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a b s t r a c t

The use of sexed semen technology in buffaloes is nowadays becoming more and more
accepted by farmers, to overcome the burden of unwantedmale calveswith related costs and
to more efficiently improve production and genetic gain. The aim of this study was to verify
the coupling of some variables on the efficiency of pregnancy outcome after deposition of
sexed semen through AI. Pluriparous buffaloes from two different farms (N ¼ 152) were
screened, selected, and subjected to Ovsynch protocol for AI using nonsexed and sexed
semen from four tested bulls. AI was performed in two distinct periods of the year:
September toOctoberand January to February.Neither farmsnor bulls hada significanteffect
on pregnancy rates pooled from the two periods. The process for sexing sperm cells did not
affect pregnancy rates at 28 days after AI, for nonsexed and sexed semen, respectively 44/73
(60.2%) and 50/79 (63.2%), P ¼ 0.70, and at 45 days after AI, for nonsexed and sexed semen,
respectively 33/73 (45.2%) and 33/79 (49.3%), P ¼ 0.60. Pregnancy rate at 28 days after AI
during the transitional period of January to February was higher when compared with
September to October, respectively 47/67 (70.1%) versus 47/85 (55.2%), P ¼ 0.06. When the
same pregnant animalswere checked at Day 45 after AI, the difference disappeared between
the two periods, because of a higher embryonic mortality, respectively 32/67 (47.7%) versus
40/85 (47.0%), P ¼ 0.93. Hematic progesterone concentration at Day 10 after AI did not
distinguish animals pregnant at Day 28 that would or would not maintain pregnancy until
Day 45 (P ¼ 0.21). On the contrary, when blood samples were taken at Day 20 after AI, the
difference in progesterone concentration between pregnant animals that would maintain
their pregnancy until Day 45 was significant for both pooled (P ¼ 0.00) and nonsexed
(P ¼ 0.00) and sexed semen (P ¼ 0.09). A similar trend was reported when blood samples
were taken at Day 25, being highly significant for pooled, nonsexed, and sexed semen
(P ¼ 0.00). Hematic progesterone concentration between the two periods of the year was
highly significant for pregnant animals at 28 days fromAIwhen blood sampleswere taken at
Day 20 after AI for pooled, nonsexed, and sexed semen, respectively P¼ 0.00, 0.00, and 0.06,
and for pregnant animals at Day 45 for pooled, nonsexed, and sexed semen, respectively
P ¼ 0.00, 0.00, and 0.01. From these results, it can be stated that hematic progesterone
concentration measurement since Day 20 after AI can be predictive of possible pregnancy
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maintenance until Day 45. Furthermore, the transitional period of January to February,
although characterized by a higher pregnancy outcome when compared with September to
October, suffers fromahigher late embryonicmortalityas evidencedbya significant different
hematic progesterone concentration between the two periods at Day 20 after AI.

� 2013 Elsevier Inc. All rights reserved.
1. Introduction

Some studies and field trials have unequivocably shown
that the use of sexed semen in the buffalo (Bubalus bubalis)
is reliable and efficient for the establishment of pregnancies
and consequent birth of live calves, similar to what is ob-
tained with the use of nonsexed semen. In fact, the first
pregnancies and birth of live buffalo calves were reported
after the deep deposition of less number of sexed sperm
cells at the uterotubal junction using a special catheter [1,2].
More recently, similar success with sexed semen has been
reported in conjunction with in vitro embryo production
procedures [3] and artificial insemination [4]. In the latter
study, even lower concentration of sexed sperm cells were
deposited either at the body of the uterus or at the very
beginning of the uterine horn, ipsilateral to the ovary
bearing the ovulatory follicle, using an ordinary catheter for
AI. The successful application of reproductive technologies,
and in particular of the sexed semen technology in associ-
ationwith artificial insemination, can be hampered by some
conditions, some of which are physiologically intrinsic to
the buffalo species and others are shared by cattle:
(1) reproductive efficiency as related to season and photo-
period; (2) inadequate progesterone production by the
gravidic corpus luteum, and (3) late embryonic mortality
(LEM). At latitudes where the present studywas conducted,
buffaloes are reported as characterized by a different
seasonal reproductive efficiency, being higher during the
months of decreasing light hours [5]. Such differential
seasonal output in terms of cyclicity, pregnancy rates, and
calving is clearly evident when animals are left to naturally
occurring mating with the exclusion of any human inter-
vention, and when they are subjected to controlled
breeding through the adoption of various reproductive
technologies such as AI, hormonal stimulation, and in vitro
embryo production procedures in association also with
Ovum Pick Up [6]. In ruminants, the establishment and
maintenance of pregnancy is dependent on progesterone
production by the functional CL at the early stages of
embryo development, and supported by additional
progesterone production by the fetoplacental unit at later
stages of pregnancy [7]. It has been reported in buffaloes
that progesterone production follows a seasonal pattern in
diverse geographic climatic conditions, both in the course
of estrous cycles in extreme hot climate [8,9], and after
parturition when monitoring ovarian function [10]. Sea-
sonality in the buffalo species is also responsible for
a differential progesterone production linked to mainte-
nance or loss of pregnancy according to the period of the
year [11]. The reasons for higher embryonic mortality in
buffaloes during specific periods of the year are not fully
understood. However, it seems that it might be, at least
partially, because of a decrease in progesterone secretion
by the CL during early pregnancy [12]. This study was
conducted to outline possible relationships among some
important variables, namely season and periods of the year,
nonsexed versus sexed semen, and progesterone produc-
tion on the establishment andmaintenance of pregnancy in
buffaloes after AI with nonsexed and sexed semen.

2. Materials and methods

2.1. Animals

The study was conducted during the breeding season,
characterized by decreasing light hours (September to
October), and the transition period (January to February),
characterized by increased light hours. All the pluriparous
buffaloes (N ¼ 152), in good general and reproductive
health, completed 140 � 5.3 days after parturition and
confirmed to be cycling (having ovulatory follicles/func-
tional CLs) by two ultrasound examinations at an interval of
10 days. They were included in the study at two different
farms in the south of Italy located at latitude 40.5 to 41.5 N
and longitude 13.5 to 15.5.

2.2. Synchronization of ovulation

Buffaloes were synchronized for ovulation by imple-
mentation of a conventional Ovsynch protocol [13] by
GnRH administration of 12 mg buserelin acetate (Receptal,
Intervet, Milan, Italy) im on Day 0, followed by 0.524 mg of
synthetic prostaglandin (Cloprostenol, Estrumate,
Schering-Plough Animal Health, Milan, Italy) on Day 7 and
an additional 12 mg buserelin acetate on Day 9. Artificial
insemination was performed 16 to 20 hours after the
second GnRH administration.

2.3. Semen and AI

Twodifferent collaborating companies (Cogent Breeding
Ltd, UK, and Centro Tori Chiacchierini, Perugia, Italy), were
responsible for semen collection, processing, sexing,
freezing, and distribution. Unsexed and sexed semen from
the same ejaculate of each of four buffalo bulls was used for
AI. Sperm sorting was performed according to the Beltsville
Sperm Sorting Technology [14], starting with dilution of
semen up to 80 � 106 spermatozoa per mL with modified
Tyrode’s albumin lactate pyruvate extender. Then, 50 mL of
5 mg/mL Bisbenzimide (Hoechst 33342; Sigma, St. Louis,
MO, USA) and 27 mL food dye FD#40 (Warner Jenkinson
Company Inc., St. Louis, MO, USA) were added to samples
and incubated at 35.5 �C for 30minutes, andfiltered through
a 30 mm filter (Partec, GmbH). Samples were then sorted at
a rate of 5500 cells per second and sorting pressure of 40 psi
into 50 mL conical plastic tubes (BD Biosciences) prefilled
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with 3 mL egg yolk extender. After sorting, samples were
centrifuged at 800� g for 20 minutes. The supernatant was
discarded and the pellet resuspended with a TRIS freezing
extender. Viability characteristics of sexed semen from the
four bulls, after sorting of the two cell populations, were as
follows: (1) purity ranged from92% to 97% andmean� SEM
94� 0.7; (2) progressive linear motility ranged from 30% to
60%andmean�SEM48.7�4.4; (3)membrane integrity test
(propidium iodide test) ranged from59% to 69% andmean�
SEM 62.7� 2.1; and (4) osmotic resistance test ranged from
43% to 56% and mean � SEM 48.1 � 2.3. A total content of
2million live sorted sperm cellswere packaged into 0.25mL
straws and frozen according to the Cogent Breeding Ltd,
UK proprietary technology. Reanalysis of sorting purity was
performed fromfrozen-thawedsamples, as described above
at an event rate of 100 cells per second and purity was
analyzed by curve fitting statistics. Nonsexed semen from
the same bulls was used at a concentration of 20million per
dose, packaged similarly into0.25mL straws. Bothnonsexed
and sexed semenwas deposited at the very beginning of the
uterine horn ipsilateral to the ovary bearing the ovulatory
follicle. Only animals with a follicle �10 mm and a tonic
uterus with or without vaginal mucous discharge were
considered to be in heat with impeding ovulation and sub-
jected to AI. Nonsexed and sexed semenwere used in 73 and
79 buffaloes, respectively. Pregnancy rateswere assessed by
ultrasound at Day 28 and confirmed at Day 45.

2.4. Progesterone measurement

The cyclic ovarian status of the buffaloes and luteal
function were evaluated by measuring progesterone (P4)
concentrations by RIA in blood samples collected on Days
10, 20, and 25 after AI [15,16]. Blood P4 concentrations
greater than 1.5 ng/mL were considered to be indicative of
a functional CL [17]. The minimum detectable amount of
progesterone was 2.1 � 0.08 pg. Intra- and interassay
coefficients of variation were 6.2% and 11.8%, respectively.

2.5. Statistical analysis

Results are expressed as mean and SEM or as frequen-
cies and percentage. Differences among percentages were
assessed by the chi-square test or, when appropriate, by
Fisher exact test. Progesterone concentration is expressed
as ng/mL. Continuous variables were compared using the
t test for unpaired data or by Mann–Whitney test. All
statistical analyses were performed using STATA software
version 11.2 (STATA Corporation, College Station, TX, USA).

3. Results

3.1. Farm and bull effect

Farm management and environment did not affect
pregnancy rate at 28 Days post AI when semen was
considered as a whole (P ¼ 0.64) and split into nonsexed
(P ¼ 0.70) and sexed semen (P ¼ 0.30). The same trend was
observed at confirmation of pregnancy at Day 45 for semen
(P ¼ 0.26) split into nonsexed (P ¼ 0.97) and sexed semen
(P¼ 0.11). Similarly, bulls did not affect pregnancy outcome
at 28 Days post AI, when results from the use of nonsexed
and sexed semen were pooled together (P ¼ 0.31), and
when they were singularly evaluated as nonsexed semen
(P ¼ 0.57) and sexed semen (P ¼ 0.56). A similar trend was
reported at confirmation of pregnancy at 45 Days for
pooled semen (P ¼ 0.74), nonsexed semen (P ¼ 0.54), and
sexed semen (P ¼ 0.93).

3.2. Semen and period of the year on pregnancy rates and
LEM

When pooling data from both periods of the year
considered in this study, nonsexed and sexed semen gave
similar rates of pregnancy at 28 Days post AI (P ¼ 0.70) and
a similar trend was reported at 45 Days post AI (P ¼ 0.60).
No differences in LEM were reported between nonsexed
and sexed semen (P ¼ 0.78). When considering singularly
the transitional and the breeding seasons, a higher preg-
nancy rate at 28Days post AI in the former as opposed to the
latter was reported when results from nonsexed and sexed
semen were pooled together (P ¼ 0.06). Such difference
disappeared when only nonsexed semen was evaluated
(P¼ 0.40), but was more evident with the use of only sexed
semen, respectively (P ¼ 0.07). A significantly higher inci-
dence (P ¼ 0.05) of LEM reported for pooled semen during
the transitional period, obviates any difference in preg-
nancy rates at 45 Days post AI between two periods of the
year. This is confirmed for pooled semen (P ¼ 0.93), and
nonsexed semen (P ¼ 0.48) and sexed semen (P ¼ 0.43).
Collective data are presented in Table 1.

3.3. Birth of calves and sex rate

From the 20 pregnancies derived from AI during the
breeding season with nonsexed semen, an abortion at
7 months of gestationwas reported and the birth at term of
10 male and nine female live calves. On the contrary, no
abortions were reported within the 20 pregnancies ob-
tained with sexed semen, resulting in the birth of two male
and 18 female live calves. All pregnancies obtained during
the transitional period led to the birth of live calves. The
13 pregnancies derived from the use of nonsexed semen
resulted in the birth of 13 male and seven female calves,
and all 19 pregnancies obtained with sexed semen resulted
in the birth of female calves.

3.4. Days open on pregnancy rates and LEM

Days from parturition to AI did not influence rate of
pregnant versus nonpregnant buffaloes at Day 28 when
nonsexed and sexed semen results were pooled, respec-
tively 138.0 � 6.6 versus 143.3 � 9.0 (P ¼ 0.63). A similar
trend was reported when only nonsexed semen was
considered, respectively 139.9 � 9.0 versus 150.5 � 13.2
(P ¼ 0.49) and only sexed semen, respectively 136.3 � 9.8
versus 136.0� 12.3 (P¼ 0.98). An absence of effect was also
reported at confirmation of pregnancy at 45 Days for pooled
semen, respectively 143.5�7.5 versus 136.9�7.6 (P¼ 0.54),
and for nonsexed semen, respectively 143.5 � 10.2 versus
144.6 � 10.9 (P ¼ 0.94), and for sexed semen, respectively
143.4�10.9versus 129.2�10.7 (P¼0.35). The same interval



Table 1
Effect of breeding season (BS) versus transitional period (TP) and late embryonic mortality (LEM) on pregnancy rate (PR) after AI with nonsexed (NS), sexed
(S), and pooled semen (PS) in buffalo.

Pregnancy/
Embryo
Mortality

BS TP Pooled Seasons

NS S PS NS S PS NS S PS

PR (28 Days) 23/41 (56.1%) 24/44 (54.5%) 47/85 (55.2%) 21/32 (65.6%) 26/35 (74.2%) 47/67 (70.1%) 44/73 (60.2%) 50/79 (63.2%) 94/152 (61.8%)
PR (45 Days) 20/41 (48.7%) 20/44 (45.4%) 40/85 (47.0%) 13/32 (40.6%) 19/35 (54.2%) 32/67 (47.7%) 33/73 (45.2%) 39/79 (49.3%) 72/152 (47.3%)
LEM 3* (13.0%) 4** (16.6%) 7*** (14.8%) 8* (38.0%) 7** (26.9%) 15*** (31.9%) 11 (25%) 11 (22%) 22 (23.4%)

Within a row: * P ¼ 0.05; ** P ¼ 0.38; and *** P ¼ 0.05.
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from parturition to AI among pregnant buffaloes, did not
influence the rate of LEM when nonsexed and sexed
semenwere considered (no LEM143.5�7.5 vs. LEM120.0�
14.1; P ¼ 0.13). Similarly, results from the use of only non-
sexed semen highlighted a similar trend (no LEM 143.5 �
10.2 vs. LEM 128.9 � 19.1; P ¼ 0.48) and sexed semen (no
LEM 143.4 � 10.9 vs. LEM 111.2 � 21.4; P ¼ 0.17).

3.5. Late embryonic mortality: progesterone on pregnancy
and periods of the year

Progesterone values (ng/mL) at Day 10 after AI among
all pregnant buffaloes could not help in discriminating
animals that would terminate their pregnancy as opposed
to animals that would carry their pregnancy until Day 45.
Although the same trend was observed when only preg-
nancy from nonsexed semen was considered, with sexed
semen progesterone concentration was found significantly
lower in animals terminating their pregnancy as opposed
to those maintaining up to 45 Days fromAI. On the contrary
and more evidently, when progesterone values were taken
from all pregnant animals and considered at Day 20 after
AI, a clear significant difference was reported. This differ-
ence was also evident when results from pooled semen
were split into nonsexed and sexed semen. Progesterone
values considered at Day 25 from AI confirmed the same
significant difference between the two classes of animals,
when considering pooled semen and singularly taken,
nonsexed and sexed semen (Table 2).

Progesterone values at Day 10 after AI did not differ
between buffaloes reported pregnant at Day 28 in the two
different periods of the year considered in this study,
September to October and January to February, for pooled
semen and for nonsexed and sexed semen. The difference
in progesterone levels were found, on the contrary,
different in the two different periods examined among
pregnant buffaloes when values were taken at Day 20 from
AI for pooled semen and for nonsexed semen, and for sexed
Table 2
Difference in blood progesterone concentration (ng/mL) between pregnant anim
sexed semen.

Semen Day 10 post AI

Nonsexed semen 2.4 � 0.1 vs. 2.7 � 0.4
P 0.40

Sexed semen 2.5 � 0.1 vs. 1.7 � 0.2
P 0.02

Pooled semen 2.4 � 0.0 vs. 2.2 � 0.2
P 0.21
semen. Such difference in progesterone value was reported
again nonsignificant when blood samples were taken at
Day 25 from AI for pooled semen, nonsexed, and sexed
semen (Table 3).

Animals that maintained pregnancy at Day 45 after AI
followed the same trend as for pregnant animals at Day 28.
In fact, only for progesterone values from blood samples
taken at Day 20 from AI, a significant difference was re-
ported between periods for all categories of semen
considered (Table 4).

4. Discussion

This study confirms the feasibility and applicability of the
sexed semen technology in the buffalo farmmanagement for
reproductive control. It highlights once more the absence of
difference between the use of sexed as opposed to nonsexed
semen, and a similarity of results when confronting semen
derived from different bulls, and farms. In cattle, several
studieshaveshowna reduction inconception ratewhensexed
spermatozoa areused forAI, highlighting the lowdoseand the
sorting process as the main causes responsible for such
a decline, more relevant in cows than heifers [18,19]. On the
contrary, in thefirst large trials conducted inbuffalo heifers [4]
and in pluriparous animals (present study), conception rates
have not been greatly and significantly affected by the use of
a reduced number of sexed spermatozoa. Such similarity can
be accounted for by a rigorous selection of bulls and a highly
validated semen processing technology [4]. Furthermore,
there is evidence that the sexing process improves the DNA
integrity of sexed semen samples [20], by eliminating male
and female spermatozoa characterized by compromised DNA
through the flow cytometry sorting procedure [21]. The
evidence that a significantly reduced number of sexed sperm
cells can give a conception rate similar to the use of conven-
tional semen at full dosage, opens also the possibility to
produce and commercialize doses of conventional semen
containing a much lower number of sperm cells. A condition
als that maintained or terminated pregnancy after AI with nonsexed and

Day 20 post AI Day 25 post AI

3.4 � 0.3 vs. 1.0 � 0.2 3.8 � 0.3 vs. 1.0 � 0.1
0.00 0.00
2.9 � 0.1 vs. 2.2 � 0.4 3.2 � 0.2 vs. 1.6 � 0.5
0.09 0.00
3.1 � 0.1 vs. 1.7 � 0.2 3.5 � 0.2 vs. 1.3 � 0.3
0.00 0.00



Table 3
Difference in blood progesterone concentration (ng/mL) at different intervals among pregnant animals at Day 28 after AI with nonsexed and sexed semen,
during the breeding season versus the transitional period.

Semen D10a D20a D25a

Nonsexed semen 2.4 � 0.1 vs. 2.6 � 0.2 3.8 � 0.4 vs. 1.8 � 0.2 3.6 � 0.4 vs. 2.5 � 0.5
P 0.46 0.00 0.21

Sexed semen 2.5 � 0.1 vs. 2.1 � 0.1 3.0 � 0.2 vs. 2.4 � 0.2 2.8 � 0.2 vs. 2.9 � 0.4
P 0.14 0.06 0.91

Pooled semen 2.4 � 0.1 vs. 2.3 � 0.1 3.4 � 0.2 vs. 2.1 � 0.1 3.2 � 0.2 vs. 2.7 � 0.3
P 0.47 0.00 0.32

a Blood samples taken at Day (D) 10, 20, and 25 after AI for animals pregnant at 28 days from AI.
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that, on the contrary, typically limits the reproductive effi-
ciency in the buffalo species is the period of the year consid-
ered. Buffaloes are in fact short-day breeders and therefore
tend to perform better, during natural mating than while
implementing reproductive technologies, in the time of the
year of decreasing light hours [22]. The two periods taken into
account in this study, can be seen as one inwhich the highest
reproductive efficiency is usually reported (September to
October), and the other (January to February) to be considered
transitional into the season of the year of increasing daylight
hours, and therefore suboptimal with regard to reproductive
performance [23]. In this study, a higher pregnancy rate has
been reported among buffaloes during the transitional period
at Day 28 post AI, but leveling between the two periodswhen
pregnancy check was re-evaluated at Day 45 because of
ahigherembryonicmortality.Mortalityof theconceptusat the
early stages of development has been studied in domestic
large ruminants, and it appears that in buffaloes, unlike cattle,
the greatest incidence occurs between 25 and 45 days after
mating or AI. This timeframe of embryomortality accounts for
most loss and is termed late, opposed to an earlier window of
occurrence between 15 and 24 days [24]. In buffaloes, sea-
sonality has already been reported to be responsible for
adifferential LEM,significantlyhigherwith increasingdaylight
length when compared with the opposing period of the year
characterized by decreasing light hours. It has been reported
that progesterone concentrations follow a progressive decline
from 10 days after AI in pregnant animals at Day 25 that will
not maintain pregnancy at Day 45 [22]. In buffaloes, as for
many other mammalian species, this is a sensitive period
encompassing the transitory attachment phase up to the
completion of the embryo–uterine attachment [25]. In this
regard, the mucine transmembrane glycoprotein (MUC-1)
plays an identified important role when available in the
uterine environment andwhenprogesterone concentration is
Table 4
Difference in blood progesterone concentration in (ng/mL) at different intervals a
during the breeding versus the transitional period.

Semen D10a

Nonsexed semen 2.5 � 0.1 vs. 2.3 � 0.1
P 0.56

Sexed semen 2.6 � 0.1 vs. 2.3 � 0.2
P 0.31

Pooled semen 2.5 � 0.1 vs. 2.3 � 0.1
P 0.24

a Blood samples taken at Day (D) 10, 20, and 25 after AI for animals pregnant
low: in fact, its presence and the abundance of MUC-1
endometrial receptors are keys in preventing the embryo
attachment to the endometrium. On the contrary, when pro-
gesterone concentration is higher and adequate for pregnancy
maintenance, it results in the blockage of the MUC-1 endo-
metrial receptors andbynegative feedback to thehalt inMUC-
1synthesis. Thisprocess leads totheattachmentof theembryo
to the epithelial lining of the endometrium through the
concomitantactionof someadhesivemolecules [26,27]. In this
study, a significantly higher progesterone production was re-
portedatDay20and25postAI inpregnantanimals thatwould
maintain theirpregnancyasopposed to animals thatwouldbe
found not pregnant up to Day 45 post AI. Together with the
causative action determined by the low progesterone
concentration, the termination of pregnancy found at Day
45 canbe also speculativelyattributed to a reducedembryonic
growth [28] and consequently to a smaller area for caruncles
attachment as alreadyshown in sheep [29–31]. Basedon these
findings, concentration of hematic progesterone since Day
20 after AI can be predictive of possible maintenance of
pregnancy up to Day 45 or on the contrary of its failure and
termination. The two periods of the year investigated in this
study showed a differential response to LEM. It has already
been reported by Vecchio et al. [32], a close link between
increasing light hours length, reduced progesterone produc-
tion, and increased LEM. This study confirms a close connec-
tion among these elements considered, and highlights
a significantdifference inprogesteroneproduction inpregnant
buffaloesatDay20postAIbetween the twoperiodsof theyear
considered, being higher in months characterized by a high
ratio of dark to light hours. This result is confirmed by a
previously reported significant decrease of hematic proges-
terone during the seasonal transitional period together with
a reduced CL size, by Campanile et al. [33]. In addition, in
domestic large ruminants, bloodflowandvascularizationhave
mong pregnant animals at Day 45 after AI with nonsexed and sexed semen

D20a D25a

4.1 � 0.4 vs. 2.2 � 0.3 4.0 � 0.4 vs. 3.0 � 0.5
0.00 0.26
3.2 � 0.2 vs. 2.4 � 0.2 3.1 � 0.2 vs. 3.3 � 0.4
0.01 0.71
3.7 � 0.2 vs. 2.3 � 0.1 3.6 � 0.2 vs. 3.1 � 0.3
0.00 0.43

at 45 days from AI.
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been strongly linked to progesterone synthesis and secretion
in cattle [34], and in buffaloes [35] throughout the estrous
cycle. The link between CL function, angiogenesis, and
progesterone production in buffaloes can be inferred by the
change of vascular endothelial growth factor expression
within the CL itself in the course of the estrous cycle similar to
that already described in cattle [11,36]. As a cascade mecha-
nism, insufficient P4 production has been associated with an
impairedcapacityof thedevelopingembryotoproducebovine
trophoblastic protein-1, also called interferon-tau at the
needed amount to prevent luteolysis from 16 days after AI or
natural mating [37]. Such protein ensures maternal recogni-
tionof pregnancy throughavoidanceofCL regressionbyeither
inhibiting oxytocin receptors development on the endome-
trium [38], or by activating a prostaglandin inhibitor [39].

4.1. Conclusions

The results from this study, of a differential proges-
terone production by the gravidic CL after AI with sexed
and nonsexed semen between two periods of the year
considered and inductive of a different LEM, associated
with previously reported similar evidence strongly support
the notion of a causative effect of season on the repro-
ductive efficiency in buffaloes.
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