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1. Introduction

Baker and Ebert [2] and Hirschfeld and Szényi [6] independently discovered an orthogonal Buekenhout-Metz unital in
PG(2,¢%), q = p", q odd, which is the union of g conics of a hyperosculating pencil with base a point A. We call such a
unital Buekenhout-Metz of BEHS-type. These are the only Buekenhout-Metz unitals containing conics. In [1] Abatangelo
and Larato determine the linear collineation group I" stabilizing a Buekenhout-Metz unital of BEHS-type and prove that
this group has the following properties:

(i) the order of I' is 2¢°(q — 1);
(ii) I is transitive on the points of the unital different from A;
(iii) the stabilizer of a point of the unital, different from A, in I" is a cyclic group of order 2(q — 1);
(iv) I isthe semidirect product of a normal elementary Abelian subgroup of order g° with a cyclic subgroup of order 2(q—1).

They also prove that I" has an elementary Abelian p-group of order g%, with no non-identity elations, that stabilizes every
conic of U. Further, they show that, if the group of projectivities G preserving a unital U in PG(2, ¢?) with g odd satisfies these
four conditions, then U is a Buekenhout-Metz unital of BEHS-type. Ebert and Wantz [5] prove that a unital U is orthogonal
Buekenhout-Metz if and only if the group of projectivities stabilizing U contains a semidirect product S x R where S has
order ¢> and R has order q — 1. Also, S is Abelian if and only if U is of BEHS-type, in which case q is necessarily odd and S is
elementary Abelian.

In this paper we obtain the following group theoretic characterization of Buekenhout-Metz unitals of BEHS-type.

Theorem 1.1. Let U be a unital in PG(2, ¢°), with q = p", and let G be the group of projectivities stabilizing U. If there exists a
point A of U such that the stabilizer of A in G contains an elementary Abelian p-group of order q* with no non-identity elations,
then U is a Buekenhout-Metz unital of BEHS-type and q is odd.
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2. Preliminary results

Let PG(2, q°), g = p", be the projective plane over the Galois field GF(q%). A unital in PG(2, ¢°) is a set U of g> + 1 points
meeting every line of PG(2, ¢%) in either 1 or g + 1 points. Lines meeting a unital U in 1 or q¢ 4+ 1 points are called tangent
or secant lines to U. Through each point of U there pass g* secant lines and one tangent line. Through each point P not on
U there pass g> — q secant lines and q + 1 tangent lines; the points of contact of the tangent lines are called the feet of P.

An example is the non-degenerate Hermitian curve or classical unital, that is, the set of the absolute points of a non-
degenerate unitary polarity of PG(2, g?). For more information on unitals in projective planes, see [3].

Consider the polynomial x*> — r, irreducible over GF(q), and t € GF(q?) such that t?> —r = 0. Let a be an element in GF(g?%)
and let I, be the conic of PG(2, ¢*) with equation x;x; — x5 + ax = 0. The set

u:Uru

actGF(q)

is an orthogonal Buekenhout-Metz unital in PG(2, g%) of BEHS-type; see [6]. Observe that U is the the union of q conics of
a hyperosculating pencil with base (1, 0, 0).

A central collineation of PG(2, ¢%) is a collineation « fixing every point of a line £ (the axis of ) and fixing every line
through a point C (the center of o). If C € ¢, then « is an elation; otherwise « is a homology. It is known that given a line ¢
and three distinct collinear points C, P, P’ of PG(2, ¢°), with P, P’ ¢ ¢ and both different from C, there is a unique central
collineation with axis £ and center C mapping P onto P’.

Note that a non-identity homology f of PG(2, g?) stabilizing a unital U has as center a point V not on U and as axis a
secant line £ to U. Suppose by way of contradiction that V is on U. Let P be a point of £ N U. The line VP is a secant line to
U, hence for any point Q on (U N VP) \ {V, P} we have that |(f)| = |Orb,(Q)| |Stab,(Q)|. Since Stab,(Q) is the trivial
subgroup, it follows that |(f)| divides ¢ — 1. Let m be a secant line to U through V such that £ "' m ¢ U. For any point R
on m N U different from V we have that |{f)| = |Orby,(R)|, therefore |(f)| divides q. As q and g — 1 are relatively prime,
[{f)] = 1and f is the identity, a contradiction. Suppose now that ¢ is a tangent line to U. The line £ contains at most one
of the feet of V; so there exists one of the feet of V, say T, not on £. Since VT is the tangent line to U at T, it follows that
f(T) =T, thus f is the identity, again a contradiction.

From now on we identify, unambiguously, a projectivity of PG(2, ¢°) with its matrix representation with respect to a
frame of the plane. Then a group of projectivities of the plane is identified by a group of 3 x 3 matrices.

3. Characterization

Let U be a unital in PG(2, ¢%), g = p", and let A be a point of U with tangent line £.,. Throughout the paper we will denote
by G the linear collineation group preserving U and by G, an elementary Abelian p-group of order g2, with no non-identity
elations, contained in the stabilizer of A in G. Let L., be the group of projectivities of the line £, into itself. Every element
f € G4 induces a projectivity fo, of Ly,. Consider the homomorphism

¥ :.f el — fo €L
An element g € Ker¥ induces the identity map on ¢, hence g is a perspectivity with axis £,. Since g cannot be a non-
identity homology (see Section 2) and G4 has no non-identity elations, it follows that g is the identity. The map ¥ is then a
monomorphism.
Proposition 3.1. If f is a non-identity element of G, then fy, has A as a unique fixed point.

Proof. Let P be a point of £, different from A. There exists an element h € G, such that h(P) # P. Indeed, suppose on the
contrary that P is fixed by every element of G4. In such a case ¥ (G,) is a subgroup of the stabilizer Lyp of both A and P in
Loo. The groups ¥ (G,) and Lsp have size g? and q* — 1, respectively, a contradiction. Since G, is an Abelian group, for every
element f € G4 we have that

foo(P) = (h) 0 foo 0 hoo) (P).
If foo(P) = P then (h] o fx o hoo)(P) = P; hence f,, fixes the three distinct points A, P and h(P), so it is the identity.
Therefore f € Ker¥; so f is the identity. It follows that, for every non-identity element f of G4, the map f,, has A as unique
fixed point. O
Proposition 3.2. The group G4 has a sharply transitive action on the points of {, different from A.
Proof. If P is a point of £, different from A, then

|Ga| = |Orbg, (P)] |Stabg, (P)|.
From the previous proposition Stabg, (P) is trivial; thus Orbg, (P) has size g?. The assertion follows. O

By dualizing the previous arguments it can be shown that G4 has a sharply transitive action on the lines through A different
from £ .. It follows that every non-identity element f of G4 has A as unique fixed point and £, as unique fixed line.
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Proposition 3.3. The group G, stabilizes every conic of a hyperosculating pencil with base A containing the line £, counted
twice.

Proof. We may assume, without loss of generality, that A = (1, 0, 0) and that £, has equation x3 = 0. A non-identity
element f € G, has A as unique fixed point and £, as unique fixed line; so it is given by

1 a b
01 c],
0 0 1

for some a, b, c € GF(q?).
Every elementary Abelian p-group of order g? is isomorphic to the additive group of GF(g?). So there exists an
isomorphism

(1 a(x) y(X))
®:xeGF@) — [0 1 B® )] eG
0 0 1

where o, 8 and y are mappings of GF(g?) into itself such that «(0) = B(0) = y(0) = 0. From the condition & (x + y) =
D (x)D(y), it follows that

a(x+y) =a®X) +a®y),
Bx+y) = BX) + BWY),
yx+y)=y@+yQ® +a®)BY), (1)

for any x, y in GF(g?).
The functions «, 8 and y, as any map of GF(q?) into itself, are polynomial functions. Also, o and y are additive maps;
hence

a(x) = Zaixpi, BKx) = ijxpi,
i=1 =

for some integers u and v and some elements a; and b; in GF(q%).
Let

t
y0 =) axt;
k=1

it follows from (1) that

t t t o
Z c(x +Y)k = Z Ckxk + Z Ckyk + Z aiijplypl.
k=1 k=1 k=1 ij

Therefore

n

n n b
a =, PR =0y =T

for a suitable integer n and for some elements a, b € GF(g%). We may assume that the point P = (0, 0, 1) belongs to U and
if f is the previously defined non-identity element of Gy, then f(P) = (y(s), B(s), 1) € U for some s € GF(g?). The points
A, P and f (P) are non-collinear points, since G, has a sharply transitive action on the lines through A different from £,. So
f(P) is on a line through A, different from £, and from AP. If f (P) is on the line x; = 0, then ¥ (s) = 0 and since S(s) # 0,
then a = 0 and hence «(s) = 0. It follows that f has B(0, 1, 0) as a fixed point, a contradiction. Therefore, by appropriately
choosing s, we may assume that f (P) = (1, 1, 1) and hence

1 2 1
f=[o 1 1).
0 0 1

Thusa = 2, b = -, and so

s o’
1 i p" 1 x2"
pl‘l 52pﬂ
=110 1 | :xeGF@g)
sP"
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Since the map x — x”" of GF(¢?) is an automorphism, it follows that

1 2d d?
Ga=13l0 1 d|:deGFgH
0 0 1

Finally, observe that G, stabilizes every conic of the hyperosculating pencil & with equation x;x3 — x% + wx% = 0, with
w € GF(g%) U {oo). Since & contains the line £, counted twice and has the point A as base, the assertion follows. O

Proof of Theorem 1.1. From the previous result, the unital U is the union of q conics I7, ..., I of # with equations
X1X3 — xﬁ + w,x% = 0,i = 1,...,q.For q even, the tangents to Iy all contain a common point N, the nucleus of I7.
Thus there would be g> 4+ 1 tangents to U on N, a contradiction. Hence g must be odd (see also [3, Chapter 4]). Let P be a
point of I7. Since the secant lines through P to I are also secant to U, it follows that the tangent line to I at P coincides
with the tangent line to U at P. Hence the points of I}, for any j # i, are all internal points with respect to /7. From the
equations of I'; and I}, it follows that w; — wj is a non-square in GF(q?). Without loss of generality we may assume that the
point (1, 1, 1) belongs to U; so the conic with equation x;x3 — x% = Ois contained in U and then the set W = {wq, ..., wq}
is a g-set containing 0 with the property that the difference of any two distinct elements is always a non-square. From [4]
it follows that, considering GF(g?) in the usual way as the affine plane AG(2, q), the set W is a line through the origin. Thus
W is a set of the form tGF(q), with t a non-square in GF(g?). Then U is a Buekenhout-Metz unital of BEHS-type. O
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