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Abstract

We study the validity of the condition (N) of Lusin for homeomorphisms f : Ω
onto−→ Ω′

under minimal assumptions on the integrability of D f . It turns out that the role of grand
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1 Introduction
Let f be a homeomorphism from a bounded domain Ω ⊂ Rn (n ≥ 2) onto Ω′ ⊂ Rn. We consider for
f the following condition (N) of Lusin, f ∈ (N)

if E ⊂ Ω with |E| = 0, then | f (E)| = 0 (1.1)

where | · | denotes the Lebesgue measure. For a homeomorphism f : Ω
onto−→ Ω′, condition (1.1)

holds if and only if f maps measurable sets to measurable sets (see Section 2). Moreover, if f is
differentiable at every point x of the Borel set B ⊂ Ω and J f (x) is the Jacobian determinant of f at
x, then the weak area formula holds on B, that is∫

B
η( f (z))|J f (z)|dz ≤

∫
f (B)
η(w)dw (1.2)

for any nonnegative Borel-measurable function η on R2 (see Section 2). However, the (N) condition
for such f and B ⊂ Ω is equivalent to the area formula∫

B
η( f (z))|J f (z)|dz =

∫
f (B)
η(w)dw. (1.3)

In this paper we address the following question.
What are the minimal integrability conditions on the partial derivatives of a Sobolev homeomor-

phism f ∈ W1,1
loc (Ω,Rn) needed to guarantee that f satisfies (1.1)?

If the homeomorphism f satisfies the natural assumption f ∈ W1,n
loc (Ω,Rn), then f verifies the

(N)-condition (1.1). This is due to Reshetnjak [31] and it is a sharp result in the scale of W1,p(Ω,Rn)-
homeomorphisms thanks to an example of Ponomarev ([29], [30]) of a W1,p-homeomorphisms f :
[0, 1]n → [0, 1]n, p < n violating the (N)-condition. Another example has been constructed [22] of
a homeomorphism f ∈ ∩

1≤p<n W1,p(Ω,Rn), satisfying the condition slightly below the natural one
|D f | ∈ Ln(Ω),

sup
0<ε≤n−1

ε

∫
Ω

|D f |n−εdx < ∞ (1.4)

and again f violates N-condition. When (1.4) occurs, we write |D f | ∈ Ln)(Ω), the grand Lebesgue
space.

Condition (1.4) was introduced in [21] for mappings f : Ω ⊂ Rn → Rn (not necessarily home-
omorphisms) in the study of the integrability of non negative Jacobians under minimal integrability
assumptions for |D f |.

In [22] Kauhanen, Koskela and Malý proved that the Reshetnjak’s sufficient condition |D f | ∈
Ln(Ω) for a homeomorphism f : Ω

onto−→ Ω′ to satisfy condition (N) can be relaxed into the following
one

lim
ε→0+
ε

∫
Ω

|D f |n−εdx = 0 (1.5)

(assuming J f (x) ≥ 0 a.e.), see also [23] and [9]. When (1.5) occurs, we write |D f | ∈ Ln)
b (Ω).

Actually in [22] the authors prove that, if the so called distributional Jacobian DetD f agrees
with the pointwise Jacobian J f = det D f , then f verifies the (N) condition and then they use the
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fact, proved by L. Greco, that (1.5) is a sufficient condition under which Det D f agrees with J f , if
J f (x) ≥ 0 a.e. (see Section 2).

We simply mention here the fact that, for n = 2, the condition Det D f = detD f is equivalent to
the validity of integration by parts against the Jacobian J f , that is, if f = (u, v), then∫

Ω

φ(uxvy − uyvx) =
∫
Ω

u(φyvx − vyφx) =
∫
Ω

v(φxuy − φyux)

for all φ ∈ C1
0(Ω), which is true for f ∈ W1,2

loc (Ω,R2) but does not work when we only assume
f ∈ W1,p

loc (Ω,R2) for some p < 2, also in case of homeomorphisms.
Here for n = 2 we indicate another proof of Lemma 3.2 in [22] based on the following interesting

approximation theorem (see [11]) which characterizes the closure of smooth homeomorphisms in
the grand Sobolev space W1,2) (see Section 2). The question of diffeomorphic approximation of
planar W1,p- homeomorphisms, p > 1, has been recently settled by Iwaniec, Kovalev and Onninen (
see [19]). Related approximation problems have also been treated by Daneri and Pratelli (see [6]).

Theorem 1.1 Let Ω and Ω′ be bounded domains of R2. If f ∈ W1,1(Ω,R2) ∩ Hom(Ω,Ω′) with
|D f | ∈ L2)

b then, there exists a sequence f j of diffeomorphisms such that

f j → f in C0(Ω;Ω′)

|D f j| → |D f | in L2)(Ω)∫
Ω

φJ f j →
∫
Ω

φJ f ∀φ ∈ C1
0(Ω).

In Section 3 we will consider Sobolev and Bounded Variation planar homemomorphisms and
collect many interesting facts typical of dimension n = 2. In Section 4 we study planar bi-Sobolev
maps, namely those homeomorphisms of the Sobolev class W1,1

loc whose inverse is of the same
Sobolev class, and their connections with homeomorphic solutions to degenerate Beltrami systems.
Finally, in Section 5 we prove that a sufficient condition for a planar map to enjoy (N)-condition
is that f belongs to the closure of diffeomorphisms in the grand Sobolev space W1,2)(Ω,R2) (see
Theorem 5.1).

2 Preliminaries
Let Ω and Ω′ be bounded domains in Rn and let us denote by Hom(Ω,Ω′) the set of all homeomor-
phisms f : Ω → Ω′ = f (Ω). We say that the mapping f : Ω → Rn satisfies the the Lusin condition
if

|E| = 0 =⇒ | f (E)| = 0

for any measurable set E ⊂ Ω. For the sake of completeness, let us give some auxiliary results
together with their proofs.

Proposition 2.1 If f ∈ Hom(Ω,Ω′) then the Lusin condition holds for f if, and only if, f maps
measurable sets to measurable sets.
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Proof. Let us assume that f ∈ (N). If A ⊂ Ω is a measurable set, then there exists a Borel set B,
A ⊂ B ⊂ Ω such that |B\A| = 0. Then we have | f (B)\ f (A)| = | f (B\A)| = 0, and hence f (B)\ f (A) is
measurable. Since f (B) is a Borel set (because homeomorphisms map closed sets into closed sets),
then f (A) is also measurable. Conversely, suppose that E ⊂ Ω verifies |E| = 0 and | f (E)| > 0. Let
A′ ⊂ f (E) be a non measurable set, then f −1(A′) ⊂ E is a set of measure zero, hence f −1(A′) is
measurable and by assumption A′ = f ( f −1(A′)) is measurable as well, which is a contradiction.

Proposition 2.2 A homeomorphism f : Ω → Ω′ satisfies the condition (N) iff | f (E)| = 0 whenever
E ⊂⊂ Ω is a compact set with zero measure.

Proof. If E ⊂ Ω satisfies |E| = 0, then there exists a Borel set B ⊃ E such that |B| = 0. By
contradiction if | f (B)| > 0, there exists a compact set C′ ⊂ f (B) such that |C′| > 0. On the other
hand, since f is a homeomorphism, f −1(C′) is compact and | f −1(C′)| ≤ |B| = 0. This is not possible
by assumption.

If f ∈ Hom(Ω,Ω′) we decompose Ω as follows :

Ω = R f ∪Z f ∪ E f

where
R f = {z ∈ Ω : f is differentiable at z and J f (z) , 0} (2.1)

Z f = {z ∈ Ω : f is differentiable at z and J f (z) = 0} (2.2)

E f = {z ∈ Ω : f is not differentiable at z.} (2.3)

Differentiability is understood in the classical sense. Since f is continuous, these are Borel sets.
Clearly we have

f (R f ) = R f −1 . (2.4)

Let us recall the weak area formula from Federer [[12] Theorem 3.1.8]. Let B ⊂ Ω be a Borel
measurable set and assume that f : Ω

onto−→ Ω′ is a homeomorphism such that f is differentiable at
every point of B, then for any η : Rn → [0,+∞[ Borel measurable function we have∫

B
η( f (z))|J f (z)|dz ≤

∫
f (B)
η(w)dw. (2.5)

This follows from the area formula (1.3) which is valid for Lipschitz mappings and from the fact
that the set of differentiability can be exhausted up to a set of zero measure by sets the restriction to
which of f is Lipschitz [[12] Theorem 3.1.8]. Hence, for an a.e. differentiable homeomorphism on
Ω we can decompose Ω into pairwise disjoint sets

Ω = Z ∪
∞∪

k=1

Ωk (2.6)

such that |Z| = 0 and fΩk is Lipschitz.
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We note the following consequence of (2.5). If B′ ⊂ f (Ω) is a Borel subset with |B′| = 0, then
J f (x) = 0 for a.e. x ∈ f −1(B′). Indeed∫

f −1(B′)
|J f (z)|dz ≤

∫
B′

dw = |B′| = 0.

For example, if f −1 is differentiable a.e. on f (Ω), then J f (x) = 0 for a.e. x ∈ f −1(E f −1 ) where

E f −1 = {z ∈ Ω : f −1 is not differentiable at z}.
We say that the area formula holds for f on B if (2.5) is valid as an equality, that is∫

B
η( f (z))|J f (z)|dz =

∫
f (B)
η(w)dw (2.7)

for all η : Rn → [0,+∞[ Borel measurable function.
For a Sobolev homeomorphisms f ∈ W1,1(Ω,Rn) (that is if the coordinate functions of f belong

to the Sobolev space W1,1(Ω) of L1-functions u : Ω → R whose gradient |∇u| belongs to L1(Ω)) it
is well known that there exists a set Ω̃ of full measure such that the area formula holds for f on Ω̃.
Also, the area formula holds on each set on which the Lusin condition (N) is satisfied (this follows
from the area formula for Lipschitz mappings, from the a.e. approximate differentiability of f [see
[12] Theorem 3.1.4] and the already mentioned general property of a.e. differentiable functions [[12]
Theorem 3.1.8] namely that Ω can be exhausted up to a set of measure zero by sets the restriction to
which of f is Lipschitz continuous).

So, if we choose the Borel set B = Z f as defined in (2.2) then by (1.3), we deduce

| f (Z f )| = 0

which is a weak version of the classical Sard lemma.
Let f : Ω

onto−→ Ω′ be a homeomorphism. Then f maps every Borel set B ⊂ Ω onto a Borel set.
Note that here we need to restrict ourselves to Borel sets B only since the homeomorphic image of a
measurable set need not remain measurable.

In fact if f is a Cantor type homeomorphism f : [0, 1] → [0, 2] such that a zero set N0, |N0| = 0
is mapped to a positive set P′0 = f (N0), |P′0| > 0 and E′ is a non measurable set contained in P′0
(recall that every set of Lebesgue positive measure contains a non measurable subset) then f −1(E′)
is contained in the null set N0 hence it is measurable.

The question of the differentiability in the classical sense of a homeomorphisms has a rather
simple positive answer in the case n = 2 thanks to a classical Theorem of Gehring-Lehto (see [13],
[24] and [26]).

Theorem 2.1 LetΩ andΩ′ be bounded domains in the plane and suppose that f ∈ Hom(Ω,Ω′) has
finite partial derivatives a.e. in Ω, then f is differentiable a.e. in Ω.

Remark 2.1 As a consequence, if f = (u, v) : Ω ⊂ R2 onto−→ Ω′ ⊂ R2 is a Sobolev-homeomorphism,
then f and f −1 are differentiable a.e. ([16]). The fairly well-known Theorem of Gehring-Lehto is
one of the few facts from real analysis that carry geometric information up from the infinitesimal
level. Its proof uses properties of the plane, in fact the Theorem at this stage of generality ( f a
BV-homeomorphism or f a W1,1-homeomorphism) is false in higher dimension.
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In the general case n ≥ 2, the minimal integrability conditions on the partial derivatives of
a Sobolev homeomorphism f ∈ W1,1

loc (Ω,Rn) needed to guarantee a.e. differentiability have been
found by J. Onninen [28], generalizing a classical result of Stein [33].

Namely, it turns out that if f ∈ W1,1(Ω,Rn) and |D f | ∈ Ln−1,1(Ω) (where the Lorentz space
Lp,1(Ω), 1 ≤ p < ∞ is defined as the class of all measurable functions u : Ω→ R such that

∥u∥Lp,1(Ω) = p
∫ ∞

0
|{z ∈ Ω : |u(z)| > t}|1/pdt

is finite) then the homeomorphisms f and f −1 are differentiable a.e.
This is sharp after an example of a W1,n−1-homeomorphism f (n ≥ 3) which is bi-Sobolev (that

is, f −1 ∈ W1,1) and both f , f −1 are nowhere differentiable [5].

Let us prove the following useful result which generalizes Lemma 3.4 of [24].

Proposition 2.3 If f is a Sobolev homeomorphism such that J f ≥ 0, then f −1 satisfies the condition
(N), if and only if, J f (z) > 0 for a.e. z ∈ Ω.

Proof. Suppose first that f −1 ∈ (N) and denote by Ω̃ a subset of Ω of full measure such that the area
formula (2.7) with B = Ω̃ holds true. Hence,

| f ({z ∈ Ω̃ : J f (z) = 0})| = 0

and by (N) condition for f −1 we have

|{z ∈ Ω : J f (z) = 0}| = |{z ∈ Ω̃ : J f (z) = 0} ∪ (Ω \ Ω̃)| = 0.

Conversely, suppose J f (z) > 0 a.e. and let us prove that f −1 ∈ (N). Assuming by contradiction that
there exists |N′0| = 0, N′0 ⊂ Ω′ with | f −1(N′0)| > 0, then we have∫

f −1(N′0)
J f ≤ | f ( f −1(N′0))| = |N′0| = 0.

Hence J f = 0 on the positive set f −1(N′0) ⊂ Ω and this is a contradiction.
Let us prove the following simple characterization of the (N) condition for f :

Proposition 2.4 If f : Ω
onto−→ Ω′ is a Sobolev homemorphism, J f ≥ 0 and∫

B
J f = | f (B)|

for any Borel set B ⊂ Ω then, f ∈ (N) on every Borel set B ⊂ Ω.

Proof. By contradiction, there exists a subset E ⊂ B : |E| = 0 and | f (E)| > 0 then∫
B

J f =

∫
B\E

J f ≤ | f (B \ E)| = | f (B)| − | f (E)| < | f (B)|

and this is a contradiction.

An interesting application of condition (N) is the following result on the inverse of an a.e. dif-
ferentiable homeomorphism which in the plane has an interesting counterpart (see Remark 2.1).
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Proposition 2.5 Let f ∈ Hom(Ω,Ω′) be differentiable a.e.. If f verifies the condition (N), then the
inverse f −1 is differentiable a.e..

Proof. We notice that the area formula (1.3) holds on each set on which f satisfies the (N)-condition;
in particular it holds on R f ∪Z f that is the set where f is differentiable (see Proposition ??) :∫

R f∪Z f

η( f (z))|J f (z)|dz =
∫

f (R f∪Z f )
η(w)dw. (2.8)

In particular, we have the following version of Sard Lemma

| f (Z f )| = 0. (2.9)

Since f is differentiable a.e., E f has measure zero and by condition (N) f (E f ) has measure zero. We
note that f −1 is differentiable in f (R f ) which is a subset of full measure of f (Ω); indeed,

f (Ω) \ f (R f ) = f (Z f ) ∪ f (E f )

has measure zero by (2.9) and condition (N).

By A△B, we denote the set (A ∪ B) \ (A ∩ B) and by A = B a.e. we mean |A△B| = 0.

Proposition 2.6 Let f ∈ Hom(Ω,Ω′) and assume that f and f −1 are differentiable a.e. and both
verify condition (N) then, f essentially maps E f toZ f −1 and f −1 maps E f −1 toZ f in the sense that:

| f (E f )△Z f −1 | = | f (E f −1 )△Z f | = 0.

Proof. Following the same arguments of Proposition 2.5,

|E f | = |E f −1 | = 0

and by Sard Lemma
| f (Z f )| = | f −1(Z f −1 )| = 0.

Then using the relation

f (Z f ) ∪ f (E f ) = f (Z f ∪ E f ) = Z f −1 ∪ E f −1

yields
f (E f )△Z f −1 =

(
f (E f ) \ Z f −1 ) ∪ (Z f −1 \ f (E f )

)
⊂ E f −1 ∪ f (Z f )

we have
| f (E f )△Z f −1 | = 0

and similarly
| f −1(E f −1 )△Z f | = 0.



774 L. D’Onofrio, C. Sbordone, R. Schiattarella

3 Sobolev and BV-homeomorphisms in the plane
In this section we discuss some results about the regularity of the inverse of Sobolev or BV-homeomo-
rphism in the plane. These results are of particular importance as Sobolev and BV spaces are com-
monly used as initial spaces for existence problems in Calculus of Variations.

Let Ω and Ω′ be bounded open domains in the plane. We say that f ∈ Hom(Ω,Ω′) is a Sobolev
homeomorphism if f ∈ W1,1

loc (Ω;R2). Here, for p ≥ 1, W1,p
loc consists of all locally p-integrable

mappings of Ω into R2 whose coordinate functions have p-integrable distributional derivatives.
Similarly, we say that f ∈ Hom(Ω,Ω′) is a BV (or bounded variation) homeomorphism if f ∈

BV(Ω,R2) i.e. f = (u, v) is a locally integrable map of Ω into R2, whose coordinate functions
u, v have first order distributional derivatives which can be identified with measures with finite total
variation in Ω. This means that there are Radon (signed) measures µ1, µ2, ν1, ν2 defined on Ω, so
that |µi|(Ω) < ∞ and |νi|(Ω) < ∞ for i = 1, 2 and∫

Ω

u
∂φ

∂xi
dx = −

∫
Ω

φdµi

∫
Ω

v
∂φ

∂xi
dx = −

∫
Ω

φdνi

for all φ ∈ C1
0(Ω). Further, f ∈ BVloc(Ω,R2) requires f ∈ BV(Ω̃,R2), for each subdomain Ω̃ ⊂⊂ Ω.

In [16], the authors proved that if f : Ω
onto−→ Ω′ is a BVloc homeomorphism then so does its

inverse f −1 : Ω′
onto−→ Ω. This result fails in the category of Sobolev homeomorphisms: if f ∈ W1,1

it is not automatic that f −1 ∈ W1,1. Moreover the result fails for n ≥ 3, and in [16] an example is
produced of homeomorphic f ∈ W1,n−1−ε(] − 1, 1[n,Rn) for which f −1BVloc( f (Ω),Rn).

In [10] the following identities for total variations have been recently proved for the planar BV-
homeomorphism f = (u, v), whose inverse is f −1 = (x, y):

|∇x|(Ω′) =
∣∣∣∣∣∂ f
∂y

∣∣∣∣∣ (Ω)

|∇y|(Ω′) =
∣∣∣∣∣∂ f
∂x

∣∣∣∣∣ (Ω).
(3.1)

Let us state some important facts for BV or Sobolev homeomorphisms in the plane:

- If f is a BVloc-homeomorphism, then f −1 is BVloc. Moreover f and f −1 are differentiable
a.e. in the classical sense ([13], [26]). In particular, the inverse of a W1,1

loc -homeomorphism

f : Ω
onto−→ Ω′ is in BVloc. A sufficient condition in order that f −1 belongs actually to W1,1

loc is
that f −1 ∈ (N) according to the following:

Theorem 3.1 Let f : Ω
onto−→ Ω′ be a planar W1,1-homeomorphism and assume that f −1 satisfies the

(N)-condition. Then f −1 ∈ W1,1
loc (Ω′,R2).

Proof. Indicating f = (u, v) and f −1 = (x, y), it is sufficient to prove that for any compact set E′ ⊂ Ω′
such that |E′| = 0 we have

|∇x|(E′) = 0 |∇y|(E′) = 0
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where |∇x|(E′) and |∇y|(E′) denote the total variations of the coordinate functions x and y of f −1

evaluated at E′. In fact if F′ ⊂ Ω′ is an arbitrary measurable null set |F′| = 0, then there exists a
Borel set B′ ⊃ F′ such that |B′| = 0. We claim that

|∇x|(F′) ≤ |∇x|(B′) = 0.

Otherwise, if |∇x|(B′) > 0 there would be a compact null set E′ ⊂ B′ such that |∇x|(E′) > 0 by the
regularity of Borel measure and this is a contradiction.

Let us use the following equalities from [7]

|∇x|(A′) =
∫

f −1(A′)

∣∣∣∣∣∂ f
∂y

∣∣∣∣∣
|∇y|(A′) =

∫
f −1(A′)

∣∣∣∣∣∂ f
∂x

∣∣∣∣∣ (3.2)

Let us fix the compact null subset E′ ⊂ Ω′ and define A′ = Ω′ \E′. By (N)-property for f −1 we have
| f −1(E′)| = 0, hence

| f −1(A′)| = | f −1(Ω′) \ f −1(E′)| = | f −1(Ω′)|
Using twice (3.2) we obtain

|∇x|(A′) =
∫

f −1(A′)

∣∣∣∣∣∂ f
∂y

∣∣∣∣∣ = ∫
f −1(Ω′)

∣∣∣∣∣∂ f
∂y

∣∣∣∣∣ = |∇x|(Ω′)

and similarly
|∇y|(A′) = |∇y|(Ω′)

by additivity properties of measures we arrive at

|∇x|(E′) = |∇x|(Ω′ \ A′) = 0

|∇y|(E′) = |∇y|(Ω′ \ A′) = 0

hence |∇x|, |∇y| ∈ L1(Ω) that completes the proof.

However, condition (N) for f −1 is not necessary to have f −1 ∈ W1,1. See section 4 where
examples of bi-Sobolev maps without (N)-condition are shown. Further interesting facts are the
following:

- If f is a BV-homeomorphism and J̃ f denotes the Jacobian determinant of the absolutely con-
tinous part D̃ f of the differential D f , then J̃ f ≥ 0 a.e. or J̃ f ≤ 0 a.e. (see [17]).

- If f is Sobolev homeomorphism, then the integrability of the Jacobian is automatic and∫
Ω

|J f | ≤ | f (Ω)|. (3.3)

Moreover, equality occurs in (3.3) if f ∈ (N) (see Proposition 2.4 and [24]).

- If f is a Sobolev homeomorphism then J f ≥ 0 or J f ≤ 0 a.e. (the present result is true also
for n = 3 but fails for W1,1-homeomorphism for n ≥ 4).
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Proposition 2.3 has a counterpart valid for planar BV-homeomorphisms

Proposition 3.1 Let f ∈ Hom(Ω,Ω′) ∩ BV(Ω,R2) then the weak area formula∫
B
η( f (z))J̃ f (z))dz ≤

∫
f (B)
η(w)dw (3.4)

holds for B ⊂ Ω Borel set and η : R2 → [0,+∞) Borel measurable. Moreover

J̃ f (z) > 0 a.e. ⇐⇒ f −1 ∈ (N)

Proof. Formula (3.4) is due to [4]. Assume J̃ f > 0 and by contradiction that there exists N′0 ⊂ Ω′
such that |N′0| = 0 and | f −1(N′0)| > 0. Applying (3.4) with η = 1 on the Borel set N′0 and η = 0 on
R2 \ N′0 we obtain:

0 <
∫

f −1(N′0)
J̃ f (x)dx ≤ |N′0| = 0

which is impossible.
Conversely, if f −1 ∈ (N) then (3.4) holds as an equality. Let

Z̃ f = {z ∈ Ω : f is differentiable at z and J̃ f (z) = 0}

and

0 =
∫
Z̃ f

J̃ f (z) dz = | f (Z̃ f )|

by (N) condition on f −1 we deduce that |Z̃ f | = | f −1( f (Z̃ f ))| = 0, hence J̃ f (z) > 0 a.e..

4 Bi-Sobolev Mappings
In [18] a particularly useful class of homeomorphisms which lie between BV homeomorphisms and
bi-Lipschitz mappings was introduced, namely the bi-Sobolev mappings

Definition 4.1 The homeomorphism f : Ω ⊂ Rn onto−→ Ω′ ⊂ Rn is a bi-Sobolev map if f and f −1 are
Sobolev homeomorphisms.

The case n = 2 is quite special, in fact the following theorem holds (see [18])

Theorem 4.1 To each bi-Sobolev mapping f : Ω
onto−→ Ω′ f = (u, v) there corresponds a measurable

function A = A(z) valued symmetric matrices with det A(z) = 1 a.e. such that for a.e. z ∈ Ω and
∀ξ ∈ R2

K(z)−1|ξ|2 ≤ ⟨A(z)ξ, ξ⟩ ≤ K(z)|ξ|2

where

K(z) =


|D f (z)|2

J f (x)
if J f (z) , 0

1 otherwise.
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The coordinate functions u , v of f are very weak solutions to the equation

div A(z)∇u = 0

div A(z)∇v = 0

with finite energy, i.e. ∫
Ω

⟨A(z)∇u,∇u⟩ =
∫
Ω

⟨A(z)∇v,∇v⟩ ≤ | f (Ω)|

Moreover u and v have the same critical sets:

{z ∈ Ω : ∇u(z) = 0} = {z ∈ Ω : ∇v(z) = 0} a.e.

A similar result is obtained in the setting of bi–ACL homeomorphisms (see [27]).
A sufficient condition that a Sobolev homeomorphism is a bi-Sobolev map is contained in the

following (see [15]).

Theorem 4.2 Let f : Ω ⊂ R2 onto−→ Ω′ ⊂ R2 a Sobolev homeomorphism satisfying the condition

|Z f | = 0 (4.1)

on the critical set (2.2), then f is a bi-Sobolev map and∫
Ω

|D f |dz =
∫
Ω′
|D f −1|dw (4.2)

We emphasize that condition (4.1) is not necessary for f to be a bi-Sobolev map. It can happen
that bi-Sobolev maps have positive sets of critical points (see example of [30]).

Notice also that bi-Sobolev maps escape the pathological equality

|Z f | = |Ω| (4.3)

(see [18] and [8]).
Let us preliminarly prove the following

Lemma 4.1 Let f : Ω ⊂ R2 onto−→ Ω′ ⊂ R2 be a bi- Sobolev map with J f ≥ 0 a.e. in Ω. Then, the
following conditions are equivalent each other

J f = 0 a.e. in Ω (4.4)

∃N0 ⊂ Ω, |N0| = 0 such that | f (N0)| = |Ω′| (4.5)

∃N′0 ⊂ Ω′, |N′0| = 0 such that | f −1(N′0)| = |Ω| (4.6)

J f −1 = 0 a.e. in Ω′. (4.7)
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Proof. (4.4) =⇒ (4.5). By area formula for Sobolev homeomorphisms, there exists N0 ⊂ Ω with
zero measure such that ∫

Ω\N0

J f (z)dz = | f (Ω \ N0)|.

Then, by (4.4)
0 = | f (Ω \ N0)| = |Ω′ \ f (N0)|

and hence (4.5) holds true.
(4.5) =⇒ (4.6). Define N′0 = Ω \ f (N0) then obviously |N′0| = 0. Moreover,

| f −1(N′0)| = | f −1 ( f (Ω \ N0)) | = |Ω \ N0| = |Ω|,

i.e. (4.6) holds true.
(4.6) =⇒ (4.7). By area formula∫

Ω′\N′0
J f −1 (w)dw ≤ | f −1(Ω′ \ N′0)| = |Ω \ f −1(N′0)| = 0

hence Ω′ \ N′0 ⊂ Z f −1 and |Ω′ \ Z f −1 | ≤ |N′0| = 0 and (4.7) follows.
At this point we have proved also that (4.4) =⇒ (4.7), hence the implication (4.7) =⇒ (4.4)

follows by symmetry and the Lemma is proved.

Theorem 4.3 If f = (u, v) : Ω
onto−→ Ω′ is a bi-Sobolev map then

|Cu| = |{z ∈ Ω : f is differentiable at z and |∇u(z)| = 0}| =

|Cv| = |{z ∈ Ω : f is differentiable at z and |∇v(z)| = 0}| =

= |Z f | < |Ω|.

Proof. It is enough to show that |Z f | < |Ω| because everything else is proved in ([18], Theorem 2).
Suppose by contradiction that the pathological equality |Z f | = |Ω| holds true. Then we will

deduce that the gradient of the inverse f −1 = (x, y) is not absolutely continuous with respect to
Lebesgue measure, that is f −1 < W1,1

loc , which gives us a contradiction.
If |Z f | = |Ω|, Lemma 4.1 implies that there exists N′0 ⊂ Ω′ such that |N′0| = 0 and | f −1(N′0)| = |Ω|.

By regularity properties of Lebesgue measure there exists a closed set C ⊂ f −1(N′0) such that |C| > 0.
Define C′ = f (C) and notice that it is a closed subset of N′0 with zero measure: |C′| = 0. We can
apply to the open set A′ = Ω′ \C′ formula (3.2) and get

|∇x|(C′) = |∇x|(Ω′) − |∇x|(A′) =
∫

f −1(Ω′)

∣∣∣∣∣∂ f
∂y

∣∣∣∣∣ − ∫
f −1(A′)

∣∣∣∣∣∂ f
∂y

∣∣∣∣∣ = ∫
f −1(C′)

∣∣∣∣∣∂ f
∂y

∣∣∣∣∣ > 0

because |C′| = 0 and | f −1(C′)| > 0. This means that ∇x is not absolutely continuous with respect to
Lebesgue measure and f −1 < W1,1

loc which gives the contradiction.
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Remark 4.1 We observe that for a bi-Sobolev map f : Ω
onto−→ Ω′ we have |R f | > 0 and |R f −1 | > 0.

This follows by Gehring– Lehto Theorem which implies:

|Z f ∪ R f | = |Ω|

with
|Z f −1 ∪ R f −1 | = |Ω′|

and by the two inequalities:
|Z f | < |Ω|

|Z f −1 | < |Ω′|

deduced by Theorem 4.3.

5 Grand Sobolev Spaces and the condition (N)

Let us start with the so-called grand Lebesgue space Lq)(Ω) q > 1, Ω ⊂ Rn a bounded domain (see
[20], [21]). By definition it consists of measurable functions

u ∈
∩

1≤s<q

Ls(Ω)

such that

||u||Lq) = sup
0<ε≤q−1

[
ε

∫
Ω

|u|q−εdx
] 1

q−ε

< ∞.

Then Lq)(Ω) is a Banach space for q > 1, satisfying

Lq,∞(Ω) ⊂ Lq)(Ω) ⊂
∩

1≤s<q

Ls(Ω)

where Lq,∞(Ω) is the Marcinkiewicz weak Lq-space. We denote by Lq)
b (Ω) the closure of L∞(Ω) in

Lq)(Ω). It is well known that u ∈ Lq
b(Ω) if and only if

lim
ε→0
ε

∫
Ω

|u|q−εdx = 0

(see [14]). The grand Sobolev space 1 < q < ∞ W1,q)(Ω) is the set of measurable functions u ∈
Lq)(Ω) such that ∥||∇u|∥Lq) (Ω) < ∞, equipped with the norm

||u||W1,q)(Ω) = ||u||Lq)Ω) + ∥|∇u|∥Lq)(Ω).

The space W1,q)
b (Ω) is the subspace of W1,q)(Ω) such that |∇u| ∈ Lq)

b (Ω). These space revealed
very useful in the study of integrability of non negative Jacobians J f ≥ 0 of weakly differentiable
mappings. Our aim is to prove the following result from [22], with a different proof based on
Theorem 1.1:
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Theorem 5.1 Let f = (u, v) : Ω ⊂ R2 onto−→ Ω′ ⊂ R2 a W1,2)
b -homeomorphism that is

lim
ε→0
ε

∫
Ω

|D f |2−ε = 0.

Then f ∈ (N).

Proof. By Theorem 1.1 we know that there exists a sequence f j of W1,2-homeomorphisms f j =

(u j, v j) : Ω
onto−→ Ω′ such that

f j → f uniformly (5.1)

D f j → D f in L2)(Ω,R2) (5.2)

and ∫
Ω

φJ f j →
∫
Ω

φJ f ∀φ ∈ C1
0. (5.3)

Since f j verify the (N)-condition for any Borel set B we have∫
B

J f j = | f j(B)|.

It is sufficient to prove that ∫
U

J f = | f (U)| (5.4)

for U subdomain of Ω whose boundary consists of finitely many line segments each of which is par-
allel to the coordinate axis and for which f|∂U is absolutely continuous. Since f is a homeomorphism
which is absolutely continuous an almost all lines, for any compact E ⊂⊂ Ω we can always choose
such a domain U containing E. We recall Green formula for u, v ∈ W1,1(Ω) ∩C0(Ω) see∫

A

∂u
∂z
+
∂v
∂z
=
ı

2

∫
∂A

udz − vdz (5.5)

for A ⊂ Ω open set (see [2] pages 35 or [24] pages 150). To prove (5.4), using (5.5), we notice that

| f (U)| = |V | =
∫

V
1 =

1
2ı

∫
∂V

zdz =
1
2ı

∫
∂U

f d f

by change of variable in one dimensional integrals which is allowed because f is an absolutely
continuous homeomorphism on ∂U. Next obviously we have

1
2ı

∫
∂U

f d f =
1
2ı

∫
∂U

f fzdz + f fzdz.

Moreover let us show that under our assumption we have

1
2ı

∫
∂U

f fzdz + f fzdz =
∫

U
J f . (5.6)
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This equality follows by Green formula for approximating homeomorphism f j = (u j, v j) which
belongs to W1,2; in fact ∫

∂U
u jdv j =

"
U

(
∂u j

∂x
∂v j

∂y
−
∂u j

∂y
∂v j

∂x

)
dxdy.

By (5.3) we deduce"
U

(
∂u j

∂x
∂v j

∂y
−
∂u j

∂y
∂v j

∂x

)
dxdy→

"
U

(
∂u
∂x
∂v
∂y
− ∂u
∂y
∂v
∂x

)
dxdy.

And also by (5.1) we deduce ∫
∂U

u jdv j →
∫
∂U

udv

which gives (5.4).
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