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The discovery of some baryon-antibaryon resonances has led us to consider 3q 3 �q systems as possible

candidates. We predict their spectrum in the framework of a constituent model, where the chromomag-

netic interaction plays the main role. The relevant parameters are fixed by the present knowledge of

tetraquarks. The emerging scenario complies well with experiment; besides the description of the baryon-

antibaryon resonances, we find evidence for new tetraquark states, namely, the a0ðYÞ in the hidden

strangeness sector and the Yð4140Þ and Xð4350Þ in the cscs sector. A detailed account of the spectra and

the decay channels is provided for future comparisons with data.
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I. INTRODUCTION

The presence in the hadron spectrum of mesons consist-
ing of two q’s and two �q’s [1–3] as well as baryons
consisting of 4q and a �q has been considered for many
years [4].

A long time ago Jaffe proposed that the lightest scalar
states f0=�, �, together with the rest of their nonet, should
be interpreted as qq �q �q states [1].

The simplifying assumption [5] of considering only 2q
pairs transforming as a ð�3c; 1s; �3FÞ representation of
SUð3Þc � SUð2Þs � SUð3ÞF straitens the whole spectrum
to the lightest scalar nonet, namely, f0ð600Þ, �ð800Þ, and
f0=a0ð980Þ, as built with a pair of such a diquark and
antidiquark [6]. This interpretation was recently enforced
by experiments confirming the presence of hidden strange-
ness in both states f0ð980Þ and a0ð980Þ [7], promoting the
tetraquarks to a more solid status.

Candidates with open or hidden charm will come from
the study of nonleptonic B decays by BABAR and Belle, as
anticipated in [8], and from BES.

In this paper we study the spectrum of the states con-
sisting of three quarks and three antiquarks in the S wave,
interacting via chromomagnetism (CM). Besides strange-
ness, we also include charm and assume for chromomag-
netism its full content [9], treated along the lines of
Ref. [10].

This hypothesis can successfully interpret some ob-
served baryon-antibaryon negative parity states in p �p

[11], �c �p [12], and �c
��c [13], assuming for the parame-

ters (constituent masses and effective couplings) those
values obtained from the tetraquark phenomenology. To
study the case of broken flavor symmetry we had to resort
to machine computation. A more precise approach, taking
into account the spatial correlations, would introduce more
free parameters and is beyond the scope of this paper,
which aims to describe the general features of the spectrum
and decay channels of some relevant multiquark states.

The paper is organized as follows: In Sec. I we introduce
the basics of chromomagnetism with a formulation more

suitable for algebraic computation. Section II deals with
the formalism for the construction of the tetraquark states
and the study of the open door decays. In Secs. III, IV, and
V we discuss the phenomenology of tetraquark states and
the parameter fixing of the model. Hexaquark states are
introduced in Sec. VI along with the details entering the
calculation. In Sec. VII we present the results we found for
the spectrum and compare them with the relevant experi-
mental data. Section VIII contains our conclusions. Finally,
Appendix A contains a table with the full spectrum of
baryon-antibaryon systems that were taken under consid-
eration, while in Appendix B the crossing matrices re-
quired for the study of the decays of tetraquarks are
reported. The matrix elements of the chromomagnetic
operator are given, for all cases, in Appendix C.

II. THE CHROMOMAGNETIC INTERACTION

The hyperfine interaction arising from one-gluon ex-
change between constituents leads to a simple
Hamiltonian involving the color and spin degrees of free-
dom:

HCM ¼ X
i

mi �
X
i<j

CijO
ði;jÞ
CM : (1)

The index iðjÞ refers to the ith (jth) quark,mi its mass, and
Cij appropriate coupling constants. The kinetic energy is

absorbed in the mass term, so it is not surprising that the
quark masses depend on the system under consideration.
The Cij’s depend not only on themi’s (as 1=mimj) but also

on the wave function at zero distance of the pair ði; jÞ, thus
depending on the system as well. CM is encoded in Oði;jÞ

CM ,

the two particles’ chromomagnetic operator, which is
given by

Oði;jÞ
CM ¼ 1

4

X8
a¼1

X3
k¼1

ð�a � �kÞðiÞð�a � �kÞðjÞ; (2)

where �a are the Gell-Mann matrices and �k the Pauli
matrices. It is reminiscent of the well-known exchange
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interaction and can be expressed in terms of permutation

operators for color and spin, Pði;jÞ
c , Pði;jÞ

s , respectively. The
action on a ði; jÞ quark-quark (antiquark-antiquark) pair is
given by

Oqq
CM ¼ ðPc � 1=3Þ � ðPs � 1=2Þ; (3)

where Pði;jÞ
c and Pði;jÞ

s exchange the colors and spins (acting
independently) of the pair ði; jÞ. Eigenvectors of Eq. (3) are
the diquark states of definite symmetry in color and spin,
ð6; 3ÞðSSÞ, ð6; 1ÞðSAÞ, ð�3; 3ÞðASÞ, ð�3; 1ÞðAAÞ, with eigenval-
ues ð1=3;�1;�2=3; 2Þ, respectively.

To express the result for a quark-antiquark pair it is
useful to define a generic TN for the group SUðNÞ as the
object: TN: �A�

B ! 1=N�A�
B � �B

A�C�
C, with �A in

the representation N and �B in the c.c. representation �N.
Making the identification N ¼ 3 for Tc and N ¼ 2 for Ts,
we can write, quite simply,

Oq �q
CM ¼ Tc � Ts: (4)

The eigenvectors of TN are the singlet representation
(�B

A�c�
C) with eigenvalue (1=N � N) and the adjoint

representation (�A�
B � 1=N�B

A�c�
C) with eigenvalue

1=N. So eigenvectors and eigenvalues of the chromomag-
netic operator in the present case are (8, 3), (8, 1), (1, 3), (1,
1) with eigenvalues ð1=6;�1=2;�4=3; 4Þ, respectively.

By far the more bonded diquark is ð�3; 1ÞðAAÞ, whose
SUð3ÞF flavor content, as dictated by the Pauli principle, is
�3F. This is the so-called good diquark; it transforms as a
scalar antiquark. If one assumes the hypothesis of Jaffe and
Wilczek [5], the spectrum of the tetraquarks remains re-
stricted to the scalar nonet suggested by Jaffe a long time
ago. The vector, or bad diquark ð�3; 3ÞðASÞ, allows for
higher spin states but, since it is a 6F, it also introduces
exotics, i.e. multiplets higher than SUð3ÞF nonets, and is
excluded frommost models. The other two 6c states, which
Jaffe [3,14] sometimes called ‘‘worse,’’ are not, in general,
taken into account either.

In the present approach of searching for the eigenstates
of the chromomagnetic operator, we do not truncate the
space in any way, such that, in some sense, all four possible
diquarks enter the game.

It is easy to see that we have the following spin-flavor
multiplets: spin 0 has four nonets and two 27F’s; spin 1 has
two nonets, four octets, one 27F, two decuplets, and two
antidecuplets; finally, spin 2 has two nonets and one 27F.
Exotics, as I ¼ 2 states, are not excluded a priori, but we
think that these states are much less stable and difficult to
observe.

Often, we have found a number of near threshold decays,
usually considered as molecular states, that are well de-
scribed by chromomagnetism. In particular, the introduc-
tion of the (6, 3) diquark encompass the dichotomy
between diquark and molecular models, as clearly argued
in [15]. They showed that the molecular state is not an
independent state, but is a linear combination of ð�3; 1Þð3; 1Þ

and ð6; 3Þð�6; 3Þ; the latter (6, 3), by the way, is the only
other diquark with negative chromomagnetic energy
(� 1=3). Their observation indicates that a minimal di-
quark model should include both pairs, and interestingly
enough, it would comprise all spin cases as S-wave tetra-
quarks lying in only SUð3ÞF nonets. From the point of view
of SUð6Þcs, this means that a diquark should transform as
the symmetric representation 21 (so as �3F).
A purely phenomenological motivation to include the

(6, 3) diquark is that the mass of the �3, S ¼ 0, ðudÞI¼0 pair,
say �, is related to the mass of the � hyperon by the
relation1 � ¼ m� �ms, which, for a state consisting of
two of these objects that have no mutual chromomagnetic
interaction, implies about twice the mass of the f0ð600Þ.
Instead, by considering the vector space consisting of both
the ð�3; 1Þð3; 1Þ and ð6; 3Þð�6; 3Þ S ¼ 0 color singlet states,
the lightest state has a binding energy about 2.7 times
larger than the diagonal matrix element for ð�3; 1Þð3; 1Þ [10].
In the flavor symmetry limit, i.e. when the couplings Cij

are all equal to each other, it is well known thatOCM can be
expressed as a combination of Casimirs. This fact has been
extensively exploited in the pioneering works of Jaffe [3]
and in many other works [4]. In the present paper we shall
attack the more complicated issue of considering different
masses and couplings; in most of such cases we have to
rely on symbolic manipulations that we performed with
FORM [16]. The expressions in Eqs. (3) and (4) are quite

suitable for computer implementation.

III. ‘‘OPEN DOOR’’ CHANNELS FOR
TETRAQUARKS

It was observed for the first time by Jaffe [1] that qq �q �q
mesons may decay into two ordinary (i.e. color singlet)
mesons PP, PV, VV (P stands for a pseudoscalar and V for
a vector) by simply separating from each other, as long as it
is kinematically allowed. He called these channels ‘‘open
door’’ or ‘‘OZI superallowed’’ decays, since they can occur
without gluon exchange or quark annihilation. In open
door channels, S-wave states have to decay into S-wave
mesons with zero relative angular momentum.
In general, calculations are performed in the diquark-

antidiquark basis; i.e. the tetraquark is represented as
q1q2 �q3 �q4, denoted ½12; 34� in the following. Evidently,
the diquark and the antidiquark cannot separate from
each other, as they can never be color singlets. So, in order
to access the open door channels it is convenient to pass to
the meson-meson bases ½13; 24� and ½14; 23� which, obvi-
ously, coincide if antiquarks 3 and 4 have the same flavor.
In order to have some uniformity in the conventions, we

maintain those of [10]. We denote the basis for spin 0 as
follows:� in ½12; 34�,� in ½13; 24�, and � in ½14; 23�. In the
same order one has c , 	, and 
 for spin 1, while those of

1We are indebted to Professor P. Minkowski for bringing this
to our attention.
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spin 2 are called �, �, and �. To characterize each basis, we
only have to specify the color-spin content of the first and
second pairs in the brackets, which combine to form the
color singlets, i.e. the set of physical states.

Spin 0 ð�Þ½12; 34�: ½ð6; 3Þð�6; 3Þ�; ½ð�3; 1Þð3; 1Þ�;
½ð6; 1Þð�6; 1Þ�; ½ð�3; 3Þð3; 3Þ�;

ð�Þ½13; 24�: ½ð1; 1Þð1; 1Þ�; ½ð1; 3Þð1; 3Þ�;
½ð8; 1Þð8; 1Þ�; ½ð8; 3Þð8; 3Þ�;

ð�Þ½14; 23�: as ½13; 24�: (5)

For � and � the first components are PP and the second
VV. The last two are P8P8 and V8V8, where P8 is a colored
pseudoscalar and V8 a colored vector.

Spin 1 ðc Þ½12; 34�: ½ð6; 3Þð�6; 3Þ�; ½ð�3; 3Þð3; 3Þ�;
½ð�3; 1Þð3; 3Þ�; ½ð6; 3Þð�6; 1Þ�;
½ð�3; 3Þð3; 1Þ�; ½ð6; 1Þð�6; 3Þ�;

ð	Þ½13; 24�: ½ð1; 1Þð1; 3Þ�; ½ð1; 3Þð1; 1Þ�;
½ð1; 3Þð1; 3Þ�; ½ð8; 1Þð8; 3Þ�;
½ð8; 3Þð8; 1Þ�; ½ð8; 3Þð8; 3Þ�;

ð
Þ½14; 23�: as ½13; 24�: (6)

So 	1, 
1 (	2; 
2) are PV (VP) and 	3, 
3 are VV.

Spin 2 ð�Þ½12; 34�: ½ð6; 3Þð�6; 3Þ�; ½ð�3; 3Þð3; 3Þ�;
ð�Þ½13; 24�: ½ð1; 3Þð1; 3Þ�; ½ð8; 3Þð8; 3Þ�;
ð�Þ½14; 23�: as ½13; 24�: (7)

The only open door channel for a tensor meson is, evi-
dently, VV.

The relative probability for the particle decaying
through a specific channel is given by the square of the
corresponding component of the normalized eigenvector of
the state multiplied by the phase space of the respective
decay channel, which depends exclusively on the masses of
the particles in question (as it is assumed that all dynamical
amplitudes are the same). For convenience, we call the
square of the component along the channel the probability
factor (PF) for that channel. In some cases we also have to
consider the non-open door channels, if, for instance, the
open door channels have negligible probabilities or are
kinematically forbidden, and so violations of the OZI
rule would enter the game. In particular, the P8P8 or
V8V8 channel can become relevant at order Oð�sÞ, as the
exchange of one gluon in the t channel converts this object
into an ordinary PP or VV pair.

The so-called crossing matrices operating the change of
one basis into another arise from the well-known Fierz
identities for color and spin [3] and are available in many
places; for definiteness we will refer to [10]. They are
reproduced, together with a necessary completion, in
Eqs. (B1)–(B5).

IV. TETRAQUARK STATES

One immediately realizes that the overall chromomag-
netic contribution in Eq. (1) [let us call it OCM and assume
thoroughly that Cq �q0 ¼ Cqq0 for any (anti)quarks pair]

greatly simplifies for 0þ and 2þ states made of at least
three constituents with the same flavor, say of type q �qq �q0
(q is not necessarily a light quark and q and q0 can
incidentally coincide), since the corresponding matrices
depend exclusively on the combination ðCqq þ Cqq0 Þ,
which factorizes out. For 2þ we haveOCM ¼ �4=3ðCqq þ
Cqq0 Þdiagð1; 1Þ, while for 0þ

OCM ¼ �1=2ðCqq þ Cqq0 Þ

�

8 0 0 �4
ffiffi
2
3

q
0 � 8

3 �4
ffiffi
2
3

q
0

0 �4
ffiffi
2
3

q
�1 � 5ffiffi

3
p

�4
ffiffi
2
3

q
0 � 5ffiffi

3
p 19

3

0
BBBBBBBB@

1
CCCCCCCCA
: (8)

The eigenvalues of the above matrix are �1 ¼ 1=3ð17þffiffiffiffiffiffiffiffi
241

p Þ, �2 ¼ 1=3ð ffiffiffiffiffiffiffiffi
241

p � 1Þ, �3 ¼ 1=3ð17� ffiffiffiffiffiffiffiffi
241

p Þ,
�4 ¼ �1=3ð ffiffiffiffiffiffiffiffi

241
p þ 1Þ, with corresponding eigenvectors

(for briefness we give decimal approximations)
ð�0:74; 0:04;�0:17; 0:65Þ, ð0:64; 0:18;�0:41; 0:62Þ,
ð0:18;�0:64; 0:62; 0:41Þ, and (0.04, 0.74, 0.65, 0.17).

The spectrum is given by Mð0Þ
a ¼ 3mq þmq0 �

1=2�aðCqq þ Cqq0 Þ (a ¼ 1; . . . ; 4) for 0þ and by Mð2Þ
b ¼

3mq þmq0 þ 4=3ðCqq þ Cqq0 Þ (b ¼ 1, 2) for 2þ. These
considerations also apply to the case of three light constit-
uents within the approximation of exact isospin symmetry.
It is worth stressing that this phenomenon does not happen
for 1þ.
A simple consequence of the fact that the eigenvectors

do not depend on the masses and couplings is that the
scalar nonet presents a universal pattern of decays; the
lowest state has about 55% probability to decay into PP
(negligible in VV), and for the next states, in order of
increasing mass, 41% probability to decay into PP, 41%
into VV, and 55% into VV. Identifying the lowest state of
the light nonet with �=f0ð600Þ and the third one with
f0ð1370Þ, we get the mass of light quarks mq and Cqq;

we find mq ffi 351:65 MeV and Cqq ffi 74:4 MeV. Notice

that the quark mass and the coupling can be expressed in
terms of the masses of � and f0 by

4mq ¼ m� þ
�
1þ 17ffiffiffiffiffiffiffiffi

241
p

�
mf0 �m�

2
;

Cqq ¼ 3ffiffiffiffiffiffiffiffi
241

p mf0 �m�

2
:

(9)

So one immediately realizes that, if we take form� a lower
value (as suggested by some authors), the change in mq

would be negligible but Cqq would appreciably increase.
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A similar determination of the parameters concerning
the s and c quarks is not feasible, because presently we
dispose of only one strange scalar as a possible candidate
for a tetraquark [�ð800Þ] and none for charm. For the s
quark we choose the parameters in order to reproduce the
masses of the �ð800Þ as a ðqqqsÞ state, the a0ð980Þ as a
ðqsqsÞ state, and the f1ð1420Þ as a 1þ ðqsqsÞ state, getting
msffi455:21MeV,Cqsffi58:04MeV, andCssffi43:2MeV.

It is quite unexpected that we obtain almost exact agree-
ment with the parameters of our previous calculation for
the pentaquarks [17], where we found mq ffi 346:8 MeV,

Cqq ffi 74 MeV, ms ffi 480 MeV, and for Cqs and Css we

assumed the hyperfine prescription
Cqs

Cqq
¼ Css

Cqs
¼ mq

ms
which,

as a matter of fact, is also well satisfied by the tetraquark
determinations.

The parameters related to charm have been obtained
requiring agreement with the masses of the following
states: Xð3872Þ as a 1þ ðqcqcÞ state, the pair Dsð2317Þ
andDsð2573Þ as 0þ ðqcqsÞ states, and finallyDsð2460Þ as a
1þ ðqcqsÞ state. The values obtained for the parameters are
mc ffi 1631 MeV, Cqc ¼ 26 MeV, Ccc ¼ 18 MeV, Csc ¼
17:6 MeV. A direct determination from the J=c and c

masses gives mc ’ 1534 MeV, Ccc ¼ 21:6 MeV.2 On the
other hand, if we determine Cqc from the D� �D mass

splitting, we get Cqc ¼ 26:2 MeV, in excellent agreement

with the determination via the tetraquarks spectrum.
Here it is interesting to notice that the systemQ �q should

obey some general property since the recoil of Q can be
safely neglected. So it should not depend on the mass ofQ,
but only on the radial and orbital quantum numbers of �q.
Since �q is very light, the system would have a spatial
extension that falls in the region of dominance of the linear
part of the confinement potential (a phenomenological
analysis demonstrates that the c �c system falls in the loga-
rithmic dominated region) for which well-known scaling
laws [19] prescribe that the wave function at the origin
does not depend on the Q mass, so we should expect the
product mQCqQ to be constant. A law equivalent to the

constancy of the product mQCqQ was inferred some time

ago in Ref. [20] and verified for a great number of states
involving charm or beauty.

In the case of a ‘‘neutral’’ state (qq0qq0), as for hidden
strangeness or charm, the 1þ CM matrix in the 	 basis is
block diagonal, with a 2� 2 block corresponding to C ¼
þ and the other 4� 4 block to C ¼ �. So, independently
of the parameters, we have two exact eigenvectors, one
along the direction 	3 (a pair of color singlet vectors) and
the other along 	6 (a pair of color octet vectors). On the

other hand, all scalars and tensors have the same charge
conjugation, C ¼ þ. One can now calculate the masses of
the two C-even states: The first has mass 2mq þ 2mq0 þ
4=3ðCqq þ Cq0q0 Þ and the second 2mqþ2mq0 �1=6ðCqqþ
18Cqq0 þCq0q0 Þ. We can also calculate the 2þ sector ex-

actly, getting 2mq þ 2mq0 þ 4=3ðCqq þ Cq0q0 Þ for the

mass, the corresponding eigenvector being along �1 (a
pair of color singlet vectors); the value of the other mass
is 2mq þ 2mq0 � 1=6ðCqq � 18Cqq0 þ Cq0q0 Þ, correspond-
ing to �2 (a pair of color octet vectors). A general trend for
this case is that the highest 1þþ state is degenerate with the
highest 2þ state, both decaying exclusively into Vq �qVq0 �q0 .

The other 1þþ is below the light tensor state and has
dominant decay into Pq0 �qV �q0q þ P �q0qVq0 �q, while the light

tensor decays into Vq0 �qV �q0q. The states 0
þþ and 1þ� have

to be calculated numerically, with the exception of the
case q ¼ q0, when the spectrum of the 1þ becomes
highly degenerate. In such a case, the C-even state 	6

is paired with a C-odd state with eigenvector


6 ¼ 2=3ð�1; 1; 0; 1=ð2 ffiffiffi
2

p Þ;�1=ð2 ffiffiffi
2

p Þ; 0Þ; the other
C-even state 	3 becomes degenerate with the C-odd

state with eigenvector 
3 ¼ 2=3ð�1=ð2 ffiffiffi
2

p Þ; 1=ð2 ffiffiffi
2

p Þ;
0;�1; 1; 0Þ. As can be seen from the table below, the
mass region 1100–1950 MeV could seem to be populated
by some controversial peaks with no definite spin or C
parity, due to states overlapping. When an object contains a
pair of (anti)quarks, the Pauli principle implies the absence
of some states or, if the pair is made of light quarks,
restrictions on the isospin content, according to the corre-
spondence I ¼ 0 ! 21cs and I ¼ 1 ! 15cs. This has been
taken into account in the elaboration of Tables I, II, and III,
where Pauli forbidden states are indicated by a dash. The
very interesting cases of hidden strangeness/charm and
tetraquarks with C ¼ �S ¼ 1were calculated numerically
and are given in Table IV. The interest for the somewhat
chimerical states with C ¼ �S ¼ 1 and C ¼ 2, i.e. of kind
ðcsqqÞ and ðccqqÞ, is justified by the fact that they provide
a clear signature for tetraquarks. In the case of I ¼ 0 the
first decays into DþK� and D0 �K0 and the second into
DþD0. Since in both cases the objects carrying strangeness
or charm are necessarily a pair of quarks and obviously
cannot form color singlets by themselves, the occurrence
of such states is possible only if the pair of quarks com-
bines with at least a pair of antiquarks.
Even if no candidates have been observed, for complete-

ness we give the spectrum of strange and charmed axials in
Table III.

V. DISCUSSION ON THE RESULTS FOR
TETRAQUARKS

First of all, let us recall that the information we used in
the fit involves only the mass spectrum, so the pattern of
decays may be considered as ‘‘predictions.’’ Let us cite the
observed dominance of �� in the f0ð600Þ decay and of ��

2The hyperfine law ’ 1=mimj does not apply to the charm
sector, since the wave function, due to a much higher mass, is
much peaked around the origin, partially compensating the mass
powers in the denominator. Actually, recent data on the b

suggest a mass splitting with the� of the same order of the c �
c , and not a factor ðmc=mbÞ2 smaller [18].
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in that of f0ð1370Þ [23,24], the dominance of the �K
channel for �ð800Þ (unfortunately, by now, omitted from
PDG).

For the axials we obtained the dominance of �KK� þ cc
(KK� probably arising from an off-shell K�) for the
f1ð1420Þ and, analogously, the dominance of �DD� þ cc
for the Xð3872Þ.

Since they are pure 	6 states these channels are exclu-
sive. In particular, for Xð3872Þ the observed decays into
�ð!ÞJ=c can be explained by one-gluon exchange in the t
channel, since those rates are comparable with the process
being Oð�sÞ. For D��

s0 ð2317Þ the only kinematically al-

lowed open door channel is �0D�
s ; it is just below the

DK threshold, at 2359 MeV. The relevant components are
�1 ¼ 0:78, �1 ¼ 0:70, thus predicting the strong domi-
nance of the �0D�

s decay. In the case of D��
s2 ð2573Þ, that

we interpreted to be 0þ (even if it is also consistent with a
2þ), the only observed decay is D0K� [while
D0�ð2007ÞK� is not observed] in agreement with the PP
prescription arising from the scalar nature of the state.
Nevertheless, in this case the components are also almost

equal, �1 ¼ 0:60 (�0D�
s ), �1 ¼ 0:68 (D0K�), and so we

could expect the �0D�
s to be relevant as well.

Experimental data neither confirm nor disprove this point.
Finally, the axial state D�

s1ð2460Þ, which we put at

2469.3 MeV, has a large component along 	1ð0:87Þ, which
corresponds to the dominant �0D��

s channel. The !D�
s

decay [notice that the state D�
s1ð2460Þ has I ¼ 0] has a tiny

component 	2 ¼ 0:024 and is also kinematically inacces-
sible. It remains to explain the large branching fraction in
D�

s �, suggesting that the state is very narrow, albeit the
experimental upper bound is not very restrictive, � 	
3:5 MeV.
The two degenerate states, the isoscalar f0 and the

isovector a0, at 980 MeV, can only decay into � and
K �K, since other channels are too high. We predict �1 ¼
0:75, �1 ¼ 0:74, and if we take the corrections for the
mixing 0 � 8 with a mixing angle � ¼ �16
 (as ob-
tained recently in �� ! X), we find g2

a0K �K
=g2a0� ffi 2:48,

to be compared with the value recently obtained by the
KLOE experiment [7] of 0:67� 0:06� 0:13. This abnor-
mally large coupling for � cannot be obtained by chro-

TABLE II. Axial states made of all light (in the limit of exact isospin) or strange (anti)quarks
calculated exactly, according to Sec. IV. These states have definite charge conjugation. The states
forbidden by the Pauli principle are indicated by (–). Masses are given in MeV.

C � þ � � þ �
qqqq 1109 I ¼ 0 1158.6 I ¼ 1 1158.6 I ¼ 1 1406.6 I ¼ 0, 1, 2 1605 I ¼ 1 1605 I ¼ 1
ssss – – – 1820.8 – –

Decays PV PV PV PV VV VV

TABLE I. The 0þ and 2þ states with three light (strange) quarks calculated exactly according to Sec. IV. Values of the masses used
in the fit are distinguished with a (*). Experimental results, when available, are displayed in the next row; numbers in square brackets
give the reference to the experimental data. The Pauli principle fixes the isospins of the various states, so qqqc have the same isospins
as qqqs while qsss have I ¼ 1=2 and ssss have I ¼ 0. The states forbidden by the Pauli principle are indicated by (–). Masses are
given in MeV.

JP qqqq qqqs qqqc qsss ssss Decays

0þ 600ð�Þ I ¼ 0 792:3ð�Þ I ¼ 1=2 2141.7 – – 0:55ðPPÞ; 1:710�3ðVVÞ
Experiment f0ð600Þ �ð800Þ
0þ 1046.4 I ¼ 0, 1, 2 1189.6 I ¼ 1=2, 3=2 2442.9 1472.2 1611.6 0:41ðPPÞ; 3:110�2ðVVÞ
0þ 1370ð�Þ I ¼ 0 1477.6 I ¼ 1=2 2661.2 – – 3:110�2ðPPÞ; 0:41ðVVÞ
Experiment f0ð1370Þ
0þ 1816.4 I ¼ 0, 1, 2 1874.9 I ¼ 1=2, 3=2 2962.4 1996.1 2058.9 1:710�3ðPPÞ; 0:55ðVVÞ
2þ 1605 twice I ¼ 0 and I ¼ 1, 2 1686.7 I ¼ 1=2, 3=2 2819.8 1852.3 1936.1 0:5ðVVÞ; 0.5 (light mesons)

Experiment Xð1600Þ I ¼ 2 [21] f2ð2010Þ? [22]

TABLE III. Charmed and strange axial mesons, calculated numerically. Masses are in MeV. The non-negligible decay channels are
indicated in the row below.

qcqq 2329.3 2515.6 2611.7 2727.8 2785.8 2877.73

Decays 0:55ð�;ÞD� 0:39ð�;ÞD� 0:47ð!;�ÞD 0:28ð!;�ÞD 0:47ð!;�ÞD�0:11ð!;�ÞD 0:46ð!;�ÞD�

qqqs 1207.5 1302.7 1308.6 1513.4 1672.7 1703

Decays 0:56ð�;ÞK� 0:17ð!;�ÞK0:28ð�;ÞK� 0:52ð!;�ÞK 0:21ð!;�ÞK0:12ð�;ÞK� 0:50ð!;�ÞK� 0:50ð!;�ÞK�

Isospin 1=2 1=2, 3=2 1=2 1=2, 3=2 1=2 1=2, 3=2
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momagnetism alone; it has been explained recently [25] by
nonperturbative effects induced by instantons.
Analogously for the dominant decay f0 ! ��, which
violates the OZI rule, we have to rely on the above solu-
tion, in association with f0ð980Þ � � mixing.

We predict a companion (which is a mixture of 8F and
27F) for the a0ð980Þ at 1330.3 MeV coupled to �, 0�,
and K �K. It was recently observed [26] in �� ! �0 and
named a0ðYÞ, with an observed mass of 1316� 25 MeV.

In the hidden charm-strange sector (cscs) we have found
two candidates for newly discovered states. The first is the
pure 	6 1þþ state at 4109.4 MeV, which we propose to
identify with the narrow state Yð4140Þ found by CDF [27]
in Bþ ! XKþ, X ! J=c�, with a mass 4143� 2:9�
1:2 MeV and a width of 11:7þ8:3

�5:0 � 3:7 MeV. As the

Xð3872Þ, the latter has dominant decays into �DsD
�
s þ cc

(threshold at 4080 MeV), but can also decay into J=c�
(threshold at 4116.4 MeV). The choice of spin 13 is
strongly suggested by the fact that it was not observed in
�� ! X by Belle [29]. The second state is a 0þþ at
4295 MeV, with predominant decays into J=c� (�2 ’
0:81) and D�

s
�D�
s (	2 ’ 0:69), to be interpreted as the

Xð4350Þ, discovered by Belle in the same experiment
[29], with a mass 4350:6þ4:6

�5:1 � 0:7 MeV and width

13:3þ17:9
�9:1 � 4:1 MeV. Taking into account phase space,

we find the J=c� channel to be twice as probable as the
D�

s
�D�
s one.

Among the states that are not well established, there is a
2þ state Xð1600Þ (with I ¼ 2) [21] at 1600� 100 MeV

that, if interpreted as ðqqqqÞ, is compatible with our pre-
dictions and, according to the previous section, has to be
degenerate with the highest 1þþ, with the latter possibly
being hidden by some (L ¼ 1 q �q) state of the a1 family.
We do not exclude the fact that we have already seen

some ðssssÞ states; one of these could be the f0ð2010Þ
found around 2011� 70 MeV [22] that is identifiable
with our 2þ state at 1936 MeV. We predict a 1þ, ðqsqsÞ
state, with a mass of 1327.6 MeV decaying predominantly
into �� (	1 ’ 0:91) and another one at 1773 MeV with
important components along 	1 ’ 0:34 (sV) and 	2 ’
0:15 ð��;�Þ; while 
3 is also very large, the state is
below threshold for K� �K�. The latter could possibly be
identified with the Xð1835Þ found by BES [30] at 1834�
6 MeV and width 67:7� 20:3� 7:7 MeV, decaying into
�þ��0. The spin parity of the Xð1835Þ is not known, and
it was, initially, supposed to be related to a p �p threshold
enhancement, due to the strong dominance of the channel
�þ��0.
We also predict a 0þ ss�s �s state at 2058.9 MeV which is

strongly coupled to ��, so it would arise as a �� thresh-
old enhancement.

VI. NEGATIVE PARITY STATES BUILT WITH
THREE QUARKS AND THREE ANTIQUARKS

Today experimental evidence for the occurrence of
baryon-antibaryon states seems to exist. There could be a
tendency to interpret them as molecular states, but as said
before, there is no clear distinction between chromomag-
netism and the molecular point of view as long as we do not
neglect some configurations of the diquarks. In obtaining

TABLE IV. Spectrum of the tetraquarks calculated numerically. States used in the fit are marked with a (*). When experimental data
are available they are displayed in the next row; reference to the sources are given in square brackets. Masses are in MeV.

JP qsqs csqq qcqs qcqc ccqq cscs

0þ 981ð�Þ 2326.7 2315ð�Þ 3562.7 3643.1 3904.5

Experiment a0ð980Þ D��
s0 ð2317Þ

0þ 1330.3 2592.3 2574ð�Þ 3799.3 3870.8 4060.8

Experiment a0ðYÞ [26] D�
s1 ð2573Þ

0þ 1586.1 2757.6 2773.7 3979.3 3898.6 4181

0þ 1934.9 3028 3028.4 4148.4 4144.5 4295

Experiment Xð4350Þ [29]
1þ 1327.6 2503.7 2469:3ð�Þ 3682.9 3795.3 4016.41

Experiment D�
s1 ð2460Þ

1þ 1420ð�Þ 2674.5 2634.6 3871:9ð�Þ 3847.8 4109.4

Experiment f1ð1420Þ Xð3872Þ Yð4140Þ [27]
1þ 1461 2692 2736.4 3924.6 3927.8 4132.1

1þ 1618.9 2822.8 2823 3980.5 3991.6 4172.5

1þ 1770.5 2857.8 2889.3 4057.5 3992.2 4225.9

1þ 1773 2959.5 2951 4088.5 4084.78 4254

2þ 1768.2 2889 2900.2 4027.9 4021.2 4215

2þ 1770.5 2906.9 2912.2 4088.5 4061.6 4254

3The interpretation of Yð4140Þ as an axial was already con-
templated in Ref. [28], albeit not excluding the 0þþ alternative.
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the predictions of chromomagnetism, since the number of
candidates is not enough to completely determine the
parameters, we will tentatively assume that the masses
and chromomagnetic couplings of the quarks in the
baryon-antibaryon system are the same as for tetraquarks.
As mentioned before, masses could be larger due to the fact
that they are defined including the kinetic energy. On the
other hand, couplings could be smaller mainly because the
wave function is broader.

A complete calculation is very complex and probably
not of immediate utility in view of the scarcity of these
states. We treat two cases: The first is related to p �p states
and concerns ðqqqqqqÞ systems; the second deals with the
production of a variety of states of the kind ðqqqqq �QÞ or
ðqqQqq �QÞ, where Q denotes an s or a c quark.

It is natural to work with what we call the baryon-
antibaryon basis. In the first case, since we are interested
in a p �p pair, it is enough to take the sub-block qqq in the

70 of SUð6Þcs (and qqq in the 70). The decomposition of
the 70, under SUð3Þc � SUð2Þs, is given by 70cs ¼
ð8c; 4sÞ þ ð8c; 2sÞ þ ð10c; 2sÞ þ ð1c; 2sÞ. We can construct
four color singlets of spin 0 and six of spin 1, which are
given below:

Spin 0

j1i ¼ ½ð1c; 2sÞ; ð1c; 2sÞ�; j2i ¼ ½ð8c; 2sÞ; ð8c; 2sÞ�;
j3i ¼ ½ð8c; 4sÞ; ð8c; 4sÞ�; j4i ¼ ½ð10c; 2sÞ; ð10c; 2sÞ�:

(10)

Spin 1

j1i ¼ ½ð1c; 2sÞ; ð1c; 2sÞ�; j2i ¼ ½ð8c; 2sÞ; ð8c; 2sÞ�;
j3i ¼ ½ð8c; 4sÞ; ð8c; 4sÞ�; j4i ¼ ½ð10c; 2sÞ; ð10c; 2sÞ�;
j5i ¼ ½ð8c; 2sÞ; ð8c; 4sÞ�; j6i ¼ ½ð8c; 4sÞ; ð8c; 2sÞ�: (11)

Evaluating the chromomagnetic operator of Eq. (1) be-
tween these states, we get the two matrices, describing
chromomagnetism in the two sectors, given in Eqs. (C1)
and (C2), where we assumed the same ordering as above.

This has been done using a computer, but since we are in
fact in the symmetry limit, it can also be calculated by
purely group theoretical means. It provides a valuable
check of the machine’s symbolic calculation. It is straight-
forward to obtain the expression in terms of Casimir op-
erators:

OCM ¼ ½C6ðR3qÞ þ C6ðR3 �qÞ � 1
2C3ðR3qÞ � 1

2C3ðR3 �qÞ
� 1

3S3 �qðS3 �q þ 1Þ � 1
3S3 �qðS3 �q þ 1Þ � 12�

� ½C6ðHÞ � C6ðR3qÞ � C6ðR3 �qÞ þ 1
2C3ðR3qÞ

þ 1
2C3ðR3 �qÞ � 1

3SHðSH þ 1Þ þ 1
3S3qðS3q þ 1Þ

þ 1
3S3 �qðS3 �q þ 1Þ�; (12)

where H stands for the representation of the hexaquark in
SUð6Þcs, with SH being its spin (0 or 1 in the present case),

and R3q and R3 �q are the representations of the three quark

and three antiquark subsystems, respectively [of both
groups, SUð6Þcs and SUð3Þc], with S3q and S3 �q being their

spins. As before, C6 and C3 are the quadratic Casimir
operators of SUð6Þcs and SUð3Þc. In the first square brack-
ets we have isolated the contribution of the quark-quark
and antiquark-antiquark interactions, while in the second
we have isolated the contribution for quark-antiquark in-
teractions. Here a severe complication arises: The Casimir
operators in the second brackets are not diagonal. As the
operator OCM transforms as the 35 of SUð6Þcs, it does not
leave the 70 and, thus, the Casimir operators present in the
first brackets are diagonal, while for the second ones,
representation mixing remains possible and it does in fact
occur.
The hexaquark state ðqqqqqqÞ, which we have desig-

nated by H, transforms under SUð6Þcs as one of the irre-
ducible representations (or mixings thereof) arising in the

product 70 � 70 ¼ 1þ 351 þ 352 þ 189þ 280þ 280þ
405þ 3675. For 0� we have to select the blocks that
contain components transforming as ð1c; 1sÞ, and for 1�,
those transforming as ð1c; 3sÞ. We indicate below the rele-
vant representations and the number of components of the
suitable color singlets contained in each one:

0�: ð1c; 1sÞ � 1; 189ð1Þ; 405ð1Þ; 3675ð1Þ;
1�: ð1c; 3sÞ � 351ð1Þ; 352ð1Þ; 280ð1Þ; 280ð1Þ; 3675ð2Þ:
The matrix elements were found through the determi-

nation of the appropriate Clebsch-Gordan coefficients for
the above decomposition.4

Let us now consider states of the kind ðqqQqq �QÞ (Q
being an s or a c quark), for which some experimental
evidence is available. The Pauli principle implies that the
pair of light (anti)quarks in the (anti)baryonic block qqQ

(qq �Q ) must transform under SUð6Þcs as a 21cs (21cs) for

I ¼ 0 and as a 15cs (15cs) in the case of I ¼ 1. States such
as ðqqÞ21csQðqqÞð21csÞ �Q have I ¼ 0 and are relevant for the

� �� (�c
��c) channels. For brevity, we shall call them the

ð21; 21Þ basis. The other case, namely,

ðqqÞ15csQðqqÞð15csÞ �Q, is the ð15; 15Þ basis and comprises

hexaquarks with I ¼ 0, 1, 2. This basis will be used in the

calculation of the � �� channel.
A criterion to build the physical states, i.e. the color

singlets of the six quark system, is to successively combine
qq with Q (and analogously for the antiquarks) in all

4After the completion of this work we were informed by Ding,
Pingand, and Yan of the existence of their paper, Ref. [31], where
the spectrum of the qqqqqq system, in the flavor symmetry limit
(i.e. all masses equal) is calculated. The overlap with the present
work essentially consists in the CM matrices given in
Appendix C, which, in fact, coincide with their results.
However, it is worth noting that these authors found that the
p �p, p ��, and � �� channels are appreciably bounded and could
show up as conspicuous enhancements in the experiments.
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possible ways regarding the color group SUð3Þc, and then
combine with those of the antiquarks. This can be easily
done using the decompositions of SUð6Þcs ! SUð3Þc �
SUð2Þs: 21cs ¼ ð�3c; 1sÞ þ ð6c; 3sÞ and 15cs ¼ ð6c; 1sÞ þ
ð�3c; 3sÞ. Taking into account the genealogy of the states,
we get for each basis a total of 14 color singlets. They are
displayed below.5 The convention we use is the following:
The composition of the baryonic (qqQ) with antibaryonic
blocks (qq �Q ) is indicated by a (*); each block is enclosed
by square brackets, and within each set of brackets we
placed on the left the color-spin content of ðqqÞ followed
by that of Q (and analogously for the antiquarks).

As will be seen in the next section, we are also interested
in building the basis for the system �c �p. We use the
ordering convention ð �q1 �q2 �q3q4q5c6Þ. The �p, as before, is

put in a 70	 (antisymmetric in 1, 2) and the�c (as the Pauli

antisymmetry applies only to the pair 4, 5) in a 70�
(symmetric with respect to 4 and 6) and a 56, which
decomposes under SUð3Þc � SUð2Þs as ð10; 4Þ þ ð8; 2Þ.
The mandatory antisymmetrization with respect to flavor
of the pair 4, 5 implies isospin 0 for �c.

Basis ð21; 21Þ for spin 1:

½ð�3; 1Þð3; 2Þ� � ½ð3; 1Þð�3; 2Þ�⇛j1i ¼ ð1; 2Þ � ð1; 2Þ j2i ¼ ð8; 2Þ � ð8; 2Þ;
½ð6; 3Þð3; 2Þ� � ½ð3; 1Þð�3; 2Þ�⇛j3i ¼ ð8sim; 4Þ � ð8; 2Þ j4i ¼ ð8sim; 2Þ � ð8; 2Þ;
½ð�3; 1Þð3; 2Þ� � ½ð�6; 3Þð�3; 2Þ�⇛j5i ¼ ð8; 2Þ � ð8sim; 4Þ j6i ¼ ð8; 2Þ � ð8sim; 2Þ;
½ð6; 3Þð3; 2Þ� � ½ð�6; 3Þð�3; 2Þ�⇛j7i ¼ ð8sim; 4Þ � ð8sim; 4Þ j8i ¼ ð8sim; 4Þ � ð8sim; 2Þ j9i ¼ ð8sim; 2Þ � ð8sim; 4Þ

j10i ¼ ð8sim; 2Þ � ð8sim; 2Þ j11i ¼ ð10; 4Þ � ð10; 4Þ j12i ¼ ð10; 4Þ � ð10; 2Þ
j13i ¼ ð10; 2Þ � ð10; 4Þ j14i ¼ ð10; 2Þ � ð10; 2Þ: (13)

Basis ð15; 15Þ for spin 1:

½ð�3; 3Þð3; 2Þ� � ½ð3; 3Þð�3; 2Þ�⇛j1i ¼ ð1; 4Þ � ð1; 4Þ j2i ¼ ð1; 4Þ � ð1; 2Þ j3i ¼ ð1; 2Þ � ð1; 4Þ j4i ¼ ð1; 2Þ � ð1; 2Þ
j5i ¼ ð8; 4Þ � ð8; 4Þ j6i ¼ ð8; 4Þ � ð8; 2Þ j7i ¼ ð8; 2Þ � ð8; 4Þ j8i ¼ ð8; 2Þ � ð8; 2Þ;

½ð�3; 3Þð3; 2Þ� � ½ð�6; 1Þð�3; 2Þ�⇛j9i ¼ ð8; 4Þ � ð8sim; 2Þ j10i ¼ ð8; 2Þ � ð8sim; 2Þ;
½ð6; 1Þð3; 2Þ� � ½ð3; 3Þð�3; 2Þ�⇛j11i ¼ ð8sim; 2Þ � ð8; 4Þ j12i ¼ ð8sim; 2Þ � ð8; 2Þ;
½ð6; 1Þð3; 2Þ� � ½ð�6; 1Þð�3; 2Þ�⇛j13i ¼ ð8sim; 2Þ � ð8sim; 2Þ j14i ¼ ð10; 2Þ � ð10; 2Þ: (14)

We have five states for spin 0 and nine states for spin 1;
they are given below:

Spin 0

j1i ¼ ð1; 2Þ	ð1; 2Þ� j2i ¼ ð8; 2Þ	ð8; 2Þ�
j3i ¼ ð8; 4Þ	ð8; 4Þ� j4i ¼ ð10; 2Þ	ð10; 2Þ�
j5i ¼ ð8; 2Þ	ð8; 2Þ56;

(15)

Spin 1

j1i ¼ ð1; 2Þ	ð1; 2Þ� j2i ¼ ð8; 2Þ	ð8; 2Þ�
j3i ¼ ð8; 4Þ	ð8; 4Þ� j4i ¼ ð10; 2Þ	ð10; 2Þ�
j5i ¼ ð8; 2Þ	ð8; 4Þ� j6i ¼ ð8; 4Þ	ð8; 2Þ�
j7i ¼ ð8; 2Þ	ð8; 2Þ56 j8i ¼ ð8; 4Þ	ð8; 2Þ56
j9i ¼ ð10; 2Þ	ð10; 4Þ56:

(16)

With the introduction of appropriate color and spin projec-

tors, it is easy to build explicitly the above basis. Symbolic
expressions for the matrix elements of the chromomagnetic
operator OCM were obtained with the help of FORM [16].
The explicit expressions for the CM matrices for the three
cases mentioned are collected in Appendix C. For the CM
matrices we assumed the same ordering as for the above
states. The mass spectra of the most interesting baryon-
antibaryon states are given in Appendix A.

VII. EXPERIMENTAL EVIDENCE FOR
HEXAQUARKS

(1) We predict a 0� state ðqqqqqqÞ, strongly coupled to
the p �p channel (the component along p �p is 0.894) located
below the threshold (1876.54 MeV); it has a mass of
1874 MeV. This is in agreement with the first observation
of a narrow enhancement near the p �p threshold by the BES
Collaboration [11] in J=c ! p �p�, then named Xð1859Þ.
So far both the JP assignments 0þ or 0� remain equally
possible. The state was found at a mass mX ¼ 1859�3

10

�5
25 MeV having a width smaller than 30 MeV. The state

we found is slightly higher, just 7 MeV above the experi-

5The representation 8sim is the color octet symmetric under the
exchange of the colors of the light quark pair.
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mental upper limit. The experimentally estimated branch-
ing ratio is BðJ=c ! �XÞBðX ! p �pÞ ’ 7� 10�5.

(2) Also relevant for the light hexaquarks (qqqqqq) may
be a quite broad 1� enhancement above p �p threshold with
mass 1935� 20 MeV and width � ¼ 215� 30 MeV
which was proposed about 30 years ago [32]. We have a
very good candidate for this state at a mass 1911.5 MeV
with a large component (0.61) along the p �p channel.
However, here some caution is needed because the evi-
dence is based on a partial wave analysis, and one would
have to check if the analysis is compatible with the inclu-
sion of the additional 0� state just mentioned above.

(3) We also have a pretty good candidate for Yð2175Þ, a
1�� state recently seen at the BABAR detector [33] at a
mass 2170� 10� 15 MeV (with a width � ¼ 58� 16�
20 MeV). We predict a singly hidden strangeness state

ðqqsqqsÞ strongly coupled to the � �� channel (with a
component of 0.6 along this direction) with a mass

2184 MeV. Since this state is below the � �� threshold
(around 2231 MeV) it has to decay mostly into mesons.
In fact, BABAR observed this state in the decay Y !
f0ð980Þ� (through f0 ! ��). Yð2175Þ has been con-
firmed by the BES Collaboration [34] in J=c !
f0ð980Þ� at a mass m ¼ 2186� 10� 16 MeV and a
width � ¼ 65� 23 MeV.

(4) The peak in �c �p seen at the mass m ¼ 3350þ10
�20 �

29 MeV and width � ¼ 70þ40
�30 � 40 MeV in B� !

�c �p�
� [12] may be identified with a 0� charmed hexa-

quark, which we predict to be at 3339 MeV. There is also a
1� at a lower mass, 3274 MeV, with a component of the
same order (0.35). All the states strongly coupled to �c �p
are below the threshold (3225 MeV); on the other hand,
those above the threshold, with the exception of the two
states mentioned previously, have negligible couplings.
This implies that these two states are the only ones observ-
able in the baryonic channel. It is useful to remark that the
experiment privileges the spin 0 assignment.

(5) In the singly hidden charm sector ðqqcqqcÞ, the
heaviest states are loosely coupled to �c

��c, and the rea-
sonably coupled states are just above or below the thresh-
old (4573 MeV). We display these states and the value of
the component along the baryonic channel in the table
below:

Mass (MeV) 4533 4556 4575 4614 4642 4658 4670

Comp. in �c
��c 0.41 0.21 0.52 0.42 0.48 0.16 0.24

As a matter of fact, recently, a resonance decaying into
�c

��c has been seen by the Belle detector [13,35] at m ¼
4634þ8þ5

�7�8 MeV and � ¼ 92þ40þ20
�24�21 MeV, which is compat-

ible [35,36] with Yð4660Þ ! c 0�� [35,37]. Anyway, the
fact that the component along the baryonic channel is not
strongly dominant is welcome, since it is opportune to
leave some room for the decay into c 0��, which in the
present framework is naturally related to a c 0f0 state. Let
us notice that this is consistent with the proposal made in
[38] of a c 0f0 molecular state. Recently, it was proposed to
interpret the above state as an excited L ¼ 1 tetraquark
[39].
We have also calculated the spectrum of the singly

hidden strangeness states ðqqsqqsÞ relevant to the � ��

channel, using, along the same lines, the ð15; 15Þ basis.

We find only two states strongly coupled to � ��; both are
around the threshold 2380 MeV, with one being below the
threshold at a mass of 2356 MeV and the other above, at
2454MeV. So far, there has been no experimental evidence
for these states.

VIII. CONCLUSION

The full chromomagnetic Hamiltonian proved to be very
effective in providing for a unified treatment of tetraquarks
and hexaquarks. Besides reproducing the pattern of decays
of currently accepted tetraquarks, it also predicts a com-
panion for a0ð980Þ at a mass around 1330 MeV, which has
been confirmed by experiments, as the scalar named a0ðYÞ
and two cscs states, the Yð4140Þ and the Xð4350Þ. A
number of candidates were compared with data for the

baryon-antibaryon resonances, namely, p �p, �c
��c, �c �p,

quite successfully.
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APPENDIX A: SPECTRUM OF THE B �B STATES

PF is the probability factor for the B �B open door chan-
nel. Masses are given in MeV.

B �B state Threshold 1 2 3 4 5 6 7 8 9 10 11 12 13 14

p �p 0� 1876 1263 1874 2151 2407

PF 0.15 0.80 0.001 0.05

p �p 1� 1876 1562 1732 1911 2060 2174 2624

PF 0.43 0.002 0.37 0 0.19 6:10�4

�c �p 0� 3225 2653 3028 3188 3339 3595

PF 0.15 0.28 0.42 0.13 0.02

�c �p 1� 3225 2740 2949 3064. 3156 3223 3274 3465 3553 3759

PF 0.02 0.11 0.56 0.12 0.06 0.12 0.002 10�4 8:10�5

� �� 1� 2231 2105 2125 2142 2184 2231 2246.8 2247.2 2274 2297 2303 2325 2343.83 2343.95 2421

PF 0.003 0 0.01 0.36 0.13 0 0.008 0.31 3:5:10�5 0 0.17 8:10�4 0 5:10�4
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B �B state Threshold 1 2 3 4 5 6 7 8 9 10 11 12 13 14

�c
��c1

� 4573 4468 4510 4533 4556 4575 4598 4614 4642 4654 4658 4669 4685 4689 4736

PF 0.025 0 0.17 0.044 0.27 0 0.17 0.23 0 0.026 0.06 0 0 8:10�5

� �� 1� 2380 2211 2236 2270 2273 2283 2310 2334 2346 2349 2356 2415 2415.6 2434 2454

PF 2:10�5 4:10�4 0 0.005 4:10�4 0 0.012 0.35 0 0.34 0.006 0 5:10�4 0.29

�c
��c 1� 4910 4581 4632 4638 4646 4662 4670 4679 4702 4708 4715 4741 4742 4761 4778

PF 0.007 0.027 0 0.029 0.029 0 0.23 0.3 0 0.069 0.038 0 0.21 0.059

APPENDIX B: CROSSING MATRICES
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APPENDIX C: CHROMOMAGNETIC OPERATOR
FOR qqqqqq STATES

Parameters are Cqq ¼ r, Cqc ¼ s, Cc�c ¼ t.

We have computed the matrices of chromomagnetism
by inserting the operator Eq. (1) between the states at
Eqs. (10) and (11); they are given below, where A0 is for
0� and A1 for 1

�.
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CM matrices for basis ð15; 15Þ:

A C
CT B

� �
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CM matrices for basis �c �p:
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