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Abstract: The treatment of advective fluxes in high-order finite volume models is well established, but this is not the case for 
diffusive fluxes, due to the conflict between the discontinuous representation of the solution and the continuous structure of analytic 
solutions. In this paper, a derivative reconstruction approach is proposed in the context of spectral volume methods, for the 
approximation of diffusive fluxes, aiming at the reconciliation of this conflict. Two different reconstructions are used for advective 
and diffusive fluxes: the advective reconstruction makes use of the information contained in a spectral cell, and allows the formation 
of discontinuities at the spectral cells boundaries; the diffusive reconstruction makes use of the information contained in contiguous 
spectral cells, imposing the continuity of the reconstruction at the spectral cells boundaries. The method is demonstrated by a number 
of numerical experiments, including the solution of shallow-water equations, complemented with the advective-diffusive transport 
equation of a conservative substance, showing the promising abilities of the numerical scheme proposed. 
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1. Introduction  

The increasing interest of public audience and 
researchers towards environmental problems has 
prompted the study and the design of numerical models 
able to simulate the transport and the fate of 
constituents and pollutants in surface water bodies. For 
instance, numerous finite volume models for the 
solution of the shallow-water equations, coupled with 
the passive transport of a constituent, at most 
second-order accurate in time and space, are available 
in literature, based on different approaches. The 
treatment of advective fluxes in high-order finite 
volume models (spectral volume, ENO, WENO among 
the others) is well established, and the discontinuous 
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representation of the solution can naturally 
accommodate for the discontinuities of the true 
solution. Conversely, high-order treatment of diffusive 
fluxes can be difficult in finite volume models, in that 
the discontinuous representation of the solution 
conflicts with the analytic solution, which is always 
continuous. Recently, a number of approaches have 
been proposed and adopted for the calculation of 
diffusive fluxes in the context of Spectral Volume 
methods, namely the LSV (local spectral volume) 
approach and the penalty SV (spectral volume) by Sun 
and Wang [1], the penalty SV approach by Kannan and 
Wang [2]. These methods exhibit one or more of the 
following problems: lack of symmetry, lack of 
compactness and sub-optimal order of convergence. 
Especially the first two problems stressed above can 
decrease the convergence speed of algorithms in the 
case of implicit time-marching methods. Starting from 
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these considerations, in this paper a numerical model 
for the solution of the one-dimensional shallow-water 
equations: 
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is presented, coupled with the equation for the passive 
transport of dissolved substances, which takes into 
account also the diffusion of constituents: 









∂
∂

∂
∂

=
∂
∂

+
∂

∂
x
CDh

x
hUC

xt
hC   (2) 

In the Eqs. (1) and (2) the following definitions hold: 
x = space independent variable, t = time independent 
variable, zb (x) = bed elevation, h(x,t) = water depth, 
U(x,t) = vertically averaged flow velocity, C(x,t) = 
vertically averaged constituent concentration, g = 
gravity acceleration constant, D(x,t) = dispersion 
coefficient. We observe that the system of Eq. (1) is 
hyperbolic, while the coupling of Eqs. (1) and (2) leads 
to an advection-dominated parabolic system of 
equations. 

The numerical model presented in this paper, which 
is high-order accurate far from discontinuities of the 
flow field, extends to the case of transport of passive 
constituents the approaches already proposed by some 
of the authors [3, 4], based on the spectral volume 
method, and makes use of the HLLC (harten–lax–van 
leer contact wave) approximate Riemann solver to 
evaluate the advective fluxes at the interfaces between 
the spectral cells. In order to ensure the C-property, the 
source terms are upwinded at the interfaces, after a 
so-called “hydrostatic reconstruction”. The diffusive 
fluxes are calculated using a novel approach, called 
DRSV (derivative recovery spectral volume), which is 
linked to the derivative recovery method [5, 6] and to 
the direct discontinuous galerkin method [7], recently 
introduced for the diffusive fluxes calculation in 
RKDG (Runge-Kutta discontinuous galerkin methods). 
The DRSV exhibits good properties, namely 
high-order accuracy, local symmetry and compactness 

of the numerical stencil. A number of preliminary 
numerical experiments are reported, showing the 
promising capabilities of the method. 

The paper is organized as follows: in Section 2,   
the numerical method is discussed; in Section 3,    
the numerical method is verified by means of 
numerical experiments; in Section 4, the results are 
discussed. 

2. The Numerical Method 

In this section, at first, the spectral volume method [8] 
for hyperbolic systems of differential equations is 
briefly reviewed; then, the derivative recovery spectral 
volume is introduced for the solution of parabolic 
problems. Finally, it is shown how these approaches 
are applied for the solution of the one-dimensional 
shallow-water equations, complemented with the 
passive transport of a constituent. 

2.1 The Spectral Volume Method for Hyperbolic 
Equations 

A system of hyperbolic equations can be considered 
as : 
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where u is the vector of conserved variables, f(u) is 
the vector of physical fluxes and s(x,u) is the vector of 
source terms. In order to apply the spectral volume 
method, the computational domain is partitioned in 
NS non-overlapping cells named “spectral volumes” 
or “spectral cells”, indexed by i. Then, the generic 
spectral cell is defined by Si = [xi-1/2, xi+1/2]. Each 
spectral cell is in turn partitioned in k non-overlapping 
finite volumes: the generic finite volume Vi,j 
contained in the spectral volume Si is defined by Vi,j = 
[xi,j-1/2, xi,j+1/2], and its length is ∆xi,j = xi,j+1/2 − xi,j-1/2. It 
can be observed that the following obvious 
congruency conditions holds: xi,1/2 = xi-1/2 and xi,k+1/2 = 
xi+1/2. If Eq. (3) is integrated in each finite volume Vi,j, 
the following systems of ordinary differential 
equations is obtained: 
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where i = 1, 2 , …, NS; j = 1, 2, …, k ; and t > 0. In the 
Eq. (4), ui,j is the cell averaged value of the vector of 
conserved variables in Vi,j, Fi,j+1/2 is the vector of 
numerical fluxes through the interface xi,j+1/2 between 
Vi,j and Vi,j+1, si,j is the vector of numerical source terms 
in Vi,j. In order to evaluate the terms at the right-hand 
side of Eq. (4), the conserved variables are 
reconstructed in each spectral cell Si by means of a 
piecewise polynomial conservative reconstruction ui(x) 
of order p = k − 1, which ensures that: 
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The reconstructed variables are used to evaluate 
high-order approximations of source terms in finite 
volumes, and fluxes at the interfaces: after evaluation 
of the right-hand side of Eq. (4), a system of ordinary 
differential equations is obtained, and a high-order 
Runge-Kutta scheme is used to make the solution 
marching in time. It can be observed that the conserved 
variables and fluxes can be discontinuous passing 
through the interface between two finite volumes, after 
variables reconstruction. In this case, the numerical 
fluxes are calculated by solving the local Riemann 
problem. 

2.2 Derivative Recovery Spectral Volume for Diffusive 
Fluxes Calculation 

When applying the Finite Volume Method on 
uniform grids, in order to approximate the solution of 
the diffusion equation: 
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the following second-order accurate scheme is often 
used: 
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where ui is the averaged value of u(x) in the finite 
volume Vi, and ∆x is the length of the finite volumes. 

The finite volume scheme Eq. (7) is analogous to the 
finite difference scheme for the diffusion [9], where ui 
should be intended as the approximation of u(x) at the 
location xi, and for this reason it is sometimes called 
“finite difference approach”. Of course, the Eq. (7) can 
be derived in the context of the finite volume method. 
In fact, having defined the flux F = -∂u/∂x, the 
application of the finite volume method to the Eq. (6) 
allows writing, for each finite volume, the equation: 












−

∆
−=

−+
2
1

2
1

1
ii

i FF
xdt

du    (8) 

where Fi+1/2 is a consistent approximation of the flux 
F(xi+1/2) between the finite volumes Vi and Vi+1 [10]. In 
order to evaluate Fi+1/2, it can be observed [5] that a 
conservative reconstruction of the solution u(x) on the 
stencil Vi,i+1=Vi∪Vi+1 is: 
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which very naturally supplies: 
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So, a good approximation of F(xi+1/2) = -∂u/∂x is 
Fi+1/2 = -(ui+1 – ui)/∆x, and the scheme Eq. (7) is 
obtained. 

The concept can be generalized to the case of the 
spectral volume method. In order to evaluate the 
diffusive flux Fi,k+1/2 between the spectral volumes Si 
and Si+1, let’s consider the stencil Si,i+1=Si∪Si+1, which 
consists of 2k finite volumes: in this stencil, the 
solution can be reconstructed by means of a polynomial 
ui,i+1(x) of order p = 2k − 1, and this polynomial can be 
used in turn to supply a high-order approximation of 
F(x)= -∂u/∂x at the interface between the two spectral 
volumes. The diffusive fluxes are needed also for 
internal interfaces: the arithmetic average 0.5[ui-1,i(x) + 
ui,i+1(x)] of the reconstructions ui-1,i(x) and ui,i+1(x) 
supplies a 2k accurate approximation of the solution 
u(x) in the spectral volume Si, which can be used for the 
evaluation of ∂u/∂x at internal faces. It is clear that, on 
irregular grids, the expected nominal order of accuracy 
is p = 2k – 1. 
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It can be observed that the DRSV method is compact, 
in that the diffusive fluxes through the external and 
internal interfaces of the spectral volume Si depend 
solely on the variables conserved in the finite volumes 
of the cells Si-1, Si and Si+1. In order to make an example, 
it can be observed that, in the case of k = 2 and uniform 
grid with spectral volumes of length ∆x, the following 
scheme is obtained: 
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2.3 Spectral Volume Shallow-Water Equations Model 
with Constituents Transport 

The spectral volume method can be applied for the 
solution of Eqs. (1) and (2). First, the conserved 
variables h, hU, hC and zb + h are reconstructed in each 
spectral volume; then, the HLLC approximate 
Riemann solver is used to evaluate the advective fluxes 
at the interfaces between the spectral cells (see Section 
2.1). The TVBM (total variation bounded in the means) 
limiter [11] is used to limit the reconstructions near 
shocks, ensuring the algorithm stability. In order to 
force the equilibrium in steady-state calculations the 
source terms must balance the advective fluxes 
(C-property): aiming at this, the source terms are firstly 
subdivided into in-cell contribution and interface 
contributions; then, the interface contributions are 
upwinded [12] following the so-called “hydrostatic 
reconstruction”. For the integration of the in-cell 
source term contribution, the Romberg formulas are 
applied. Diffusive fluxes are calculated by recovering 
the derivatives of h and hC, and applying the DRSV 
approach (see Section 2.2). 

After the evaluation of fluxes and source terms, a 
system of ordinary differential equations is obtained, 
whose solution is approximated by means of the 
third-order TVD (total variation diminishing) 
Runge-Kutta scheme. 

3. Numerical Experiments 

In this section, a number of numerical experiments 
are presented, in order to test the numerical scheme. 

3.1 Diffusion of a Sinusoidal Wave 

In the first numerical experiment, an accuracy test is 
accomplished considering the approximate solution of 
the following equation: 
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with sinusoidal initial conditions: 
( ) ( ) ( )xxuxu sin0,0 == , [ ]π2;0∈x   (13) 

and periodic boundaries conditions. The problem 
admits the exact solution: 

( ) ( )xetxu Dt sin, −=    (14) 
The value D = 1 m2/s was chosen. In order to 

generate a non-uniform grid for this numerical test, the 
following technique was adopted: the computational 
domain, L = 2π long, was firstly subdivided in NS 
uniform spectral volumes, each ∆x = 2π/NS long; then, 
the interface between two spectral volumes was 
randomly moved by the distance 0.1∆x to the left or to 
the right. The fluxes between the finite volumes were 
calculated using the DRSV approach, while the 
time-marching method used was the third-order TVD 
Runge-Kutta method. The numerical solution was 
carried out up to t = 1 s, with time step ∆t small enough 
to consider the time error negligible. The test was 
repeated for k = 1, 2 and 3 finite volumes per cell, and 
for increasing NS. The L∞ and L1 norms of the error, 
calculated with reference to the finite volume-averaged 
values of u, are presented in Table 1. From inspection 
of Table 1, it is apparent that the convergence order of 
the DRSV method is greater than the nominal value 2k 
– 1, and very close to 2k. It is noticed that, for k = 3 and 
NS = 40, the spatial error is proportional to 10-10, and 
the time error dominates. 

3.2 Advection-Diffusion of a Sinusoidal Wave 

In this numerical experiment, the following equation 
is considered: 
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with sinusoidal initial conditions given by Eq. (13), 
with the choices D = 1 m2/s and c = 1 m/s and periodic 



A Derivative Recovery Spectral Volume Model for the Analysis of  
Constituents Transport in One-Dimensional Flows 

  

338 

 

Table 1  Diffusion of a sinusoidal wave on a irregular grid by means of the DRSV method: error norms. 

k  
NS = 5 NS = 10  NS = 20  NS = 40 

Error Error Order  Error Order  Error Order 

1 
L∞ 4.89E-02 2.48E-02 0.98  5.68E-03 2.13  1.31E-03 2.11 
L1 1.80E-01 5.91E-02 1.60  1.31E-02 2.17  3.29E-03 1.99 

2 
L∞ 3.04E-03 2.18E-04 3.80  1.51E-05 3.85  9.11E-07 4.05 
L1 8.90E-03 5.88E-04 3.92  3.91E-05 3.91  2.41E-06 4.02 

3 
L∞ 4.06E-05 7.16E-07 5.82  1.20E-08 5.89  - - 
L1 7.87E-05 1.62E-06 5.60  2.50E-08 6.01  - - 

 

boundaries conditions. The problem admits the exact 
solution: 

( ) ( )ctxetxu Dt −= − sin,    (16) 
The computational domain, L = 2π long, was 

subdivided in NS uniform spectral volumes, and the 
solution was computed up to t = 1 s. The diffusive fluxes 
between the finite volumes were calculated using the 
DRSV approach, while the simple upwind formula: 

( ) ( )ccuccuF jijic ++−= −
+

+
+ 1,1, 2

1
2
1   (17) 

was used for the advective flux through the interface 
xi,j+1/2 between the finite volume Vi,j and the finite 
volume Vi,j+1. The test was repeated for k = 1, 2 and 3 
finite volumes per cell, and for increasing NS. The L∞ 
and L1 norms of the error, calculated with reference to 
the finite volume-averaged values of u, are presented in 
Table 2. 

It has to be observed that the advective fluxes were 
calculated with order of accuracy k, while the diffusive 
fluxes were calculated with order of accuracy greater 
than 2k − 1: the global order of accuracy was equal or 
greater than k, as confirmed by inspection of Table 2. 

3.3 Solution of the Shallow-Water Equations with 
Passive Transport of a Constituent 

In this test, inspired to that presented by Xing and 
Shu [13], the solution of the Eqs. (1) and (2) is 
considered. In a channel, 1 m long, the initial 
conditions and the bed elevation were defined by: 
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The initial conditions Eq. (18) were complemented 
by periodic boundary conditions. 

The dispersion coefficient depends on the local 
characteristics of the flow, and could be evaluated [14] 
by means of the Elder’s formula, which is valid for 
plane turbulent flows. Here, only for demonstrative 
purposes, the numerical test was accomplished twice, 
using first a constant dispersion coefficient D = 0.1 
m2/s, then a constant dispersion coefficient D = 0 m2/s. 
For calculations, NS = 20 spectral cells and k = 3 finite 
volumes per cell were used. The results are presented in 
Fig. 1. 

Inspection of Fig. 1 shows how the results of the 
proposed model, with reference to the water surface 
elevation, compare well with the solutions available in 
literature [15], also in the case of a modest number of 
freedom degrees (60 finite volumes). Moreover, in Fig. 
1 (panel below), a comparison is made between the 
concentration distributions obtained using D = 0 m2/s 
and D = 0.1 m2/s, respectively. The effect of the 
dispersion coefficient is the smoothing of the 
concentration distribution, tending to a constant 
concentration long-term distribution, as expected. 

4. Conclusions 

In this paper, a spectral volume model for the 
approximate solution of shallow-water equations has 
been presented, complemented with the equation of 
advective-diffusive transport of a passive constituent. 
The well-balanced model, which is third-order accurate 
in time and space, makes use of a novel scheme for the 
diffusive flux calculations, named derivative recovery 
spectral volume. Preliminary numerical tests seem to 
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Table 2  Advection-diffusion of a sinusoidal wave on a regular grid by means of the DRSV method: error norms. 

k  
NS = 5 NS = 10  NS = 20  NS = 40 

Error Error Order  Error Order  Error Order 

1 
L∞ 1.35E-01 8.83E-02 0.614  5.06E-02 0.804  2.70E-02 0.904 
L1 5.49E-01 5.39E-01 0.614  2.00E-01 0.839  1.08E-01 0.892 

2 
L∞ 1.49E-02 2.17E-03 2.78  2.92E-04 2.89  3.82E-05 2.93 
L1 4.17E-02 5.99E-03 2.80  8.15E-04 2.88  1.07E-04 2.93 

3 
L∞ 1.31E-03 1.56E-04 3.07  2.17E-05 2.84  2.88E-06 2.92 
L1 4.41E-03 6.22E-04 2.83  8.71E-05 2.84  1.15E-05 2.92 
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Fig. 1  Periodic wave in a channel. (Above) Water surface 
height after t = 1 s. (Below) Depth-averaged concentration 
after t = 1 s. 
 

show how the DRSV scheme is a valid alternative to 
other well known schemes for diffusive fluxes 
calculation in high-order finite volume schemes. In the 
next future, the authors plan to find a rigorous 
demonstration of the accuracy and stability 
characteristics of the DRSV method, and to implement 
its application to the case of unstructured grids. 
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