Contents lists available at SciVerse ScienceDirect



# **Discrete Mathematics**



journal homepage: www.elsevier.com/locate/disc

# A group theoretic characterization of Buekenhout–Metz unitals in $PG(2, q^2)$ containing conics

# Giorgio Donati, Nicola Durante\*

Dipartimento di Matematica e Applicazioni "Caccioppoli", Università di Napoli "Federico II", Complesso di Monte S. Angelo - Edificio T, via Cintia - 80126 - Napoli, Italy

## ARTICLE INFO

Article history: Received 21 May 2011 Received in revised form 4 April 2012 Accepted 10 April 2012 Available online 7 May 2012

Keywords: Unitals Conics

# 1. Introduction

# ABSTRACT

Let  $\mathcal{U}$  be a unital in PG(2,  $q^2$ ),  $q = p^h$  and let G be the group of projectivities of PG(2,  $q^2$ ) stabilizing  $\mathcal{U}$ . In this paper we prove that  $\mathcal{U}$  is a Buekenhout–Metz unital containing conics and q is odd if, and only if, there exists a point A of  $\mathcal{U}$  such that the stabilizer of A in G contains an elementary Abelian p-group of order  $q^2$  with no non-identity elations.

© 2012 Elsevier B.V. All rights reserved.

Baker and Ebert [2] and Hirschfeld and Szőnyi [6] independently discovered an orthogonal Buekenhout–Metz unital in PG(2,  $q^2$ ),  $q = p^h$ , q odd, which is the union of q conics of a hyperosculating pencil with base a point A. We call such a unital Buekenhout–Metz of *BEHS-type*. These are the only Buekenhout–Metz unitals containing conics. In [1] Abatangelo and Larato determine the linear collineation group  $\Gamma$  stabilizing a Buekenhout–Metz unital of BEHS-type and prove that this group has the following properties:

(i) the order of  $\Gamma$  is  $2q^3(q-1)$ ;

(ii)  $\Gamma$  is transitive on the points of the unital different from *A*;

(iii) the stabilizer of a point of the unital, different from *A*, in  $\Gamma$  is a cyclic group of order 2(q - 1);

(iv)  $\Gamma$  is the semidirect product of a normal elementary Abelian subgroup of order  $q^3$  with a cyclic subgroup of order 2(q-1).

They also prove that  $\Gamma$  has an elementary Abelian p-group of order  $q^2$ , with no non-identity elations, that stabilizes every conic of  $\mathcal{U}$ . Further, they show that, if the group of projectivities G preserving a unital  $\mathcal{U}$  in PG(2,  $q^2$ ) with q odd satisfies these four conditions, then  $\mathcal{U}$  is a Buekenhout–Metz unital of BEHS-type. Ebert and Wantz [5] prove that a unital  $\mathcal{U}$  is orthogonal Buekenhout–Metz if and only if the group of projectivities stabilizing  $\mathcal{U}$  contains a semidirect product  $S \rtimes R$  where S has order  $q^3$  and R has order q - 1. Also, S is Abelian if and only if  $\mathcal{U}$  is of BEHS-type, in which case q is necessarily odd and S is elementary Abelian.

In this paper we obtain the following group theoretic characterization of Buekenhout-Metz unitals of BEHS-type.

**Theorem 1.1.** Let  $\mathcal{U}$  be a unital in PG(2,  $q^2$ ), with  $q = p^h$ , and let G be the group of projectivities stabilizing  $\mathcal{U}$ . If there exists a point A of  $\mathcal{U}$  such that the stabilizer of A in G contains an elementary Abelian p-group of order  $q^2$  with no non-identity elations, then  $\mathcal{U}$  is a Buekenhout–Metz unital of BEHS-type and q is odd.

\* Corresponding author. *E-mail addresses:* giorgio.donati@unina.it (G. Donati), ndurante@unina.it (N. Durante).

<sup>0012-365</sup>X/\$ – see front matter S 2012 Elsevier B.V. All rights reserved. doi:10.1016/j.disc.2012.04.007

#### 2. Preliminary results

Let PG(2,  $q^2$ ),  $q = p^h$ , be the projective plane over the Galois field GF( $q^2$ ). A unital in PG(2,  $q^2$ ) is a set  $\mathcal{U}$  of  $q^3 + 1$  points meeting every line of PG(2,  $q^2$ ) in either 1 or q + 1 points. Lines meeting a unital  $\mathcal{U}$  in 1 or q + 1 points are called *tangent* or *secant* lines to  $\mathcal{U}$ . Through each point of  $\mathcal{U}$  there pass  $q^2$  secant lines and one tangent line. Through each point P not on  $\mathcal{U}$  there pass  $q^2 - q$  secant lines and q + 1 tangent lines; the points of contact of the tangent lines are called the *feet* of P.

An example is the *non-degenerate Hermitian curve* or *classical* unital, that is, the set of the absolute points of a non-degenerate unitary polarity of  $PG(2, q^2)$ . For more information on unitals in projective planes, see [3].

Consider the polynomial  $x^2 - r$ , irreducible over GF(q), and  $t \in GF(q^2)$  such that  $t^2 - r = 0$ . Let a be an element in  $GF(q^2)$  and let  $\Gamma_a$  be the conic of PG(2,  $q^2$ ) with equation  $x_1x_3 - x_2^2 + ax_3^2 = 0$ . The set

$$\mathcal{U} = \bigcup_{a \in t \operatorname{GF}(q)} \Gamma_a$$

is an orthogonal Buekenhout–Metz unital in PG(2,  $q^2$ ) of BEHS-type; see [6]. Observe that  $\mathcal{U}$  is the the union of q conics of a hyperosculating pencil with base (1, 0, 0).

A *central* collineation of PG(2,  $q^2$ ) is a collineation  $\alpha$  fixing every point of a line  $\ell$  (the *axis* of  $\alpha$ ) and fixing every line through a point *C* (the *center* of  $\alpha$ ). If  $C \in \ell$ , then  $\alpha$  is an *elation*; otherwise  $\alpha$  is a *homology*. It is known that given a line  $\ell$  and three distinct collinear points *C*, *P*, *P'* of PG(2,  $q^2$ ), with *P*, *P'*  $\notin \ell$  and both different from *C*, there is a unique central collineation with axis  $\ell$  and center *C* mapping *P* onto *P'*.

Note that a non-identity homology f of PG(2,  $q^2$ ) stabilizing a unital  $\mathcal{U}$  has as center a point V not on  $\mathcal{U}$  and as axis a secant line  $\ell$  to  $\mathcal{U}$ . Suppose by way of contradiction that V is on  $\mathcal{U}$ . Let P be a point of  $\ell \cap \mathcal{U}$ . The line VP is a secant line to  $\mathcal{U}$ , hence for any point Q on  $(\mathcal{U} \cap VP) \setminus \{V, P\}$  we have that  $|\langle f \rangle| = |Orb_{(f)}(Q)| |Stab_{(f)}(Q)|$ . Since  $Stab_{(f)}(Q)$  is the trivial subgroup, it follows that  $|\langle f \rangle|$  divides q - 1. Let m be a secant line to  $\mathcal{U}$  through V such that  $\ell \cap m \notin \mathcal{U}$ . For any point R on  $m \cap \mathcal{U}$  different from V we have that  $|\langle f \rangle| = |Orb_{(f)}(R)|$ , therefore  $|\langle f \rangle|$  divides q. As q and q - 1 are relatively prime,  $|\langle f \rangle| = 1$  and f is the identity, a contradiction. Suppose now that  $\ell$  is a tangent line to  $\mathcal{U}$ . The line  $\ell$  contains at most one of the feet of V; so there exists one of the feet of V, say T, not on  $\ell$ . Since VT is the tangent line to  $\mathcal{U}$  at T, it follows that f(T) = T, thus f is the identity, again a contradiction.

From now on we identify, unambiguously, a projectivity of PG(2,  $q^2$ ) with its matrix representation with respect to a frame of the plane. Then a group of projectivities of the plane is identified by a group of 3 × 3 matrices.

## 3. Characterization

Let  $\mathcal{U}$  be a unital in PG(2,  $q^2$ ),  $q = p^h$ , and let A be a point of  $\mathcal{U}$  with tangent line  $\ell_{\infty}$ . Throughout the paper we will denote by G the linear collineation group preserving  $\mathcal{U}$  and by  $G_A$  an elementary Abelian p-group of order  $q^2$ , with no non-identity elations, contained in the stabilizer of A in G. Let  $L_{\infty}$  be the group of projectivities of the line  $\ell_{\infty}$  into itself. Every element  $f \in G_A$  induces a projectivity  $f_{\infty}$  of  $L_{\infty}$ . Consider the homomorphism

$$\Psi: f \in G_A \longrightarrow f_\infty \in L_\infty.$$

An element  $g \in Ker\Psi$  induces the identity map on  $\ell_{\infty}$ , hence g is a perspectivity with axis  $\ell_{\infty}$ . Since g cannot be a nonidentity homology (see Section 2) and  $G_A$  has no non-identity elations, it follows that g is the identity. The map  $\Psi$  is then a monomorphism.

# **Proposition 3.1.** If f is a non-identity element of $G_A$ , then $f_\infty$ has A as a unique fixed point.

**Proof.** Let *P* be a point of  $\ell_{\infty}$  different from *A*. There exists an element  $h \in G_A$  such that  $h(P) \neq P$ . Indeed, suppose on the contrary that *P* is fixed by every element of  $G_A$ . In such a case  $\Psi(G_A)$  is a subgroup of the stabilizer  $L_{AP}$  of both *A* and *P* in  $L_{\infty}$ . The groups  $\Psi(G_A)$  and  $L_{AP}$  have size  $q^2$  and  $q^2 - 1$ , respectively, a contradiction. Since  $G_A$  is an Abelian group, for every element  $f \in G_A$  we have that

$$f_{\infty}(P) = (h_{\infty}^{-1} \circ f_{\infty} \circ h_{\infty})(P).$$

If  $f_{\infty}(P) = P$  then  $(h_{\infty}^{-1} \circ f_{\infty} \circ h_{\infty})(P) = P$ ; hence  $f_{\infty}$  fixes the three distinct points *A*, *P* and *h*(*P*), so it is the identity. Therefore  $f \in Ker\Psi$ ; so *f* is the identity. It follows that, for every non-identity element *f* of *G*<sub>A</sub>, the map  $f_{\infty}$  has *A* as unique fixed point.  $\Box$ 

**Proposition 3.2.** The group  $G_A$  has a sharply transitive action on the points of  $\ell_{\infty}$  different from A.

**Proof.** If *P* is a point of  $\ell_{\infty}$  different from *A*, then

$$|G_A| = |Orb_{G_A}(P)| |Stab_{G_A}(P)|.$$

From the previous proposition  $Stab_{G_A}(P)$  is trivial; thus  $Orb_{G_A}(P)$  has size  $q^2$ . The assertion follows.  $\Box$ 

By dualizing the previous arguments it can be shown that  $G_A$  has a sharply transitive action on the lines through A different from  $\ell_{\infty}$ . It follows that every non-identity element f of  $G_A$  has A as unique fixed point and  $\ell_{\infty}$  as unique fixed line.

**Proposition 3.3.** The group  $G_A$  stabilizes every conic of a hyperosculating pencil with base A containing the line  $\ell_{\infty}$  counted twice.

**Proof.** We may assume, without loss of generality, that A = (1, 0, 0) and that  $\ell_{\infty}$  has equation  $x_3 = 0$ . A non-identity element  $f \in G_A$  has A as unique fixed point and  $\ell_{\infty}$  as unique fixed line; so it is given by

$$\begin{pmatrix} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{pmatrix},$$

for some  $a, b, c \in GF(q^2)$ .

Every elementary Abelian *p*-group of order  $q^2$  is isomorphic to the additive group of  $GF(q^2)$ . So there exists an isomorphism

$$\Phi: x \in \mathrm{GF}(q^2) \longrightarrow \begin{pmatrix} 1 & \alpha(x) & \gamma(x) \\ 0 & 1 & \beta(x) \\ 0 & 0 & 1 \end{pmatrix} \in G_A,$$

where  $\alpha$ ,  $\beta$  and  $\gamma$  are mappings of  $GF(q^2)$  into itself such that  $\alpha(0) = \beta(0) = \gamma(0) = 0$ . From the condition  $\Phi(x + y) = \Phi(x)\Phi(y)$ , it follows that

$$\begin{aligned} \alpha(x+y) &= \alpha(x) + \alpha(y), \\ \beta(x+y) &= \beta(x) + \beta(y), \\ \gamma(x+y) &= \gamma(x) + \gamma(y) + \alpha(x)\beta(y), \end{aligned}$$
(1)

for any *x*, *y* in  $GF(q^2)$ .

The functions  $\alpha$ ,  $\beta$  and  $\gamma$ , as any map of  $GF(q^2)$  into itself, are polynomial functions. Also,  $\alpha$  and  $\gamma$  are additive maps; hence

$$\alpha(x) = \sum_{i=1}^{u} a_i x^{p^i}, \qquad \beta(x) = \sum_{j=1}^{v} b_j x^{p^j},$$

for some integers *u* and *v* and some elements  $a_i$  and  $b_j$  in  $GF(q^2)$ .

Let

$$\gamma(\mathbf{x}) = \sum_{k=1}^{t} c_k \mathbf{x}^k;$$

it follows from (1) that

$$\sum_{k=1}^{t} c_k (x+y)^k = \sum_{k=1}^{t} c_k x^k + \sum_{k=1}^{t} c_k y^k + \sum_{i,j} a_i b_j x^{p^i} y^{p^j}$$

Therefore

$$\alpha(x) = ax^{p^n}, \qquad \beta(x) = bx^{p^n}, \qquad \gamma(x) = \frac{ab}{2}x^{2p^n},$$

for a suitable integer *n* and for some elements  $a, b \in GF(q^2)$ . We may assume that the point P = (0, 0, 1) belongs to  $\mathcal{U}$  and if *f* is the previously defined non-identity element of  $G_A$ , then  $f(P) = (\gamma(s), \beta(s), 1) \in \mathcal{U}$  for some  $s \in GF(q^2)$ . The points *A*, *P* and f(P) are non-collinear points, since  $G_A$  has a sharply transitive action on the lines through *A* different from  $\ell_{\infty}$ . So f(P) is on a line through *A*, different from  $\ell_{\infty}$  and from *AP*. If f(P) is on the line  $x_1 = 0$ , then  $\gamma(s) = 0$  and since  $\beta(s) \neq 0$ , then a = 0 and hence  $\alpha(s) = 0$ . It follows that *f* has B(0, 1, 0) as a fixed point, a contradiction. Therefore, by appropriately choosing *s*, we may assume that f(P) = (1, 1, 1) and hence

$$f = \begin{pmatrix} 1 & 2 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}.$$

Thus  $a = \frac{2}{c^{p^n}}$ ,  $b = \frac{1}{c^{p^n}}$ , and so

$$G_{A} = \left\{ \begin{pmatrix} 1 & \frac{2}{s^{p^{n}}} x^{p^{n}} & \frac{1}{s^{2p^{n}}} x^{2p^{n}} \\ 0 & 1 & \frac{1}{s^{p^{n}}} x^{p^{n}} \\ 0 & 0 & 1 \end{pmatrix} : x \in \mathrm{GF}(q^{2}) \right\}.$$

Since the map  $x \mapsto x^{p^n}$  of  $GF(q^2)$  is an automorphism, it follows that

$$G_A = \left\{ \begin{pmatrix} 1 & 2d & d^2 \\ 0 & 1 & d \\ 0 & 0 & 1 \end{pmatrix} : d \in \mathrm{GF}(q^2) \right\}.$$

Finally, observe that  $G_A$  stabilizes every conic of the hyperosculating pencil  $\mathcal{P}$  with equation  $x_1x_3 - x_2^2 + wx_3^2 = 0$ , with  $w \in GF(q^2) \cup \{\infty\}$ . Since  $\mathcal{P}$  contains the line  $\ell_{\infty}$  counted twice and has the point A as base, the assertion follows.  $\Box$ 

**Proof of Theorem 1.1.** From the previous result, the unital  $\mathcal{U}$  is the union of q conics  $\Gamma_1, \ldots, \Gamma_q$  of  $\mathcal{P}$  with equations  $x_1x_3 - x_2^2 + w_ix_3^2 = 0$ ,  $i = 1, \ldots, q$ . For q even, the tangents to  $\Gamma_1$  all contain a common point N, the nucleus of  $\Gamma_1$ . Thus there would be  $q^2 + 1$  tangents to  $\mathcal{U}$  on N, a contradiction. Hence q must be odd (see also [3, Chapter 4]). Let P be a point of  $\Gamma_i$ . Since the secant lines through P to  $\Gamma_i$  are also secant to  $\mathcal{U}$ , it follows that the tangent line to  $\Gamma_i$  at P coincides with the tangent line to  $\mathcal{U}$  at P. Hence the points of  $\Gamma_j$ , for any  $j \neq i$ , are all internal points with respect to  $\Gamma_i$ . From the equations of  $\Gamma_i$  and  $\Gamma_j$ , it follows that  $w_i - w_j$  is a non-square in  $GF(q^2)$ . Without loss of generality we may assume that the point (1, 1, 1) belongs to  $\mathcal{U}$ ; so the conic with equation  $x_1x_3 - x_2^2 = 0$  is contained in  $\mathcal{U}$  and then the set  $W = \{w_1, \ldots, w_q\}$  is a q-set containing 0 with the property that the difference of any two distinct elements is always a non-square. From [4] it follows that, considering  $GF(q^2)$  in the usual way as the affine plane AG(2, q), the set W is a line through the origin. Thus W is a set of the form tGF(q), with t a non-square in  $GF(q^2)$ . Then  $\mathcal{U}$  is a Buekenhout–Metz unital of BEHS-type.  $\Box$ 

# References

- [1] V. Abatangelo, B. Larato, A group-theoretical characterization of parabolic Buekenhout–Metz unitals, Boll. Unione Mat. Ital. (9) 5A (1991) 195–206.
- [2] R.D. Baker, G.L. Ebert, Intersections of unitals in the Desarguesian plane, Congr. Numer. 70 (1990) 87-94.
- [3] S.G. Barwick, G.L. Ebert, Unitals in Projective Planes, in: Springer Monographs in Mathematics, Springer, New York, 2008.
- [4] A. Blokhuis, On subsets of  $GF(q^2)$  with square differences, Indag. Math. 46 (1984) 369–372.
- [5] G.L. Ebert, K. Wantz, A group theoretic characterization of Buekenhout–Metz unitals, J. Combin. Des. 4 (1996) 143–152.
- [6] J.W.P. Hirschfeld, T. Szőnyi, Sets in a finite plane with few intersection numbers and a distinguished point, Discrete Math. 97 (1991) 229–242.