by systemic symptoms
consisting of extensive mottling and ringspots. A  recovery phase
took place about one week later, with  production of  symptomless
leaves. Useful  diagnostic hosts were Chenopodium quinoa and C.

murale that reacted with local lesions followed by systemic infec
tion, tip necrosis and death of the plant. The virus was routinely
propagated in  N. benthamiana, which was  used for virus purifica
tion  according to Pinck et al. (1988).  Purified virus particles were
resuspended in a  small volume of 0.02 M sodium citrate buffer, pH
6.0. Concurrently, a TRSV isolate  (obtained from Dr.  M.  Fuchs) was
initially propagated in N. benthamiana. However, since at the  green
house temperature (25–26 ◦C)  these  plants showed no symptoms,
although systemically infected, C.  quinoa plants were preferred for
virus purification following the same protocol (Pinck et al., 1988).

AeRSV was  readily purified from N. benthamiana plants with
average yields of  ca.  0.1 mg/g fresh tissue. Purification was also
attempted from infected Aeonium  plants, but the yield was much
lower (ca. 0.01 mg/g tissue). Preparations negatively stained in
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Fig. 1. (A) Negatively stained  purified unfractionated AeRSV particles, fully, partially or not penetrated by the  stain. (B and C) AeRSV particles exposed to the  homologous or

to  TRSV antiserum, respectively. (D  and E) TRSV particles exposed to the  homologous or to AeRSV antiserum, respectively. Bars = 50 nm.

2% aqueous uranyl acetate and viewed at the  electron micro
scope contained isometric particles ca. 30 nm in diameter, some
of which partially or totally (empty shell) penetrated by the stain
(Fig. 1A). An antiserum was produced by injecting purified virus
preparations (0.5–2 mg)  mixed with an equal volume of  Freund’s
incomplete adjuvant in a  New Zealand rabbit. Serological test
ing was done in agar gel  double diffusion (Noordam, 1973)  and
immunoelectron microscopy (Milne and  Lesemann, 1984). The
antiserum to AeRSV had a  titre of 1:256 as determined in agar
gel doublediffusion tests. It gave a  single clearcut precipitin line
with the homologous antigen in  agar plates and no detectable
reaction with TRSV and healthy plant  extracts (not shown). In
immunoelectron microscopy this antiserum decorated AeRSV par
ticles from crude sap (not shown) or purified preparations (Fig. 1B),
but not TRSV particles (Fig. 1E).  Conversely, an  antiserum against
TRSV decorated purified TRSV (Fig. 1D), but not AeRSV (Fig. 1C)
particles.

The cytopathological features of AeRSV were studied in sys
temically infected leaves of  N. benthamiana processed according to
standard procedures (Martelli and Russo, 1984). Compared with
the healthy control (not shown), the structural organization of
infected N. benthamiana cells  was fairly well preserved, except for
the presence of conspicuous inclusion bodies made up of  accumu
lations  of  membranous vesicles with a fibrillar content, a  network
of proliferated endoplasmic reticulum strands, lipid droplets and
virus particles (Fig. 2A).  These cytopathological structures were
usually appressed to the nuclei, the outer membrane of which
was dilated in several points (Fig. 2B). Virus particles were  either
scattered in the ground cytoplasm or arranged in  rows within
tubular structures usually connected with  plasmodesmata and
sometimes associated with  cell wall outgrowths (Fig. 2C). The
observed cytopathological modifications are in complete agree
ment with those typically induced by nepovirus infections (Martelli
and Russo, 1984; Ritzenthaler et al., 2002; Gokalp et al., 2003).

Purified virus preparations were dissociated in the presence of
Laemmli’s buffer (1970). The coat protein (CP) subunits migrated
as a single band with an estimated mol. wt  of 54 kDa (Fig. 3A)  in
discontinuos 12.5% acrylamide gels.

RNA was extracted from ca. 200 mg purified virus particles by
adding 1 vol of extraction buffer (100 mM glycine–NaOH, pH 9.0,
containing 100 mM NaCl, 10 mM EDTA, 2% sodium dodecyl sulfate
and  1% sodium lauroyl sarcosine) and 2 vol of watersaturated phe
nol. The aqueous phase was further extracted with equal volumes
of phenol and chloroform, then  chloroform alone, and precipitated
with 2.5 vol of ethanol in the presence of  0.3  M sodium acetate, pH
5.5. RNA was resuspended in sterile deionized water. Denatured
RNA was either visualized by ethidium bromide staining or trans
ferred to nylon membranes and hybridized with  a DIGlabelled
probe corresponding to the last 200  nucleotides of the viral RNAs.
As shown in Fig. 3B, the encapsidated viral genome separated into
two bands (RNA1 and RNA2).

Total nucleic acids (TNA) were extracted as detailed in Dalmay
et al. (1993).  Briefly, about 100 mg  leaf tissue were macerated in a
cold mortar in the presence of 600 ml extraction buffer and 600 ml
phenol, processed as  described above and resuspended in sterile
deionized water. Northern blot analysis confirmed that RNA1 and
RNA2  were the only virusrelated RNA  species present both in virus
particles (Fig. 3B) and TNA extracts from infected N. benthamiana

tissues (Fig. 3C, lane 1). However, Northern blot analysis of  extracts
from infected Aeonium plants revealed the presence of an additional
RNA species smaller than RNA2 (Fig. 3C,  lane 2).

Approximately 2 mg  of  RNA extracted from virus particles were
denatured by heating at 65 ◦C  and used  for the construction of a
cDNA library with a cDNA Synthesis Module (Roche, USA). The
double stranded cDNA was  ligated to a SmaIlinearized, dephos
phorylated pUC18, and  cloned into  Escherichia coli strain XL1Blue

Fig.  2.  Ultrastructural aspects of AeRSVinfected N.  benthamiana mesophyll cells.

(A)  Vesiculatevacuolate cytoplasmic inclusion bodies (IB) next to the  nucleus (N).

(B) Portion of a nucleus (N),  showing enlargement of the outer membrane (arrow).

(C) Viruscontaining tubular structures connected with plasmodesmata (arrow)  and

inside developing cell wall outgrowth (double arrow). Bars =  250  nm.
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Fig. 3. Structural components of AeRSV. (A) SDSpolyacrylamide gel electrophoresis

of dissociated virus particles. A single type of CP subunits ca. 54 kDa  in  size is  visi

ble  (lane 2). Lane 1, molecular weight  markers. (B)  Genomic RNA1 and  RNA2 from

purified unfractionated particles visualized after ethidium bromide staining (left) or

hybridization with a DIGlabelled probe  (right). (C)  Northern blot of RNA extracted

from infected N. benthamiana (lane 1) and Aeonium (lane 2)  leaves; hybridization

as  in panel B. The asterisk marks the additional RNA  species found only in Aeonium

extracts.

competent cells. The 5′ terminus of the viral genome was deter
mined using a 5′ rapid amplification of cDNA ends (RACE) (Roche,
USA). The 5′ RACE products were cloned into pGEMT Easy vec
tor (Promega, USA). Recombinant plasmids were purified with the
NucleoSpin kit (MachereyNagel, Germany) and  custom sequenced
in both directions (Eurofins MWG  Operon, Germany). Sequences
thus obtained were bridged by RTPCR using specific primers and
high fidelity Taq DNA polymerase (Roche, USA). Sequences were
assembled and  analyzed using the DNA Strider software (Marck,
1988) and further examined by comparison with  known nucleotide
and protein sequences using BLAST (Altschul et al., 1990).  Pairwise
comparisons were made using EMBOSS in the EBI package (Rice
et al., 2000).  Sequences of the encoded proteins were aligned and
tentative phylogenetic trees were constructed with ClustalW pro
gramme  (Thompson et  al., 1994)  and visualized by  the TreeView
programme (Page, 1996).

RNA1 consists of  7549 nts,  excluding the poly(A) tail (GenBank
accession no. JX304792). The first AUG start codon is  at  nt  position
104 in a  context favourable to enhance translation in  eukaryotic
cells, with an A in position −3, a C in position −2  and a G in  position
+4  (Kozak, 2005). Assuming that translation begins at  this AUG, it
would terminate at the UAA stop codon at position 7046–7048, thus
yielding a translation product (P1) of  2314 amino acids (aa)  with
a calculated Mr of 257,168 (257 kDa) (Fig. 4). Computerassisted
analysis showed that P1 contains the  characteristic motifs of the
putative viral protease cofactor (PROco), the NTPbinding (NTPB),

Fig. 4. Putative schematic genome organization of AeRSV. Grey zones indicate

conserved motifs in nepoviruses. Putative cleavage sites deduced by sequence com

parison are indicated by the  vertical lines. Dots in the 2A region  indicate the position

of two prolinerich sequences. Black circles indicate the putative VPg. RNA2′ repre

sents  the smaller RNA2 species, having a  179 aa deletion in the  MP.

cysteine protease (PRO) and the RNAdependent RNA polymerase
(POL) core domains, indicating that the predicted polypeptide is
cleaved by a  viral protease to give mature functional products
(Fig. 4). The putative viral protease cofactor motif (Fx21Wx11
Lx22LxT between aa at positions 525–590) is slightly different
from the  consensus sequence for this motif (Rott et  al., 1995),
the major  difference being the substitution of the last aa (E to T).
The putative NTPbinding motif (Gorbalenya and Koonin, 1989)
is located between aa 827 and 878, in two sites: site  A between
positions 827 and 834 (Gx4GKS) and site B (DD) at positions
877–878. The putative viral cysteine protease motif (Hx35Ex98
CGx8Gx5G)  is located between aa positions 1324 and 1475.
The underlined aa H, E and C  form the putative  catalytic triad of
the enzyme (Dessens and Lomonossoff, 1991;  Gorbalenya et al.,
1989; Margis and Pinck, 1992). The Cterminal region of P1 con
tains the sequence characterizing the putative RNAdependent RNA
polymerase (RdRp) (Argos, 1988) (Dx4Dx69Gx3Tx3Nx33
GDDx33DK)  between aa  postitions 1782 and 1936. The consensus
sequence reported by Mayo and Fritsch (1994) for the  genome
linked protein (VPg) was  not found.

Amino acid alignments of AeRSVencoded P1 with the com
parable protein of  selected nepoviruses allowed the prediction
of putative cleavage sites and positions of mature products. For
instance, comparison with the experimentally validated structure
of the Nproximal region of arabis mosaic virus (ArMV) P1 (Wetzel
et  al., 2008), indicates that the Nterminal protease cofactor of  the
virus under study would be cleaved at  the site C651/G652 to  separate
from the NTB protein, and  an additional cleavage site (C450/S451)
would produce two protein domains of 450 and 201 aa, respec
tively, denoted X1  and X2. VPg  is  located between the NTPbinding
and protease proteins, beginning at aa position 1254, as  identi
fied by  comparison with the chemically determined Nterminal
sequence of  TRSV VPg (Zalloua et al., 1996).  However, the  rest  of
the sequence and the cleavage sites could not be  established with
certainty due to the low degree of conservation of this  small protein.
A cleavage site C1499/S1500 separating the  protease (ca.  215 aa) and
RdRp (815 aa) proteins is  predicted by comparison with the  corre
sponding region of grapevine fanleaf virus (GFLV) P1 (Ritzenthaler
et al.,  1991; Margis et al., 1994).

RNA2 is 4010 nts in length, excluding the 3′poly(A) tail
(JQ670669). Its first  AUG start codon at position 124–126 is pre
ceded by  a C in position −2 and followed by a G in position +4,  i.e.

in a  less favourable translation context than that of RNA1. The sin
gle ORF of RNA2 extends from nt 124 to nt 3508–3510, yielding a
putative polyprotein P2 of 1128  aa and a Mr of 125,601 (126 kDa)
(Fig. 4). The polypeptide contains the “P”  motif conserved in  the
movement proteins (MP) of nepoviruses and other plant viruses
(Koonin et al., 1991; Mushegian, 1994)  at aa position 442 and, at aa
1120–1123 the motif FWGR, that is very close to the nepovirus CP
motif FYGR (Le Gall et  al., 1995).  The  Nterminal peptide (approx
imately 260 aa)  shares low sequence homology with protein 2AHP

of GFLV involved in the replication of RNA2 (Margis  et al., 1993;
Gaire  et al., 1999; Ritzenthaler et  al., 2002), including the proline
motifs that are  also present in  tomato ringspot virus (ToRSV) P2
Nterminal protein (Carrier et al.,  2001),  suggesting this protein to
have a role in the localization and replication of  RNA2. Comparison
of AeRSV CP sequence with  the chemically determined sequence
of TRSV CP (Buckley et al., 1993, 1995)  indicated the  A  residue at
position 616 as the Nterminal aa and a  cleavage site M615/A616

between the MP and CP proteins. Such M/A cleavage site  between
MP  and CP  is unusual and was reported only for  another nepovirus
(Tomitaka et  al., 2011).

The smaller RNA species present only in infected Aeonium plants
(Fig. 3C) was amplified by RTPCR from purified viral RNA extracted
from Aeonium using primers corresponding to the first and last 17
nts of both genomic RNAs. Molecular analysis showed that this
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RNA is  3472 nts in length and has a sequence identical to that  of
RNA2 but lacks 537 nts  from position 1286 to 1822. This additional
RNA2 (RNA2′) has a  single ORF that extends from the AUG at pos
itions 124–126 and codes for a putative protein of 949 aa with a Mr

of 105,726 (106 kDa) (Fig. 4). Putative maturation products of  the
polyprotein encoded by  RNA2′ are the  Nterminal protein (2A)  and
CP of the same size as those encoded by RNA2, and a  MP with  a dele
tion of 179 aa, from position 389 to position 567.  At least two  more
examples of variability of  nepoviral RNAs are known: one arising
from RNA2 of ArMV (Loudes et al., 1995; Wetzel et  al., 2002)  and
one from RNA1 of TBRV (HasiówJaroszewska et al., 2012). How
ever, only in the latter case some evidence of a  possibile biological
significance was obtained. The biological role of  AeRSV RNA2′ has
not yet been investigated.

Sequences of the 5′ UTR regions of the RNA1 (103 nts)  and
RNA2 (123 nts) were 53.2% identical. In particular, the first 17  nts
(UUGAAAAUUCUCUCACA) are  100%  identical and contain the 5′

end consensus sequence for  nepovirus RNAs (underlined; Fuchs
et al., 1989). The conserved repeats of the motif sequences capa
ble to form stemloop structures in the 5′ untranslated regions of
other nepoviruses (Wetzel et al., 2001)  were not found. Comparison
between the 3′ UTR of  RNA1 (501 nts) and RNA2 (500 nts) showed
98.6% identity.

Particle morphology, cytopathological features and genome
organization support the classification of AeRSV in  the genus
Nepovirus (family Secoviridae,  order Picornavirales; Sanfaç on  et  al.,
2012), a taxon comprising three subgroups of  species identified
by differences in the cleavage sites recognized by their proteinase
and size of RNA2: (i) subgroup A 3700–4000 nts; (ii) subgroup B
4440–4700 nts; (iii) subgroup C 6400–7300 nts. Based  on these
parameters, AeRSV fits well in subgroup A, a likelihood supported
by its allocation next to TRSV in a  clade of the phylogenetic tree
constructed with CP sequences (Fig. S2).

Species demarcating criteria in the family Secoviridae set  by the
International Committe on Taxonomy of Viruses (ICTV) include,
among others, lack of  serological relationhip  and less  than  75%

Table 1

Percentage of sequence identity between the  amino acid sequences of various

regions of AeRSV genome and  those  of other nepoviruses.

Virus P1 P2 ProPol CP

Subgroup A

ArMV 31 23  44 27

GDefV  30 20  42 25

GFLV  30 20  42 25

MMMoV  31 29  44 29

RpRSV  28 23  31 25

TRSV  78 70  84 66

Subgroup  B

BRSV 26 17  38 20

CNSV  28 19  36 20

GCMV  27 20  38 21

TBRV  27 20  40 25

Subgroup  C

BRV 27 17  38 23

CLRV  25 15  37 21

GBLV  27 16  42 21

ToRSV  27 15  38 23

GenBank accession numbers are: ArMV (arabis mosaic virus; NC 006057,

NC 006056); GDefV (grapevine deformation virus; NC 017939, NC 017938); GFLV

(grapevine fanleaf virus; NC 003615, NC 003623); MMMoV  (melon mild mot

tle virus; AB518485, AB518486); RpRSV (raspberry ringspot virus;  NC 005266,

NC  005267); TRSV (tobacco ringspot virus; NC  005097, NC  005096); BRSV  (beet

ringspot virus; NC 003693, NC 003694); CNSV (cycas necrotic stunt virus;

NC 003791, NC 003792); GCMV (grapevine chrome mosaic virus; NC 003622,

NC  003621); TBRV (tomato black ring virus; NC 004439, NC  004440); BRV (black

currant reversion virus; NC 003509, NC 003502); CLRV (cherry leafroll virus;

NC  015414, NC 015415); GBLV (grapevine Bulgarian latent virus; NC 015492,

NC  015493); ToRSV (tomato ringspot virus; NC 003840, NC 003839).

identity in the aa sequence of CP  and less than 80% in the aa
sequence of the  ProPol region, defined as “the sequence con
tained between the protease CG and the  polymerase GDD motifs”
(Sanfaç on et al., 2012). When these and the whole P1 and P2
sequences were compared with those of  nepoviruses of the three
subgroups, the divergence between AeRSV and all the other viruses
appeared to be well below the threshold for  CP, whereas the ProPol
domain of  TRSV was  slightly above  (84  vs.  80%) (Table 1). However,
comparison of  each single domain of TRSV and AeRSV  polyproteins
disclosed a relatively low percentage of identity throughout (Table
S2).

The  molecular data, the different reaction of infected N. ben

thamiana plants, and the lack of  serological relationships support
the notion that AeRSV is a novel nepovirus species phylogenetically
close to but clearly distinct from TRSV.
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Carrier, K., Xiang, Y., Sanfaç on, H., 2001. Genomic organization of  RNA2 of Tomato
ringspt virus: processing at a  third cleavage site  in the Nterminal region  of  the
polyprotein in vitro. J.  Gen. Virol. 82,  1785–1790.

Dalmay, T., Rubino, L., Burgyan, J.,  Kollar,  A., Russo, M., 1993. Functional analysis of
cymbidium ringspot virus genome. Virology 164, 697–704.

Dessens, J.T., Lomonossoff, G.P., 1991.  Mutational analysis of the putative catalytic
triad of the cowpea mosaic virus 23 K protease. Virology 184,  738–746.

Fuchs, M., Pinck, M., Serghini, M.A., Ravelonandro, M., Walter, B., Pinck, L.,  1989. The
nucleotide sequence of satellite RNA  in  grapevine fanleaf virus,  strain F13. J. Gen.
Virol. 70, 955–962.

Gaire,  F.,  Schmitt, C., StussiGaraud, C., Pinck, L., Ritzenthaler, C.,  1999.  Protein 2A of
grapevine fanleaf nepovirus is implicated in  RNA2 replication and colocalizes to
the  replication site.  Virology 264,  25–36.

Gokalp, K., Digiaro, M.,  Cigsar, I.,  Abou GhanemSabanadzovic, N., De  Stradis, A.,
Boscia, D., Martelli, G.P., 2003. Properties of a  previously undescribed nepovirus
from SouthEast Anatolia. J. Plant Pathol. 85, 35–41.

Gorbalenya, A.E., Koonin, E.V., 1989. Viral proteins containing NTPbinding sequence
pattern.  Nucleic Acids Res. 17, 8413–8440.

Gorbalenya, A.E.,  Donchenko, A.P., Blinov, V.M.,  Koonin, E.V., 1989.  Cysteine pro
teases of positive strand RNA viruses and chymotrypsinlike serine proteases.
FEBS Lett. 243,  103–114.

HasiówJaroszewska, B., Borodynko, N., Figlerowicz, M.,  Pospieszny, H., 2012. Two
types of defective RNAs arising from the  tomato black ring virus genome. Arch.
Virol.  157,  569–572.

Koonin, E.V., Mushegian, A.R., Ryabov,  E.V., Dolja, V.V., 1991. Diverse groups of
plant RNA and DNA viruses  share related movement proteins that may possess
chaperonelike activity. J.  Gen. Virol. 72, 2895–2903.

Kozak, M.,  2005. Regulation of  translation via mRNA structure in  prokaryotes and
eukaryotes. Gene 361, 13–37.

Laemmli, U.K., 1970. Cleavage of structural  proteins during the  assembly of the head
of  bacteriophage T4. Nature 227, 680–685.



Author's personal copy

R. Sorrentino et al.  / Virus Research 177 (2013) 217– 221 221

Le Gall, O., Candresse, T., Dunez, J.,  1995.  A  multiple alignment of the capsid protein
sequences of nepoviruses and  comoviruses suggests a common structure. Arch.
Virol.  140, 2041–2053.

Loudes, A.M., Ritzenthaler, C., Pinck, M.,  Serghini, M.A., Pinck, L.,  1995.  The  119  kDa
and 124 kDa polyproteins of arabis  mosaic nepovirus (isolate S) are encoded by
two  distinct RNA2 species. J.  Gen. Virol. 76, 899–906.

Marck, C., 1988. DNA Strider: a  C  programme for  the fast analysis of DNA and protein
sequences on the Apple Macintosh family computers. Nucleic Acids Res. 16,
1829–1836.

Margis, R., Pinck, L., 1992. Effects of sitedirected mutagenesis on the  presumed
catalytic triad and substratebinding pocket of grapevine fanleaf nepovirus 24
kDa proteinase. Virology 190, 884–888.

Margis, R., Ritzenthaler, C.,  Reinbolt, J., Pinck, M.,  Pinck, L.,  1993. Genome organiza
tion  of grapevine fanleaf nepovirus RNA2 deduced from  the 122 K  polyprotein
P2  in vitro cleavage products. J.  Gen. Virol. 74, 1919–1926.

Margis, R., Viry, M., Pinck, M.,  Bardonnet, N., Pinck, L.,  1994. Differential proteolytic
activities  of precursor and mature forms of the 24 K proteinase of grapevine
fanleaf  nepovirus. Virology 200, 79–86.

Martelli, G.P., Russo, M.,  1984.  Use  of  thin sectioning for the visualiza
tion and identification of plant viruses. In:  Maramorosch, K., Koprowski,
H. (Eds.), Methods in Virology, vol. 8.  Academic Press, New York, USA,
pp.  143–224.

Mayo, M.A., Fritsch, C.,  1994. A possible consensus sequence for VPg of viruses in the
family Comoviridae. FEBS Lett.  354,  129–130.

Milne, R.G., Lesemann, D.E., 1984. Immunosorbent electron microscopy in plant
virus studies. In: Maramorosch, K., Koprowski, H. (Eds.), Methods in  Virology,
vol. 8.  Academic Press,  New York, USA, pp. 85–101.

Mushegian, A.R., 1994. The putative movement domain encoded by nepovirus RNA2
is  conserved in all  sequenced nepoviruses. Arch. Virol. 135,  437–441.

Noordam, D., 1973. Identification of Plant  Viruses. Methods &  Experiments. Centre
for  Agricultural Publishing and Documentation, Wageningen, The Netherlands.

Page, R.D., 1996. TreeView: an  application to  display phylogenetic trees on personal
computers. Comput. Appl. Biosci. 12, 357–358.

Pinck, L.,  Fuchs, M.,  Pinck, M.,  Ravelonandro, M.,  Walter, B., 1988. A  satellite RNA in
grapevine fanleaf virus strain F13. J.  Gen. Virol. 69, 233–239.

Rice, P.,  Longden, I.,  Bleasby, A.,  2000. EMBOSS: the European Molecular Biology
Open  Software Suite. Trends  Genet. 16, 276–277.

Ritzenthaler, C., Viry,  M., Pinck, M., Margis, R., Fuchs, M.,  Pinck,  L.,  1991. Complete
nucleotide  sequence and genetic organization of grapevine fanleaf nepovirus
RNA1. J. Gen.  Virol. 72, 2357–2365.

Ritzenthaler, C., Laporte, C.,  Gaire, F., Dunoyer, P., Schmitt, C., Duval, S., Piéquet,
A., Loudes, A.M., Rohfritsch, O., StussiGaraud, C., Pfeiffer, P., 2002. Grapevine
fanleaf virus replication occurs on endoplasmic reticulumderived membranes.
J.  Virol. 76,  8808–8819.

Rott, M.E., Gilchrist, A., Lee, L.,  Rochon, D.M., 1995. Nucleotide sequence of tomato
ringspot virus RNA 1.  J. Gen. Virol. 76,  465–473.
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