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Abstract. In this paper we prove the following result. Let s be an infi-
nite word on a finite alphabet, and N ≥ 0 be an integer. Suppose that
all left special factors of s longer than N are prefixes of s, and that s has
at most one right special factor of each length greater than N . Then s
is a morphic image, under an injective morphism, of a suitable standard
Arnoux-Rauzy word.

1 Introduction

Factor complexity is a common theme in the combinatorial analysis of finite
and infinite words. Being the function counting distinct blocks (factors) of each
length, it is one of the most natural measures of complexity of a word. A famous
theorem by Morse and Hedlund [1] characterizes ultimately periodic sequences
as the ones having bounded complexity.

Sturmian words have the lowest possible unbounded complexity (n+1 factors
of each length n). They make up one of the most studied family of infinite words,
not just because of their theoretical interest (see [2] for a general introduction,
or [3] for a recent survey). From the definition, it follows that Sturmian words
are on a binary alphabet, and have exactly one left special factor of each length
n (a factor is left special if it is a suffix of at least two distinct factors of length
n+ 1).

As is well known, a first natural generalization of Sturmian words for al-
phabets with an arbitrary number of letters was introduced by Arnoux and
Rauzy [4]. An infinite word s is Arnoux-Rauzy (or strict episturmian, see below)
if it is recurrent (i.e., all factors of s occur infinitely often) and it has exactly
one left special factor and one right special factor per length, that appear in s
immediately preceded (resp. followed) by all letters occurring in s. More detailed
definitions will be given in Sect. 2.

A remarkable property of Sturmian words, shared by Arnoux-Rauzy words,
is their closure under reversal : if w = a1a2 · · · an is a factor of an Arnoux-Rauzy
word s with ai ∈ A for i = 1, . . . , n, then w̃ = anan−1 · · · a1 is a factor of s too.
This led Droubay, Justin, and Pirillo [5] to a generalization: an infinite word is
episturmian if it has at most one left special factor per length, and is closed
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under reversal. Episturmian words are recurrent, but have no restriction on the
number of letters immediately preceding left special factors. Thus the family of
episturmian words strictly contains the one of Arnoux-Rauzy words.

The class of ϑ-episturmian words is a further generalization, recently intro-
duced in [6] by substituting the reversal operator with any involutory antimor-
phism ϑ of A∗. Generalizing even more, by requiring the condition on special
factors only for sufficient lengths, ϑ-words with seed are obtained (see [6]).

All such words have a standard counterpart, where the unique left special
factors correspond to prefixes of the infinite word. For instance, a ϑ-standard
word with seed is any infinite word s which is closed under ϑ and such that any
sufficiently long left special factor of s is a prefix of it. For all the above classes,
standard words are good representatives, in the sense that an infinite word s
belongs to one of such classes if and only if s has the same set of factors as some
standard word of that class (see [5, 6]).

Our main result shows that, in the standard case, even when the further step
of dropping the “closure under some ϑ” requirement is made, the large class
of words thus obtained retains a strong link with Arnoux-Rauzy words. More
precisely, we will prove the following.

Theorem 1. Let s ∈ Aω satisfy the following two conditions for all n ≥ N ,
where N ≥ 0:

1. any left special factor of s having length n is a prefix of s,
2. s has at most one right special factor of length n.

Then there exists B ⊆ alph(s) and a standard Arnoux-Rauzy word t ∈ Bω such
that s is a morphic image (under an injective morphism) of t.

In the next section we shall give all the formal definitions and preliminary
results needed for our proof, which will be given in Sect. 3. For more basics about
combinatorics on words, we refer to [7]. For more details on episturmian words
and their generalizations, see [3, 5, 8, 9, 6, 10, 11].

2 Basic Definitions and Results

In the following, A will denote a finite alphabet, A∗ the free monoid of words
over A, and Aω the set of infinite words over A. The identity element of A∗ is
the empty word ε.

Let s be a finite or infinite word. The set of letters occurring in s is denoted
by alph(s). A factor of s is any finite word w such that s = uwv for suitable
words u, v; if u (resp. v) is the empty word we call w a prefix (resp. suffix ) of
s. A border of s ∈ A∗ is a word which is both a prefix and a suffix of s. If s is
nonempty, we denote by sf its first letter, and if s is also finite we denote by s`

its last letter1. With Fact(s), Pref(s), and Suff(s) we denote respectively the set

1 This notation should not be confused with powers of a word; no such power occurs
in this paper.
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of factors, prefixes, and suffixes of s. The factor complexity of s is the function
cs : IN → IN defined by cs(n) = #(An ∩ Fact(s)) for all n ≥ 0. We remark that
the complexity of an infinite word s is a nondecreasing function.

Let w ∈ Fact(s). A factor v of s is called a right (resp. left) extension of w in
s if w is a proper prefix (resp. suffix) of v. If |w| = n, the right (resp. left) degree
of w in s is the number of its distinct right (resp. left) extensions of length n+1.
For all n ≥ 0, any factor of s of length n+ 1 is uniquely determined by its first
letter and by its suffix of length n, or by its last letter and by its prefix of length
n. An immediate consequence is the following well-known identity:∑

w∈Fs(n)

deg−(w) = cs(n+ 1) =
∑

w∈Fs(n)

deg+(w) , (1)

in which the operators deg− and deg+ denote the left and right degree respec-
tively, and Fs(n) = An ∩ Fact(s).

We recall that w is called a right (resp. left) special factor of s if its right
(resp. left) degree is at least 2, i.e., if there exist two distinct letters a and b such
that wa and wb (resp. aw and bw) are factors of s. If a factor of s is both left
and right special, then it is called bispecial.

A complete return to w in s is any factor of s containing exactly two occur-
rences of w, one as a prefix and the other as a suffix. If z = vw is a complete
return to w, then v is called a return word to w (cf. [12]).

An infinite word s is recurrent if each of its factors has infinitely many occur-
rences in s; it is uniformly recurrent if the gaps between consecutive occurrences
of any factor are bounded. Equivalently, s is uniformly recurrent if for all factors
w there are finitely many distinct return words to w in s.

Given any prefix p of an infinite word s, there exists a unique factorization
of s by means of the return words to p in s. By mapping each return word to a
different letter of a suitable alphabet, and then applying such a map to s thus
factorized, we obtain a derivated word of s with respect to p (cf. [12]). Clearly,
s is a morphic image of its derivated words.

The following simple lemma is the first basic ingredient needed for our main
result.

Lemma 2. Let s be an infinite word such that any sufficiently long left special
factor of s is a prefix of it. Then s is recurrent.

Proof. By contradiction, suppose there exists a factor w of s having only finitely
many occurrences in s, and let λw be the prefix of s ending with the rightmost
occurrence of w in s. Then all prefixes of s from length |λw| onward do not
reoccur in s, and so have left degree 0.

We claim that this implies that s has also at least one left special factor for
each length n ≥ |λw|. Indeed, for all such n the left sum in (1) has cs(n) =
# Fs(n) terms. Since the prefix has left degree 0, there must be a term greater
than 1 in order to have cs(n + 1) ≥ cs(n) (which is true as s is infinite). By
definition, a factor with left degree greater than 1 is a left special factor.

For sufficiently large n, such a factor should be a prefix of s by hypothesis.
We have reached a contradiction. ut
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An infinite word s is periodic if it can be written as s = vvv · · · = vω for
some finite word v. An ultimately periodic word is an infinite word of the form
uvω for some u, v ∈ A∗. As is well known (see for instance [13, Lemma 1.4.4]), a
recurrent ultimately periodic word is necessarily periodic.

We need one of the most well-known and useful restatements of the theorem
of Morse and Hedlund (cf. [1, Theorem 7.3]):

Theorem 3. An infinite word s is ultimately periodic if and only if cs(n) =
cs(n+ 1) for some n ≥ 0.

As a consequence of Lemma 2, we obtain the following specialization.

Proposition 4. An infinite word s is (purely) periodic if and only if it has no
left special factor of some length n.

Proof. If s = pω with p ∈ A∗, then s has no left special factors of length |p|.
Conversely, assume that s has no left special factor of length n. This implies

#(An ∩ Fact(s)) = #(An+1 ∩ Fact(s)) ,

so that by Theorem 3, s is ultimately periodic. Clearly s has no left special
factor of any length k ≥ n, thus it trivially satisfies the hypothesis of Lemma 2.
Therefore s is recurrent, and hence periodic. ut

The following proposition was proved in [10, Lemma 7] under different hy-
potheses. We report an adapted proof for the sake of completeness.

Proposition 5. Let s be a recurrent aperiodic infinite word. Then every factor
w of s is contained in some bispecial factor of s.

Proof. Since s is recurrent, we can consider a complete return z to w in s.
Writing z = vw, it cannot happen that the factor w is always preceded by v in
s, otherwise s would be periodic. Thus some suffix of z of length at least |w|
must be a left special factor of s. Let x ∈ A∗ be of minimal length such that
xw is a left special factor of s. Such a word is trivially unique, and w is always
preceded in s by x. In a similar way, there exists a unique y ∈ A∗ of minimal
length such that wy is right special in s, and w is always followed by y.

Since xw is left special in s and xw is always followed by y one has that xwy
is also left special. Similarly, since wy is right special and always preceded by
x, xwy is right special. Hence every factor w of s is contained in some bispecial
factor W = xwy of s. ut

A recurrent word s is an Arnoux-Rauzy word if it has exactly one left special
factor and one right special factor of each length, all of degree # alph(s). It is
natural to extend this definition to the case of a unary alphabet A = {a}; the
word aω is considered an Arnoux-Rauzy word, since it has a unique factor of
each length, clearly not special but of degree 1 = #A.

Thus we can reformulate the definition as follows: a recurrent word s is
Arnoux-Rauzy if for all n ≥ 0, all factors of length n have minimum left degree
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(i.e. 1) except one whose left degree is maximum(# alph(s)), and the same occurs
for right degrees (but the two special factors may be different). By (1), this
implies cs(n+ 1) = cs(n) + alph(s)− 1 and then, as cs(0) = 1,

cs(n) = 1 + (# alph(s)− 1)n for all n ∈ IN .

Arnoux-Rauzy words are uniformly recurrent (cf. [5]); this was part of the
definition in [4]. An Arnoux-Rauzy word s is standard if its left special factors
are prefixes of s.

Example 6. A well-known standard Arnoux-Rauzy word is the so-called Tri-
bonacci (or Rauzy) word

τ = abacabaabacababacabaabacabacabaabacabab · · ·

which can be obtained as a fixed point of the morphism a→ ab, b→ ac, c→ a
(see [4, 5]).

Remark 7. In order to show that a given infinite word s is a standard Arnoux-
Rauzy word, it is sufficient to prove the following two conditions:

1. s has exactly one factor of right degree # alph(s) for each length,
2. every left special factor of s is a prefix of it.

Indeed, under such hypotheses s is recurrent by Lemma 2. Moreover, in view
of (1), by the first condition we derive

cs(n+ 1) ≥ # alph(s) + cs(n)− 1 (2)

for all n ≥ 0; by condition 2, all factors which are not prefixes have left degree 1,
so that equality holds in (2) and there is one factor of left degree # alph(s). In
conclusion, all factors of length n have left degree 1, except one which has left
degree # alph(s), and the same occurs for right degrees, for all n; hence s is an
Arnoux-Rauzy word (standard by condition 2).

3 Proof of Theorem 1

Suppose first that s has no left special factor of some length n. Then s is periodic
by Proposition 4, so that it is trivially a morphic image of xω for any x ∈ alph(s).

Now let us assume that s has at least one left special factor of each length –
exactly one, from length N on. By Lemma 2, s is recurrent, so that by Propo-
sition 5 it has infinitely many bispecial factors, which we denote by W0 =
ε,W1, . . . ,Wn, . . ., where |Wi| ≤ |Wi+1| for all i ≥ 0. Let j be the least index
such that |Wj | ≥ N . Since prefixes (resp. suffixes) of left (resp. right) special
factors are left (resp. right) special themselves, by conditions 1 and 2 it follows
that Wi is a border of Wi+1 for all i ≥ j, and the sequence whose n-th term is
the (right) degree of Wn for all n ≥ j is then non-increasing. Hence there exists
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k ≥ j such that Wn has the same degree of Wk for all n ≥ k, that is, the above
considered sequence is constant from its k-th term on. We set

B = {x ∈ A |Wkx ∈ Fact(s)} ⊆ alph(s) ,

so that #B is, by definition, the degree of Wk.
We now consider the return words to w = Wk in s. Let u1w = wv1 and

u2w = wv2 be any two distinct complete returns to w in s, and let us show that
vf1 6= vf2 . Indeed, let p be the longest common prefix of v1 and v2. If p = v1,
then |v2| > |v1| as v1 6= v2; since wv1 = u1w, there is an internal occurrence of
w in wv2, contradicting the definition of complete return. The same argument
applies if p = v2. Thus p is a proper prefix of both v1 and v2, so that wp is a
right special factor of s. Since |w| ≥ N , and w is a right special factor of s, by
condition 2 it follows that w is a suffix of wp. This implies p = ε, since otherwise
there would be an internal occurrence of w in wv1 and wv2. Hence vf1 6= vf2 as
desired. Since w is also left special in s, using a symmetric argument one can
prove that u`1 6= u`2.

From this it follows that for each x ∈ B, there exists a unique complete return
uxw = wvx to w in s, such that vfx = x. We define a morphism ϕ : B∗ → A∗

by ϕ(x) = ux. Note that ϕ is injective, as ϕ(B) is a suffix code having the same
cardinality as B.

By definition, we have s = ϕ(t), where t ∈ Bω is a derivated word of s with
respect to its prefix w. We note that, as a consequence of the definition of return
words, one has

z ∈ Fact(t)⇔ ϕ(z)w ∈ Fact(s) , z ∈ Pref(t)⇔ ϕ(z)w ∈ Pref(s) . (3)

We will prove that t is a standard Arnoux-Rauzy word; it suffices (see Remark 7)
to show that t has exactly one right special factor of each length, that each right
special factor has degree #B, and finally that all left special factors of t are
prefixes of it.

Clearly t is not periodic, as s = ϕ(t) and s is not periodic. Hence t has
right special factors of any length. Let z1 and z2 be any two right special factors
of t having the same length. Thus there exist distinct letters x1, y1, x2, y2 ∈ B
such that xi 6= yi and zixi, ziyi ∈ Fact(t) for i = 1, 2. By (3), this implies
ϕ(zixi)w,ϕ(ziyi)w ∈ Fact(s). For α ∈ {xi, yi} and i = 1, 2 we have

ϕ(ziα)w = ϕ(zi)uαw = ϕ(zi)wvα ∈ Fact(s)

with vfxi
6= vfyi

, so that ϕ(z1)w and ϕ(z2)w are right special factors of s. By
condition 2, either ϕ(z1)w ∈ Suff(ϕ(z2)w), or vice versa. The word w has |z1|+
1 = |z2|+1 occurrences in both ϕ(z1)w and ϕ(z2)w, and it is a prefix of both, by
the definition of return word. Hence we derive ϕ(z1)w = ϕ(z2)w, so that z1 = z2
by the injectivity of ϕ.

If z is a right special factor of t, by the above argument ζ := ϕ(z)w is right
special in s. As |ζ| ≥ |w|, the word ζ is a suffix of some Wn with n ≥ k, so that
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ζx = ϕ(z)wx ∈ Fact(s) for all x ∈ B. Since the only complete return to w in s
starting with wx is wvx, it follows that

ϕ(z)wvx = ϕ(z)uxw = ϕ(zx)w ∈ Fact(s) ,

so that zx ∈ Fact(t) for all x ∈ B, proving that z has right degree #B.
Let now z′ be a left special factor of t, and let xz′, yz′ ∈ Fact(t) for some

distinct letters x, y ∈ B. Then ϕ(xz′)w,ϕ(yz′)w ∈ Fact(s). As ϕ(x)` = u`x 6=
u`y = ϕ(y)`, ϕ(z′)w is a left special factor of s. By condition 1, it follows ϕ(z′)w ∈
Pref(s) and then z′ ∈ Pref(t) by (3). ut

4 Concluding Remarks

Theorem 1 shows that what seems to be a natural (though very wide) gener-
alization of the standard episturmian words, retains a strong connection with
Arnoux-Rauzy words.

One could ask whether such result could be improved to obtain a full char-
acterization of morphic images of standard Arnoux-Rauzy words. However, the
converse of Theorem 1 is false; a simple counterexample is given by the image
s of the Tribonacci word under the episturmian morphism (cf. [5, 8]) f : a→ a,
b→ ba, c→ ca. Indeed,

s = f(τ) = abaacaabaaabaacaabaabaacaabaaabaacaabaa · · ·

does not satisfy condition 1 of Theorem 1 for any N , as aa is a left special factor
of s which is not a prefix of it. Nevertheless, this counterexample suggests that
the situation could be better in the general (non-standard) case, since the word
s, being episturmian, does have only one left special factor and one right special
factor of each length.

By modifying the proof of Theorem 1 suitably, it is not difficult to show the
following:

Theorem 8. If s ∈ Aω is recurrent and has at most one left special factor
and one right special factor for all lengths k ≥ N , then there exist B ⊆ A, an
injective morphism ϕ : B∗ → A∗, and an Arnoux-Rauzy word t ∈ Bω such that
s ∈ Suff(ϕ(t)).

This is somehow weaker than the original Theorem 1, as we only get that s
is a suffix of a morphic image of an Arnoux-Rauzy word. Therefore, any im-
provement of Theorem 8 would be welcome, as well as any step towards the
converse (what can be said about special factors of morphic images of Arnoux-
Rauzy words?). Having a simple characterization could help in a more general
classification of infinite words with low factor complexity.
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2. Berstel, J., Séébold, P.: Sturmian words. In Lothaire, M., ed.: Algebraic Combi-
natorics on Words. Cambridge University Press, Cambridge UK (2002)

3. Berstel, J.: Sturmian and Episturmian Words (a survey of some recent results).
In Bozapalidis, S., Rahonis, G., eds.: Conference on Algebraic Informatics, Thes-
saloniki. Volume 4728 of Lecture Notes in Computer Science. (2007) 23–47

4. Arnoux, P., Rauzy, G.: Représentation géométrique de suites de complexité 2n+1.
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