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Abstract1

In this paper we propose a test for a set of linear restrictions in a vector autoregressive-moving average
(VARMA) model. This test is based on the notion of distance between two univariate ARMA models, the
autoregressive metric introduced by Piccolo (1990). In particular, we show that this set of linear restrictions
is equivalent to a null distance d between two given ARMA models. This result provides the logical basis for
using d = 0 as a null hypothesis in our test. Some Monte Carlo evidence about the finite sample behavior
of our testing procedure is provided and two empirical examples are presented.

Keywords VARMA, linear restriction, AR metric, bootstrap

1 Motivation

In this paper we investigate the relationship between a set of linear restrictions concerning the parameters
of a vector autoregressive moving average (VARMA) model and the notion of the distance between two
univariate ARMA models, the autoregressive metric (AR) introduced by Piccolo (1990). In particular, we
show that these linear restrictions are satisfied if and only if the distance d between two given ARMA
models is zero. This result provides the logical basis for using d = 0 as a null hypothesis for testing this
set of restrictions. It is important to underline that the set of linear restrictions considered is sufficient for
the condition of Granger noncausality, while in the VAR framework, it becomes also a necessary condition.
This theoretical result allows the implementation of an inferential procedure and a bootstrap algorithm. Our
procedure is validated by some Monte Carlo experiments also in small sample. The paper is organized as
follows. Section 2 introduces the notion the distance between ARMA models and specifies the relationship
between AR metric and the set of linear restrictions considered for a VARMA model. Section 3 presents
the inferential implication. Section 4 provides some Monte Carlo evidence about the finite sample behavior
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of our testing procedure. Section 5 contains two empirical illustrations. Section 6 gives some concluding
remarks.

2 Linear restrictions in a VARMA model and AR metric

Let zt a zero mean invertible ARMA model defined as

φ(L)zt = θ(L)εt

where φ(L) and θ(L) are polynomials in the lag operator L, with no common factors, and εt is a white noise
process with constant variance σ2. It is well known that this process admit the following representation:

π(L)zt = εt

where the AR(∞) operator is defined by

π(L) = φ(L)θ(L)−1 = 1−
∞∑
i=1

πiL
i

with
∑∞
i=1 |πi| <∞.

Let ` the class of ARMA invertible models. If xt ∈ ` and yt ∈ `, following Piccolo (1990), the AR metric
is defined as the Euclidean distance between the corresponding π-weights sequence, {πj},

d =

[ ∞∑
i=1

(πxi − πyi)2
] 1

2

. (1)

The AR metric d has been widely used in time series analysis (see e.g. Maharaj(1996), Gonzalo and Lee
(1996), Grimaldi (2004), Corduas and Piccolo (2008) and Otranto (2008, 2010)). We observe that (1) is a
well defined measure because of the absolute convergence of the π-weights sequences.
Now, we consider the following VARMA model of order p, q, for a n× 1 vector time series {wt; t ∈ Z}:

A(L)wt = B(L)εt (2)

where A(L) = In − A1L − A2L
2 − · · · − ApLp and B(L) = In − B1L − B2L

2 − · · · − BqLq are two n × n
matrices of polynomials in the lag operator L, and εt is a n×1 vector white noise process with positive definite
covariance matrix Σ. We assume that det (A(z)) 6= 0 for |z| < 1. This condition allows non stationarity
for the series, in the sense that the characteristic polynomial of the VARMA model described by equation
det (A(z)) = 0 may have roots on the unit circle. Condition det (A(z)) 6= 0 for |z| < 1, however, excludes
explicitly explosive processes from our consideration. We further assume that model (2) satisfies the usual
identifiability conditions. If B(L) = I we obtain a pure vector autoregressive (VAR) model of order p. If
A(L) = I we obtain a pure vector moving average (VMA) model of order q.

Consider the partition wt = (xt, y′t)
′ where xt is a scalar time series and yt is a (n− 1)× 1 vector of time

series. Model (2) accordingly to the partition of wt, can be rewritten as:[
1−A11(L) A12(L)
A21(L) I −A22(L)

][
xt

yt

]
=

[
1−B11(L) B12(L)
B21(L) I −B22(L)

][
εxt

εyt

]
(3)
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E

([
εxt

εyt

] [
εxs εys

])
=

{
Σ t = s

0 t 6= s

where Aij(L) =
∑p
h=1A

(h)
ij L

h and Bij(L) =
∑q
h=1B

(h)
ij L

h i, j = 1, 2 are matrix polynomials in the lag
operator L, with det(A22(L)) 6= 0.

In this framework it is well known (see, for example, Boudjellaba, Dufour and Roy (1992)) that yt does
not cause xt if and only if

B12(L)−A12(L)A22(L)−1B22(L) = 0 (4)

and that a sufficient condition for (4) to hold is

A12(L) = B12(L) = 0 (5)

We note that, if the condition (5) holds then xt follows an univariate ARMA model given by:

[1−A11(L)]xt = [1−B11(L)] εxt
(6)

The main aim of this paper is to establish the implications of the set of linear restrictions (5), using the
notion the distance between ARMA models measured by (1). In particular, we will consider the distance
between the ARMA(p,q) model (6) and the ARMA model for the subprocess {xt; t ∈ Z} implied by the
VARMA(p,q) model (2).

The implied ARMA model can be obtained as follows. Premultiplying both sides of (2) by the adjoint
of A(L), denoted as Adj (A(L)), we obtain

det (A(L))wt = Adj (A(L))B(L)εt. (7)

We note that each component of Adj (A(L)) εt is a sum of finite order MA processes, thus it is a finite order
MA process (see Lütkepohl, 2005, Proposition 11.1). Hence, the subprocess {xt; t ∈ Z} follows an ARMA
model given by:

det (A(L))xt = δ(L)ut (8)

where ut is univariate white noise and δ(L) is an invertible polynomial in the lag operator L. More precisely,
δ(L) and ut are such that

δ(L)ut = C1(L)εt

where C1(L) denotes the first row of the matrix C(L) = Adj (A(L))B(L). Finally, we observe that xt has
also the following autoregressive representation of infinite order:

ϕ(L)xt = ut

where
ϕ(L) =

det [A(L)]
δ(L)

= 1 + ϕ1L+ ϕ2L
2 + ...
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2.1 Theoretical results

We consider the distance according to (1) between the models (8) and (6):

d =

[ ∞∑
i=1

(ϕi − λi)2
] 1

2

.

where
λ(L) =

1−A11(L)
1−B11(L)

= 1 + λ1L+ λ2L
2 + ...

The following proposition provide a necessary and sufficient condition for the set of linear restrictions (5) in
terms of the distance d.

Proposition 1. A12(L) = B12(L) = 0 if and only if d = 0.

Proof. (⇒) We have

det [A (L)] = (1−A11(L)) det
[
I −A22(L)−A21(L) (1−A11(L))−1

A12(L)
]

and the first row the matrix C(L) is such that C1(L) = [C11(L), C12(L)] where

C11(L) = [det (A (L))D(L) (1−B11(L))− det (A (L))D(L)A12(L) (I −A22(L))−1
B21(L)]

and
C12(L) = [det (A (L))D(L)B12(L)− det (A (L))D(L)A12(L) (I −A22(L))−1 (I −B22(L))]

whit D(L) = [1−A11(L)−A12(L) (I −A22(L))−1
A21(L)]−1.

If A12(L) = B12(L) = 0, then

det (A(L)) = (1−A11(L)) det (I −A22(L))

and
C1(L) = [det (I −A22(L)) (1−B11(L)), 0]

Thus we have that ut = εxt and δ(L) = det (I −A22(L)) (1−B11(L)). It follows that

ϕ(L) =
det (A(L))
δ(L)

=
1−A11(L)
1−B11(L)

and hence d = 0.

(⇐) We have to prove that A12(L) = B12(L) = 0. We may have two cases: A21(L) 6= 0 or A21(L) = 0.
First case: A21(L) 6= 0.
If d = 0, then

ϕ(L) =
1−A11(L)
1−B11(L)

.

On the other hand, we have

ϕ(L) =
det (A(L))
δ(L)
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and hence

1−A11(L)
1−B11(L)

=
(1−A11(L)) det

(
I −A22(L)−A21(L) (1−A11(L))−1

A12(L)
)

δ(L)
.

Using the Schur’s formula, we get

1−A11(L)
1−B11(L)

=
det (I −A22(L))

(
1−A11(L)−A12(L) (I −A22(L))−1

A21(L)
)

δ(L)
.

Thus δ(L) assume le following expression

δ(L) = det (I −A22(L)) (1−B11(L))−(1−A11(L))−1 det (I −A22(L))A12(L) (I −A22(L))−1
A21(L) (1−B11(L))

(9)
Since the degree of polynomial δ(L) is finite

deg (δ(L)) <∞,

(9) implies that

deg
(

(1−A11(L))−1 det (I −A22(L))A12(L) (I −A22(L))−1
A21(L) (1−B11(L))

)
<∞. (10)

Since
deg

(
(1−A11(L))−1

)
=∞

it follows for (10) that it must be

A12(L) (I −A22(L))−1
A21(L) = 0.

Since by hypothesis A21(L) 6= 0, it follows that A12(L) = 0 and this in turn implies that

C1(L) = [det (I −A22(L)) (1−B11(L)) ,det (I −A22(L))B12(L)].

and
δ(L) = det (I −A22(L)) (1−B11(L))

On the other hand δ(L) is such that

δ(L)ut = det (I −A22(L)) (1−B11(L)) εxt + det (I −A22(L))B12(L)εyt

and hence
ut = εxt

+
B12(L)

(1−B11(L))
εyt

(11)

Since ut is a white noise, equation (11) implies that B12(L) = 0.

Second case A21(L) = 0.
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By hypothesis A21(L) = 0, this implies that

det (A(L)) = (1−A11(L)) det (I −A22(L))

and the first row of the matrix C(L) is given by C1(L) = [C11(L), C12(L)] where

C11(L) = [det (I −A22(L)) (1−B11(L))− det (I −A22(L))A12(L) (I −A22(L))−1
B21(L)]

C12(L) = [det (I −A22(L))B12(L)− det (I −A22(L))A12(L) (I −A22(L))−1 (I −B22(L))]

If d = 0, then
1−A11(L)
1−B11(L)

=
(1−A11(L)) det (I −A22(L))

δ(L)

and hence
δ(L) = (1−B11(L)) det (I −A22(L)) .

It follows that

ut = εxt
− A12(L) (I −A22(L))−1

B21(L)
1−B11(L)

εxt
+

B12(L)
1−B11(L)

εyt

−A12(L) (I −A22(L))−1 (1−B11(L))
1−B11(L)

εyt

Since ut is a white noise this implies that A12(L) = 0 and B12(L) = 0.

�

We have also the following corollaries.

Corollary 1. Let wt = (xt, y′t)
′ be a pure VAR(p) process. y does not Granger cause x if and only if d = 0.

Proof. (⇒) If y does not Granger cause x, then A12 = 0. By hypothesis, B12(L) = 0. Hence we have
A12(L) = B12(L) = 0. It follows, by Proposition 1, that d = 0.

(⇐) If d = 0, by Proposition 1, it follows that A12(L) = 0 and this, in a VAR framework, implies that y
does not Granger cause x

�

Corollary 2. Let wt = (xt, y′t)
′ be a pure VMA(q) process. y does not Granger cause x if and only if d = 0.

Proof. It is similar to the proof of Corollary 1

�

3 Inferential implications

We verify that Proposition 1 allows us to test for the set of linear restrictions (5) considering the null
hypothesis H0 : d = 0. Further, we observe that if the process {wt; t ∈ Z} follows a VAR model, Corollary
1 establishes that the non-causality from yt to xt is equivalent to the condition d = 0. Thus, in a VAR
framework, we can test for Granger non-causality from yt to xt using the null hypothesis d = 0 without
considering the nature of the involved variables. Infact, it well known that the use of non-stationary data
in causality tests can yield spurious causality results (see e.g. Sims et al. (1990)). Thus, before testing for
Granger causality, it is important to establish the properties of the time series involved because different
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model strategies must be adopt when the series are I(0), or when part of the series are I(0) and part I(1),
when the series are determined I(1) but not cointegrated or when the series are cointegrated. Of course,
the weakness of this strategy is that incorrect conclusions drawn from preliminary analysis might be carried
over into the causality tests. An alternative method is the so called lag-augmented Wald test (see Toda
and Yamamoto (1995) and Dolado and Lütkepohl (1996)), that is a modified Wald test which requires the
knowledge of the maximum order of integration of the involved variables. In this way, the AR-metric based
test proposed, since it not require the exact knowledge of the series properties or the knowledge of the
maximum order of integration, can be a valid alternative for a Granger non-causality tests.
To conduct inference on the basis of Proposition 1 we need an asymptotic distribution for d. In the class
of ARMA processes, the asymptotic distribution of the maximum likelihood estimator d̂2 has been studied,
among others, in Corduas and Piccolo (2008). In this case, for two independent ARMA(p,q) process xt
and yt, under the null hypothesis d(xt, yt) = 0, the Maximum Likelihood estimator d̂2 has the following
asymptotic distribution:

d̂2 ∼ 2
K∑
j=1

λjχ
2
gj

where χ2
gj are independent chi-squared distributions whit gj degree of freedom, λj are the eingvalues of the

covariance matrix of (ϕ̂xi − ϕ̂yi) and K < p + q. The evaluation of this distribution can be cumbersome,
then approximations, as well as evaluation algorithms, have been proposed (see Corduas 2000). Anyhow, in
our framework the ARMA models implied by (6) and by the VARMA model (8) under the null hypothesis
A12(L) = B12(L) = 0 are equal, so they can not be consider indipendent. Then, to conduct the inferential
procedures, we propose to adopt the bootstrap algorithm described in the next section.

3.1 The bootstrap test procedure

For an easy illustration of our bootstrap procedure, let us consider a bivariate VAR(1) model simply denoted
as Awt = εt where wt = (xt, yt)′, εt = (εxt, εyt)′ with covariance matrix Σ and, based on Corollary 2, we
want to test the null H0 : yt ⇒/ xt

1. Estimate on the observed data the VAR(p) and obtain Â(L), Σ̂ and the residuals ε̂t;

2. using the estimated parameters from step 1, obtain the univariate ARMA implied by the estimated
VAR for the sub-process xt;

3. evaluate the AR(∞) representation truncated a some suitable lag p1 of the ARMA model in step 2;

4. estimate for xt, using the observed data, an AR(p) model under null hypothesis of non causality
H0 : yt ⇒/ xt;

5. evaluate the distance d̂ between the AR(p1) and the AR(p) model obtained in step 3 and 4;

6. estimate the VAR(p) model under the null hypothesis H0 : yt ⇒/ xt obtaining the estimates Ã(L) and
Σ̃;

7. apply Bootstrap on ε̂t and obtain the pseudo-residuals ε∗t ;

8. generate the pseudo-data (x∗t , y
∗
t )′ obeying to the null of Granger non-causality using Ã(L)(x∗t , y

∗
t )′ = ε∗t

with Σ̃;
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9. using the pseudo data (x∗t , y
∗
t )′, repeat steps from 1 to 5 obtaining the bootstrap estimate of the

distance d∗

10. repeat steps from 7 to 9 for B times

11. evaluate the bootstrap p-value as proportion of the B estimated bootstrap distance d∗ that exceed the
same statistic evaluated on the observed data d̂, that is pvalB = prop(d∗ > d̂)

Two remarks are in order: i) in this framework the estimated residuals ε̂t do not show any autocorrelation
structure, so we don’t need any particular resampling scheme for dependent data, then we can apply a simple
resampling procedure (MacKinnon, 2002); ii) an essential feature to be taken into account is the dependency
across the sub-process espressed by Σ. In order to reproduce it in the pseudo-data, we simply have to apply
the resampling algorithm to the entire T × n matrix of the estimated residuals ε̂t.

4 Monte Carlo experiments

The performance of the proposed inferential strategy can be investigated by the means of a set of Monte
Carlo experiment. In particular we consider the test for the set of linear restriction associated to a Granger
non-causality test for two different DGP: a stable bivariate VARMA(1,1) model and a cointegrated bivariate
VAR(2) model. Our test will be compared with the performance of a stardand Wald test for the VARMA(1,1)
and with the lag-augmented Wald test suggested by Toda and Yamamoto (1995) and Dolado and Lütkepohl
(1996) for the cointegrated VAR model.

4.1 Bivariate VARMA(1,1) model

Consider the following stable VARMA(1,1) model:[
1− 0.8L −α1L

−0.3L 1− 0.5L

][
xt

yt

]
=

[
1 −β1L

0.25L 1− 0.5L

][
εxt

εyt

]
(12)

with covariance matrix Σε =

[
4 3
3 6

]
In our study, the tests of the null hypothesis

H0 : α1 = β1 = 0

were carried out using nominal significance levels of 1%, 5%, and 10%. To analyze the power of the test
we considered the two cases below, to verify how the test react when the parameter values move away from
zero:

Power 1. α1 = 0.2, β1 = −0.7,

Power 2. α1 = 0.5, β1 = −0.7,

It is well known that a Maximum Likelihood estimation af a VARMA model can be a challenging task (see
e.g. Lütkepohl, 2005, or Metaxoglou and Smith, 2007). Taking in to account the dimension of our exercise,
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Table 1: VARMA(1,1) AR-metric and Wald test. Size and Power - Bootstrap p-values
AR−metric Wald

nom Size Power1 Power2 Size Power1 Power2
T=100

0.01 0.01 0.15 0.45 0.01 0.85 0.89
0.05 0.09 0.48 0.90 0.06 0.90 0.90
0.10 0.14 0.62 0.97 0.12 0.90 0.90

T=200
0.01 0.03 0.49 0.98 0.01 0.97 0.98
0.05 0.08 0.70 1.00 0.05 0.99 0.98
0.10 0.13 0.79 1.00 0.07 0.99 1.00

we perform the ML estimation using the Kalman filter procedure implemented in Gretl (ver. 1.9.9). For
these reason we consider as sample size T=100 and T=200, that are quite large compared to that usually is
found in empirical applications. Therefore, due to computational time involved by the Maximum Likelihood
estimation of the VARMA model, the experiments are based on 400 Monte Carlo replications and 400
Bootstrap redrawings, and to a better comparison we consider for the Wald test the bootstrap p-values
obtained by the same bootstrap algorithm described above. Finally, we verify that a suitable value for p1 in
step 3 in the bootstrap algorithm is p1 = 15. The results are reported in table 1.
As we can see form table 1 the size for the AR metric test is quite satisfactory, and the power grows up
with the sample size and as the true parameter values move away from zero. In any cases, as expected, the
difficulties of the Maximum Likelihood evaluation for the VARMA model affect more the distance than the
Wald test, that show a better power. Infact, as the bootstrap algorithm underlines, the distance based test
is build on the autocovariances obtained by the estimated values of the parameters. Hence, its performances
are heavily dependent on the quality of these estimates.

4.2 Bivariate cointegrated VAR(2) model

Most encouraging results are obtained with the second DGP. Consider the following cointegrated bivariate
VAR(2) model: [

1− 1.5L+ 0.5L2 −α1L− α2L
2

−0.8L+ 0.3L2 1− L+ 0.5L2

][
xt

yt

]
=

[
εxt

εyt

]
(13)

with covariance matrix Σε =

[
5 2
2 3

]
.

As before, the tests of the null hypothesis

H0 : α1 = α2 = 0

were carried out using nominal significance levels of 1%, 5%, and 10%. To analyze the power of the test we
considered again the two cases below:

Power 1. α1 = −α2 = 0.3

Power 2. α1 = −α2 = 0.6

In this case the parameter estimation is easier, then, to make our Monte Carlo experiment more relevant
for actual empirical applications, we consider as sample size T = 50, a size medium in terms of annual data
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Table 2: VAR(2) AR-metric and lag-augmented Wald test. Size and Power - Bootstrap p-values
AR−metric Aug −Wald

nom Size Power1 Power2 Size Power1 Power2
T=50

0.01 0.02 0.22 0.64 0.01 0.05 0.35
0.05 0.07 0.42 0.82 0.04 0.18 0.62
0.10 0.12 0.56 0.89 0.08 0.27 0.73

T=100
0.01 0.01 0.54 0.98 0.01 0.18 0.78
0.05 0.04 0.78 1.00 0.04 0.38 0.92
0.10 0.11 0.85 1.00 0.09 0.50 0.95

but small for a quarterly frequency, and T = 100, that is a time span large in terms of annual data, but
pretty common for quarterly data. Now we compare the performances for our test with the lag-augmented
Wald test proposed by Toda and Yamamoto (1995) and Dolado and Lütkepohl (1996). The lag-augmented
Wald test has an asymptotic χ2-distribution with p degrees of freedom when a VAR(p+ dmax) is estimated,
where dmax is the maximal order of integration for the series in the system. However, it is well known that
the lag-augmented Wald test based on asymptotic critical values may suffer from size distortion and low
power especially for small samples (Giles (1997) and Mavrotas and Kelly (2001)). Thus, to overcome this
problem, we apply the same bootstrap algorithm described above using the Wald test from an augmented
VAR(2+dmax), with dmax = 1 and we evaluate the bootstrap p-values.
For this DGP the experiment is based on 1000 Monte Carlo replications and 1000 Bootstrap redrawings,
and, as before, in step 3 we set p1 = 15. The results are collected in Table 2. We note that, for a nominal
significance level of 5%, our results are rather similar to those of the second part of Table 3 reported in
Shukur and Mantalos (2000). The comparison of the power estimates for our test and the lag-augmented
Wald test of Toda and Yamamoto shows that our test has relatively high power properties in all situations,
while the size is very close to the nominal values for both tests.

5 Empirical applications

In this section we present two empirical examples to illustrate the application of the test suggested in the
paper. First, we consider the relationship between income and CO2 emissions, then examine the causal
relationship between the log of real per capita income.
It is well known that the conjecture of the Environmental Kuznets Curve (EKC) hypothesis (Coondoo and
Dinda, 2002) is such that, initially as per capita income rises, environmental degradation intensifies, but in
later levels of economic growth it tends to subside. Thus, it is presumed that income Granger-causes CO2

emissions. Hence, we investigate the causal relationship from CO2 emissions to income by using our test.
To establishes if the CO2 emissions Granger cause or not the GDP may be useful for policy implication.

For example, if for a given country the CO2 emissions does not Granger-cause the GDP, then any effort
to reduce CO2 emissions does not restrain the development of the economy. If, on the other hand, the
causality runs from CO2 emissions to income, reducing energy consumption (by a carbon tax policy, say)
may lead to fall in income.

We use annual data on per capita Real Gross Domestic Product (y) and per capita of Carbon Dioxide
Emissions (c) in United States, for the period 1960-2006. All data are from World Development Indicators
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and are in natural logarithms.
Based on Bayesian Information Criterion, a VAR model of order 1 was selected. The estimated model is

given by:

yt = 0.18
(0.10)

+ 0.99
(0.01)

yt−1 − 0.05
(0.03)

ct−1 + ε1t

ct = 0.43
(0.17)

− 0.02
(0.01)

yt−1 + 0.88
(0.06)

ct−1 + ε2t

The estimated distance is d̂ = 0.0073 and the bootstrap p-value is 0.58. Thus we can conclude that there is
no evidence of Granger causality from CO2 emissions to output.

We now consider the causal relationship between the log of real per capita income (y) and inflation (∆p)
in the United States over the period 1953-1992. In particular, we have re-examined the data set used by
Ericsson et al. (2001). We downloaded the annual time series data from the Journal of Applied Econometrics
Data Archive. The following bivariate VAR model is estimated.

yt = 0.03
(0.21)

+ 0.93
(0.15)

yt−1 + 0.93
(0.16)

yt−2 − 0.82
(0.24)

∆pt−1 + 0.53
(0.23)

∆pt−1 + ε1t

∆pt = −0.35
(0.12)

+ 0.34
(0.09)

yt−1 − 0.33
(0.09)

yt−2 + 1.15
(0.13)

∆pt−1 − 0.33
(0.13)

∆pt−1 + ε1t

The order of the VAR has been chosen using the Bayesian Information Criterion. The computed d̂-statistic
is equal to 0.35 with a bootstrap p-value 0. This result indicates the presence of Granger causality from
output to inflation. This finding is in accordance with the results of Ericsson et al. (2001). The same result
is obtained using the lag-augmented Wald test.

6 Conclusions

In this paper we characterized a set of linear restrictions in a vector autoregressive-moving average (VARMA)
model in term of the notion of distance between ARMA models and we have derived a new inferential pro-
cedure. In particular this new procedure can be useful for a new Granger non-causality test in a VAR
framework. The advantage of this test is that it can be can be carried out irrespectively of whether the
variables involved are stationary or not and regardless of the existence of a cointegrating relationship among
them. Our inferential procedure has been validated by a set of Monte Carlo experiments. In a VARMA
framework this procedure shows encouraging results even if a deeper investigation, made complex by the
computational time, is needed. In a cointegrated VAR framework our method for detecting causality has
provided better results as the conducted simulation study has shown that our test exhibits a good perfor-
mance in terms of size and power properties, even in small-samples. Finally, we have shown that this test
can be usefully applied in practical situations to test causality between economic time series.
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