
Computer Networks 56 (2012) 1215–1235
Contents lists available at SciVerse ScienceDirect

Computer Networks

journal homepage: www.elsevier .com/ locate/comnet
On data dissemination for large-scale complex critical infrastructures

Marcello Cinque a, Catello Di Martino a, Christian Esposito a,b,⇑
a Dipartimento di Informatica e Sistemistica (DIS), Università di Napoli Federico II, via Claudio 25, Napoli 80125, Italy
b Laboratory iTem ‘‘Carlo Savy’’ of the Consorzio Inter-universitario Nazionale per l’Informatica (CINI), Campus Monte S. Angelo, Napoli 80125, Italy

a r t i c l e i n f o a b s t r a c t
Article history:
Received 20 May 2011
Received in revised form 2 October 2011
Accepted 18 November 2011
Available online 8 December 2011

Keywords:
Publish/subscribe middleware
Peer-to-peer systems
Reliability assessment
Stochastic Activity Networks
1389-1286/$ - see front matter � 2011 Elsevier B.V
doi:10.1016/j.comnet.2011.11.016

⇑ Corresponding author at: Dipartimento di Infor
(DIS), Università di Napoli Federico II, via Claudio 25
Tel.: +39 081 7683874/676770.

E-mail addresses: macinque@unina.it (M. Cin
no@unina.it (C. Di Martino), christian.esposito@unin
Middleware plays a key role for the achievement of the mission of future large scale com-
plex critical infrastructures, envisioned as federations of several heterogeneous systems
over Internet. However, available approaches for data dissemination result still inadequate,
since they are unable to scale and to jointly assure given QoS properties. In addition, the
best-effort delivery strategy of Internet and the occurrence of node failures further exacer-
bate the correct and timely delivery of data, if the middleware is not equipped with means
for tolerating such failures.

This paper presents a peer-to-peer approach for resilient and scalable data dissemination
over large-scale complex critical infrastructures. The approach is based on the adoption of
epidemic dissemination algorithms between peer groups, combined with the semi-active
replication of group leaders to tolerate failures and assure the resilient delivery of data,
despite the increasing scale and heterogeneity of the federated system. The effectiveness
of the approach is shown by means of extensive simulation experiments, based on Stochas-
tic Activity Networks.

� 2011 Elsevier B.V. All rights reserved.
1. Introduction

Large-scale complex critical infrastructures (LCCIs) [1]
are emerging as a new paradigm to build future world-
wide monitor and control systems (MCSs) [2]. An LCCI con-
sists of an Internet-scale interconnection of heterogeneous,
sometimes already existing, systems, glued together into a
federated and open system by a data distribution middle-
ware. Concrete examples are the novel framework for Air
Traffic Management under development in Europe by
EUROCONTROL called ‘‘Single European Sky ATM Research’’
(SESAR) [3], and the collaborative effort of the US Depart-
ment of Energy (DOE) and the North American Electric
Reliability Corporation (NERC) called ‘‘North American
Synchro-Phasor Initiative’’ (NASPI) [4]. In these cases, it is
. All rights reserved.

matica e Sistemistica
, Napoli 80125, Italy.

que), catello.dimarti
a.it (C. Esposito).
not practical to deploy a dedicated and proprietary net-
work between Air Traffic Management (ATM) entities in
SESAR, or Phasor Measurements Units (PMU) in NASPI.
Therefore, communication is realized by means of avail-
able network infrastructures and by using IP-based proto-
cols. As a concrete example, interaction among ATM
entities will be realized on top of Pan-European Network
Service (PENS) [5], which aligns with SESAR Implementing
Rules and industry standard services by providing a com-
mon IP-based network service across the European region
by means of several virtual private networks (VPNs) with
Gold Class of Service.

The novel requirements imposed by such world-wide
interconnected systems of systems cannot be fulfilled
adopting the traditional architectural model of MCSs. Cur-
rently, large MCSs are conceived as monolithic and ‘‘closed
world’’ architectures, where the overall system is frag-
mented in several islands of control, each focused on an as-
signed portion of the infrastructure and with limited
collaboration with the other ones. Since each fragment
takes control decisions without considering the state of

http://dx.doi.org/10.1016/j.comnet.2011.11.016
mailto:macinque@unina.it
mailto:catello.dimarti no@unina.it
mailto:catello.dimarti no@unina.it
mailto:christian.esposito@unina.it
http://dx.doi.org/10.1016/j.comnet.2011.11.016
http://www.sciencedirect.com/science/journal/13891286
http://www.elsevier.com/locate/comnet

1216 M. Cinque et al. / Computer Networks 56 (2012) 1215–1235
the others, the final control decisions are not optimal.
Therefore, the novel LCCI perspective pursues the
possibility to let fragments orchestrating their control
decisions by an intensive information sharing conveyed
by the Internet.

However, the federated architectural model envisioned
for LCCIs pushes the frontiers of current technologies by
posing new challenging requirements:

� High scalability: the ultra large scale of the infrastruc-
ture in terms of generated traffic load or interconnected
entities must not compromise the dissemination
quality;
� Interoperability: heterogeneous entities must be able to

communicate among each other;
� Resiliency: messages must be delivered to all the inter-

ested destinations, even in the presence of node and/or
link failures [6].

It is still unclear what underlying data distribution
model should be adopted in LCCIs, since none of the cur-
rent solutions are able to satisfy all the mentioned require-
ments. Today, a promising solution to obtain scalability is
represented by middleware infrastructures adopting the
publish/subscribe interaction model [7], characterized by
natural decoupling properties among interacting parties.
At the same time, interoperability issues are being faced
by adopting standardized solutions, such as the OMG Data
Distribution Service (DDS) for publish/subscribe services
[8], as demonstrated by its track record of industrial
deployments in mission- and business-critical systems.
The Real Time Publish/Subscribe (RTPS), provides a stan-
dardized message exchanging protocol in the DDS stan-
dard. For instance, EUROCONTROL has selected DDS as
reference technology for the SESAR project. Despite its
advantages, DDS is not a viable solution for LCCIs since it
is not able to guarantee both scalability and resiliency in
the context of large-scale federated systems. In fact, RTPS
presents the following issues: (i) it uses an Automatic Re-
peat reQuest (ARQ) scheme for guaranteeing data delivery
resiliency by means of message buffering and retransmis-
sion, which presents scalability issues, such as implosion
and exposure, and does not provide full resiliency due to
buffer overflow problems [9]; and (ii) it adopts a decentral-
ized unbrokered architecture, based on IP Multicast, which
is known to exhibit severe deployment limitations over the
Internet [10,11].

The contribution of this paper is twofold. First, we
present TODAI (Two-tier Organization for DAta dissemina-
tion Infrastructure), a novel data dissemination scheme
for DDS-compliant middleware, which addresses the men-
tioned issues, and contributes to the on-going discussion
about the improvement of RTPS. Second, we develop a
set of detailed performability models [12] for Publish/Sub-
scribe LCCIs, used to compare TODAI and RTPS in terms of
their performance and resiliency to node and link failures.
The paper extends our previous research [13] providing
further details on TODAI, proposing the performability
models and the failure assumptions defined to conduct
the analysis, and providing additional experimental
results.
The proposed approach is based on a peer-to-peer (P2P)
model, which is able to provide high data delivery
resiliency in Internet-scale infrastructures, such as LCCIs,
while inheriting the attractive scalability properties of
publish/subscribe services and interoperability character-
istics of the DDS. Specifically, the proposed paradigm (i)
adopts a super-peer architecture, to handle the LCCI feder-
ated structure; (ii) it implements a semi-active replication
strategy, to reduce the probability that a group of peers is
unreachable due to node crashes; and (iii) it uses an epi-
demic algorithm to implement a proactive and reliable
Internet-scale multicasting service. In fact, it has been
illustrated how epidemic forwarding can be used to build
scalable and reliable communication systems [14]; while,
it has been empirically proved that epidemic multicast
causes balanced overhead distribution among receiving
peers and it is scalable as group size, publishing rate and
network failure rate increase [15].

TODAI and RTPS are modeled using the Stochastic
Activity Networks (SANs) [16] formalism. The proposed
models allow to evaluate several figures of interests such
as: (i) super-peer availability, (ii) resiliency to node
crashes and link failures during the data delivery process,
(iii) dissemination latency, and (iv) dissemination over-
head, while varying several parameters, such as the failure
rate, the gossiping fan-out, the data publishing rate, and
the number of nodes. For instance, the proposed models
allow us to point out that TODAI is able to deliver a resil-
iency level up to 99.999% over a year, while keeping a
delivery latency of 87 ms, against a resiliency of 99.9%
and a latency of 62 ms in the case of RTPS, in the same
simulated scenario. Finally, the performed simulations al-
low us to investigate the limits of both solutions, and they
confirm the limitations of RTPS when applied to LCCIs, in
terms of buffer overflow issues due to the adopted ARQ
scheme.

The paper is structured as follows: Section 2 introduces
assumptions and middleware requirements for LCCIs and
it includes a description of the background, with a brief
presentation of the RTPS protocol; Section 3 describes
the problem statement, by highlighting the limitations of
RTPS when applied to LCCIs; Section 4 describes in details
the proposed approach; Section 5 illustrates key concepts
of SANs and presents the models we have developed to
perform the simulation based performance analysis, while
Section 6 describes the obtained results; Section 7 pre-
sents the related work; last Section 8 concludes the paper
with final remarks and future directions for the presented
work.

2. Background and requirements

2.1. LCCI

An LCCI, depicted in Fig. 1(a), is composed of several
systems interconnected by means of wide-area networks,
such as the Internet; therefore, it represents an example
of a Ultra Large Scale (ULS) system [17]. LCCIs represent a
solution to overcome the unsuitability of traditional archi-
tectures, and to satisfy the urgent need for a more inte-
grated control architecture. In fact, the federation that

Fig. 1. LCCI as a federation of systems (a), an example of LCCI: SESAR architecture as a federation of elements interconnected by SWIM (b).

M. Cinque et al. / Computer Networks 56 (2012) 1215–1235 1217
characterizes LCCIs goes beyond the trivial exchanges of
monitoring data between distinct control systems, but
allows implementing complex decentralized and distrib-
uted control algorithms where decisions are taken by the
cooperation of several geographically distributed control-
lers. The collaborative intelligence underlying the control
decision-making process is necessary since control deci-
sions taken in a given portion of a critical infrastructure
may affect the other portions.

In an LCCI each system is deployed on a distinct routing
domain controlled by a different organization, without a
central management center for the overall LCCI, and a mid-
dleware solution is used for interconnecting all the
systems by conveying data over a wide-area network.
Many of the ideas behind LCCIs are increasingly developing
in several current projects that aim to define innovative
critical systems. As mentioned, SESAR represents the best
concrete example of LCCI, where all the ATM entities, such
as Airports Managers, En route/Approach Air Traffic Con-
trol (ATC) centers, Regional/National/European Airspace
Management or even Aircrafts, are interconnected by
means of a middleware under development, named

1218 M. Cinque et al. / Computer Networks 56 (2012) 1215–1235
System Wide Information Management (SWIM), as illus-
trated in Fig. 1(b).
2.2. Middleware requirements for LCCI

The LCCI data dissemination middleware plays a key
role, since it directly affects the mission of the overall
infrastructure. In general, due to the criticality of LCCI
applications, the adopted middleware has to satisfy the
following requirements: Scalability, Interoperability and
Resiliency. Scalability requirements derive from the tight
cooperation needed among the different systems federated
in a LCCI, which involves managing and moving massive
amounts of data over wide-area networks and among sev-
eral destinations. In particular, the delivery latency should
not be strongly affected by the number of interested
destinations and by the traffic due to exchanged data.
Interoperability requires that all interacting parties can
communicate each other, despite heterogeneity factors
(e.g., adopted operating systems, programming languages,
hardware architectures, etc.), and it is usually achieved
by using standardized middleware solutions and by devel-
oping software wrappers to integrate legacy applications.
Finally, resiliency requires the disseminated information
to reach all intended destinations, despite the occurrence
of node and/or link failures, and sporadic packet losses.
2.3. Middleware solutions for LCCI

Commercial-off-the-shelf (COTS) components, based on
Distributed Object Computing (DOC) middleware, such as
the Common Object Request Broker Architecture (CORBA),
are widely used in traditional critical systems. Instead of
the conventional request/reply-based technologies, Dis-
tributed Event-Based Systems (DEBS) [18] adopts a Publish/
Subscribe communication model [7] that provides decou-
pling in time, space and synchronism among the partici-
pants of a communication, hence enforcing scalability.
This communication model is known to be more efficient
in terms of latency and throughput, in the case of periodic,
multi-point data exchanges, and to be able to drastically
reduce the network overhead [7]. Publish/subscribe maps
well to connectionless protocols, and can take advantages
of multicast technology to efficiently support one-to-many
interactions. The event-based style carries the potential for
easy integration of autonomous, heterogeneous compo-
nents into complex systems that are easy to evolve and
scale. In view of the above considerations, the use of pub-
lish/subscribe is preferable to request/reply in many infor-
mation-driven scenarios, and result suitable for the
scalable integration of mission critical systems, as foreseen
by LCCIs. A significant amount of publish/subscribe sys-
tems has been developed and implemented in the last
years, both by industry and by academia [19]. Most of
publish/subscribe services lack the necessary support for
mission critical systems. The main weaknesses of these
solutions are related to either a limited or not existing
support for Quality-of-Service (QoS), or to the lack of
architectural properties to reach resiliency on a large scale
[20].
Algorithm 1. Data dissemination among RTPS
applications

multicast (msg):
1: send_buf = send_buf [msg;
2: if msg.id == I then
3: msg = msg + hb;
4: end if
5: send_to (msg, M);

receive_msg (msg):
1: receive_buf = receive_buf [msg;
2: id = deliver(receive_buf);
3: if msg == msg + hb then
4: send_to(id + 1,msg.src);
5: end if
Algorithm 2. RTPS Ack and buffer management

receive_ack (ack):
1: id = ack.id;
2: if $send_buf[id] then
3: for all send_buf[i] "i 6 id do
4: send_buf[i].acked = send_buf[i].acked + 1;
5: end for
6: msg = send_buf[id];
7: end if
8: send_to(msg,ack.src);
9: refresh(send_buf);

refresh (buf):
1: for i = 0 to buf.size then
2: if buf[i].acked == M.size then
3: buf = buf � buf[i];
4: end if
5: end for
2.4. Data Dissemination Service (DDS)

Recently, in order to fill the QoS gap in standards for
publish/subscribe services, OMG adopted a new specifica-
tion, called Data Distribution Service (DDS) [8]. It aims to
provide a standardized solution to data distribution in var-
ious types of real-time applications, balancing predictable
behavior and implementation interoperability, efficiency,
and performance. It adopts the Publish-Subscribe pattern
and a Data-centric View, i.e., routing is not performed based
on destination addresses (Address-centric View) but on the
type of data to deliver to interested destinations. It relies
on the use of several QoS parameters to adapt the middle-
ware behavior in order to meet different application
requirements, and to tune the robustness of the middle-
ware against the network unavailability and the informa-
tion timeliness. The DDS standard does not define the
message-exchange protocol to be used by implementa-
tions, so OMG defined a standard ‘‘wire protocol’’, called
Real-Time Publish Subscribe (RTPS) [21]. In particular, its
main features include performance and QoS properties to
enable best-effort and reliable communication in standard
IP networks over multicast or unicast connectionless best-
effort transport protocols such as UDP/IP. This specification
relies on a reliable multicast for the event dissemination

M. Cinque et al. / Computer Networks 56 (2012) 1215–1235 1219
where a publisher is directly linked with all the interested
subscribers by means of IP Multicast.

RTPS adopts a particular retransmission-based scheme
to achieve reliability, called Selective Repeat ARQ [22],
which has been proved to outperform all the other ARQ
variations [23], and illustrated in Algorithms 1 and 2:

� Piggybacking HeartBeat: the publisher executes the mul-
ticast operation for each message by storing the mes-
sage in a sending queue (row 1), including a particular
command, namely HeartBeat (HB), every I (a parameter
set by the user) messages (row 3), and sending the mes-
sage within the group (row 5);
� NACKACK: the subscriber invokes the receive_msg oper-

ation for each received message. Specifically, it stores
the message in a receiving queue (row 1), delivers to
the application all the messages in the queue that are
in order and without gaps in the sequence numbers
(row 2), and sends a NACKACK message to the publisher
indicating the sequence number of the earliest message
it has not received (row 4). The NACKACK serves two
purposes: (i) sending an acknowledgement for the noti-
fications that have been stored into the received queue
such that the publisher knows the state of the sub-
scriber; and (ii) requesting any missed notification;
� Retransmission: the publisher executes the receive_ack

operation upon the reception of a NACKACK, which trig-
gers a retransmission of the requested message if it is
still stored in the sending queue (row 8) and updates
the sending queue by invoking the refresh operation
(row 9). Such operation checks if a given message has
been acknowledged by all the members of the group
(row 2), and deletes the message from the queue in
the positive case (row 3).

3. Problem statement

A first benchmarking work [24] demonstrated that
OMG DDS-compliant implementations perform signifi-
cantly better than other publish/subscribe implementa-
tions in terms of performance and reliability. However,
the DDS specification is affected by flaws that limit its
applicability to LCCIs.

DDS is based on IP Multicast, and this is generally re-
ferred as a point of strength, since it enables DDS imple-
mentations to deliver data with low latencies [25].
However, this choice has the weakness of limiting the
usability of DDS in large-scale infrastructures due to the
well-known deployability and scalability limits of IP
Multicast over the Internet [10]. Currently, IP Multicast is
supported only within few and scattered ‘‘islands’’, while
the other portions do not support it. Connectivity among
routers supporting IP Multicast can be provided using
point-to-point IP encapsulated tunnels [26]. However, such
solution exhibits severe reliability limitations, i.e., it
strongly results vulnerable to the failures of the routers
at the end and along the tunnel. This solution also suffers
of maintainability issues, i.e., the tunnel needs to be
manually re-established by human operators every time
a failure occurs. In addition, IP Multicast exhibits a severe
performance impact on routers and NIC hardware, which
may fail to filter incoming messages beyond a few dozen
multicast groups [27]. Finally, IP Multicast has no, or lim-
ited, regulation mechanisms for the traffic exchanged over
the network [28]. This, in turn, may cause overloading of
network resources and the consequent increase of message
losses experienced by applications.

The ARQ-based scheme adopted by RTPS, as well as any
other ARQ-based scheme, is known to have scalability and
resiliency limitations when the number of destinations
grows and the message loss pattern experienced by the
network exacerbates [29]. To better support such claims,
we have conducted a performance study of a real-world
DDS implementation on an Internet-representative
testbed. The interested reader can find the details of the
study in [9]. Here, we briefly report the conclusions on a
generic ARQ scheme we have drawn based on the achieved
results:

� The latency of a given message is a function of the deliv-
ery time of the previous ones.
� When the publishing rate is high, the previous relation

can lead to the instability of the sending queue of the
publisher (i.e., the queue grows indefinitely, and can
lead to buffer overflow and message loss problems).
� The instability phenomenon of the sending queue is

also related to the network conditions: worse network
conditions not only affect the performance of the mid-
dleware, but also its predictability, since the measured
latency exhibits large fluctuations.

Finally, the retransmission technique adopted by DDS,
and, in general, by publish/subscribe services, is not adap-
tive with respect to the heterogeneous conditions of the
network. DDS specification states, in the Platform Specific
Model (PSM) for UDP/IP connections, that ARQ has to be
used when the users require a reliable communication,
but nothing is said about network conditions. In the typical
situation of an LCCI illustrated in [1], DDS would use ARQ
even when not needed, e.g. when the network is not exhib-
iting any loss pattern.
4. The TODAI approach to data dissemination

The proposed dissemination approach is based on the
federated organization of LCCIs. In general, we can distin-
guish two distinct system domains within a LCCI: the (i)
interior-system domain, i.e., the interconnection of all the
nodes within a single system, which is managed by a
central organization and guarantees specific QoS policies
such as reliability, and the (ii) exterior-system domain, i.e.,
the wide-area interconnection of all the systems within
the LCCI, which is not managed by any organization, pro-
vides only best-effort dissemination mechanisms over the
Internet, and suffers of several networking anomalies
(studies have proved that Internet is characterized by a
resiliency between 95% and a little over 99% [30] and does
not provide any guarantees on the offered Quality-of-Ser-
vice (QoS) [31]). The middleware will be tailored on the
features of these two different domains, e.g., IP Multicast
may be a winning choice for the interior-system, but not

1220 M. Cinque et al. / Computer Networks 56 (2012) 1215–1235
for the exterior-system, or resiliency to networking failures
is not an issue for the interior-system, while it is crucial for
the exterior-system.

Starting from these considerations, we propose a novel
organization of a publish/subscribe service for LCCIs
named ‘‘Two-tier Organization for DAta dissemination
Infrastructure’’ (TODAI), which is able to resolve the lim-
its presented in the previous section and allows frag-
menting the issue of achieving effective data
dissemination in the overall LCCI in two main subprob-
lems, which can be treated separately. Specifically, our
driving idea consist of (i) applying a hybrid peer-to-peer
organization of the LCCI, as described in SubSection 4.1,
so to have a two-layered organization of the middleware
in peer groups (for the interior-system domain) intercon-
nected by an overlay of super-peers, one for each group
and communicating each other on the exterior-system
domain; (ii) adopting a semi-active replication of the
super-peer for each peer group, as illustrated in SubSec-
tion 4.2, in order to avoid isolations of a peer group in
case of super-peer crashes; and (iii) using an epidemic
algorithm for the resilient communication among peer
groups within the exterior-system domain, avoiding
non-scalable retransmission schemes, as illustrated in
SubSection 4.3.
4.1. Super-peer organization

The assumed two-layer peer-to-peer architecture con-
sists of two types of nodes: (i) peers, which advertise and
publish their own data and/or subscribe to data owned by
other peers, and (ii) super-peers, which are special peers
also in charge of interconnecting groups of peers. Fig. 2
shows the architecture of the overall LCCI structured in
two distinct levels: (i) peer groups, which cluster all the
peers that reside on the same interior-system domain, e.g.,
a Local Area Network (LAN), and which contain at least
one super-peer; and (ii) a super-peers group, which repre-
sents the interconnection of the super-peers in the exte-
rior-system domain. This organization reflects the
fragmented nature of LCCIs: the peer groups represent the
systems composing an LCCI as shown in Fig. 1(a), while
the super-peer group abstracts the network that federates
them.

While peer groups exhibit a hybrid peer-to-peer topol-
ogy managed by the super-peer, the super-peer group is
organized as a pure peer-to-peer system by using an Inter-
net-scale overlay. There is a considerable amount of litera-
ture focused on peer-to-peer application-level multicast,
and the on-going debate in this field is to determine the
right approach, in terms of performance and reliability, to
structure the participants in a multicast session [32]. We
decided to structure the super-peer group according to a
mesh-based approach, which exposes a less structured
organization by letting each node to employ a swarming
delivery mechanism to a certain subset of nodes. Such an
unstructured topology has the strength to enforce resil-
iency since no node plays a key role and its unavailability
does not affect the correctness of the adopted communica-
tion protocol.
Algorithm 3. Bootstrap of a peer

boot_node (id):
1: is_leader = bully_election(id,Leader);
2: id_replica = �1;
3: if is_leader == false then
4: for all i < R do
5: is_replica[i] = bully_election(id,Replica[i]);
6: if is_replica[i] == true then
7: for all j > i do
8: is_replica[j] == false
9: end for

10: id_replica = i;
11: break;
12: end if
13: end for
14: else
15: Replica = false;
16: run_leader(id);
17: end if
18: if id_replica! = �1 then
19: run_peer(true);
20: else
21: run_peer(false);
22: end if

Algorithm 4. Execution of a Peer

run_peer (replica):
1: while true do
2: wait_on_event(msg,T);
3: if msg == null && replica == true then
4: is_leader = bully_election(id,Leader);
5: if is_leader == true then
6: Replica[i] = false;
7: run_super_peer();
8: end if
9: end if

10: if is_from_upper_layer(msg) == true then
11: group = msg.destination;
12: msg.type = app;
13: send_to(msg,group);
14: msg.type = rep;
15: send_to(msg,Replica [Leader);
16: else
17: if msg.type == rep && replica == true then
18: queue = queue [msg;
19: end if
20: if msg.type == app then
21: deliver(msg);
22: end if
23: end if
24: end while
4.2. Semi-active replication

We impose that peers belonging to the same group reside
on the same routing domain, which provides mechanisms to
support Quality-of-Service (QoS). Therefore, no additional
techniques are needed to provide resiliency in the interior

Fig. 2. Different layers of abstraction in an Internet-scale data dissemination infrastructure for LCCIs.

M. Cinque et al. / Computer Networks 56 (2012) 1215–1235 1221
system domain. However, node crashes can compromise the
effectiveness of communications within a group: if the super-
peer is no more available, the system loses its ability to com-
municate with the outside world and becomes isolated. To
increase the resiliency of the super-peer and to reduce the
isolation probability of groups, we introduce redundancy into
the design of peer groups by means of a semi-active replica-
tion strategy [33]. This replication schema consists of a leader
and several followers, which act as replicas: only the leader
plays the role of super-peer within the group and sends the
received messages to the outside world, while the followers
carry out autonomously the same computations as the leader,
but do not communicate with the exterior domain. The
semi-active replication has been chosen due to its low over-
head to replace a failed leader and the absence of the non-
determinism limitations suffered by the active replication.

In our data distribution approach, given a set of peers
that belong to a group, the first activated peer is elected as
leader, the next R peers are followers, where R is the
replication degree, while the remaining peers can take part
to the replication strategy only after the failure of the leader
or one of the replicas. The election process is carried out by
the well-known Bully Algorithm since it is able to elect ex-
actly one coordinator in a group of distributed processes
and ensures good fault-tolerance [34]. The detection of lea-
der crashes is performed by means of keep-alive messages.
Specifically, the leader periodically forwards a Keep_Alive
message to all its followers; if such a message is not received
within a certain timeout, the leader is suspected crashed by
its followers. Then, an election process is started and the fol-
lower with the highest peer_id is elected as leader. Similarly,
to keep constant the number of followers, another election
process is started to elect a new follower among peers. Algo-
rithm 3 describes the booting phase of a peer, where row 1
indicates the election of the leader. If the peer is the leader,
then it will act as super-peer (row 16), otherwise it tries to
be elected as replica (rows 4–13). The routine for peer will
be run (rows 18–22), with a flag sets to true if it is a replica.

The execution of a peer is illustrated in Algorithm 4,
where the application waits for messages until a timeout
is expired. When a peer has to disseminate a given message
within a certain group, it performs a multicast operation
towards (i) all the peers interested to a certain class of
events, and (ii) the leader and followers (described in rows
10–15). In case a message is received from an other peer, if
the message has been sent to preserve consistency of the
state among leader and replicas (row 17–18) then it is
stored, otherwise, if the peer is interested, the message is
delivered to the subscriber (rows 20–21). If no messages
are received within the timeout (including keep alive mes-
sages), and the peer is a replica, then the leader is not active,
and a new election is triggered (rows 3–9).

4.3. Epidemic data dissemination

The replication of super-peers alone is not enough to as-
sure the correct communication among peer groups, which
can still be compromised by message losses. A new kind of
distributed algorithms has recently become popular as a
solution to address scalable and resilient multicast dissem-
ination: Epidemic Algorithms [35]. Their basic idea is that
each process communicates periodically its knowledge
about the system ‘‘states’’ (i.e., the content of the event table
of each super-peer) to a robust subset of other processes.
The probabilistic and decentralized nature of these algo-
rithms gives them some desirable properties, as demon-
strated in [36]: (i) resiliency to changes in the system
configuration; (ii) fault tolerance at both global (withstand-
ing an high number of faulty nodes and message losses) and
local level (not relying on the correct operation of any other
specific node); (iii) simple to implement; and (iv) rather
computationally inexpensive.

1222 M. Cinque et al. / Computer Networks 56 (2012) 1215–1235
When a super-peer receives a new event to be dissem-
inated within the super-peer group (as shown in Algorithm
5 at row 2), it randomly selects some known peers (the
number of selected peers at each round is called Fan-out
of the epidemic algorithm and it is decided one for all
before the system is deployed), (row 7) and forwards to
each of them the received event (row 8). When other
super-peers receive a new event (row 2), they start a
new round by sending it to some randomly-selected
known peers (excluding the sender of the received event).
To achieve termination of the algorithm, a new gossiping
round is not issued if a super-peer receives an event that
it already has stored in its event table (row 4). The gossip-
ing algorithm does not store all messages forever in an
event table, since an infinite buffer is not available. In fact,
a message is removed from the event table when its liveli-
ness is expired, i.e., the total number of gossiping round
passed since the event has been stored.

Algorithm 5. Data dissemination among different
peer groups carried out by a super-peer

run_super_peer():
1: while true do
2: wait_on_event(msg);
3: if msg! = null then
4: if msg R buf then
5: buf = buf [msg;
6: for i = 0 to FANOUT do
7: next_peer = hSuper_Peers[j]ij=Random(i);

8: send_to(msg,next_peer);
9: end for

10: end if
11: end if
12: end while
Fig. 3. Dissemination of a notifi
4.4. Dissemination example

Fig. 3 provides a concrete example of the dissemination
strategy applied in the proposed approach. Let us assume
that node N1 wants to publish a notification. Then, it will
perform the first step by multicasting the notification, by
means of an IP Multicast communication, within the clus-
ter to all interested subscribers, plus the super-peer (indi-
cated in figure as C1) and its replicas (arrow 1 in figure).
Upon the arrival of the notification to C1, a second step
is performed by running Algorithm 5: among the super-
peers of the clusters that hold subscribers interested to
the received notification, C1 will randomly pick up some
to communicate with (in the case of C1, its fanout is 2,
so two destinations are selected, e.g., C2 and C8). When
the notification will reach the chosen destinations, by
means of UDP, it will be disseminated within the cluster
(arrows 30 in figure), and a new gossip round will be per-
formed (arrows 300 in figure). Steps 2 and 3 are repeated
until the termination of the gossip algorithm, i.e., all
super-peers have been contacted. Let us notice that it is
possible for a super-peer to be reached more than one
time by a certain notification (as happens in figure for C1

and C8); in this case, the second notification is suppressed
and no gossip round is commenced, as indicated in row 4
of Algorithm 5.
5. Modeling RTPS and TODAI behaviors

This section describes the performability models
developed to compare RTPS and TODAI. Such models
have been defined as a set of interconnected Stochastic
Activity Networks (SAN) [16], and are solved by simula-
tion using the MOBIUS tool [37] to estimate the reward
metrics. We adopted SANs due to their flexibility and
cation by applying TODAI.

M. Cinque et al. / Computer Networks 56 (2012) 1215–1235 1223
their successful use, since the mid-1980s, for modeling
the behavior of a broad range of complex systems such
as Critical Infrastructures [38], railway interlocking sys-
tems [39], databases [40], supercomputers [41] and wire-
less sensor networks for structural monitoring [42]. SANs
have a custom graphical representation consisting of
places (blue/yellow circles), timed activities (thick bars)
and instantaneous activities (thin bars), input gates (red
triangles) and output gates (black triangles). An activity
is enabled if there is a token in all the places connected
to it, or if a predicate expressed into an input gate con-
nected to it is verified. Once enabled, the amount of time
to complete a timed activity (firing of an activity) can fol-
low a specific stochastic distribution such as Exponential
and Weibull. Cases can be associated to activities (repre-
sented by circles on the right side of an activity) and al-
low to model uncertainty upon completion of an activity.
The presence of JOIN (which combines several distinct
models) and REP operator (which creates several copies
of a certain model) offers intrinsic support to alleviate
the costs of developing models of large scale and complex
systems.

SANs allow defining custom metrics by means of re-
ward variables. The evaluation of the reward variables in-
volves specifying a performance variable and a reward
structure, which associates reward rates with state occu-
pancies and reward impulses with state transitions,
namely, a ‘‘reward’’ is accumulated every time events of
interests happen during the simulation. In particular, we
are interested in the following reward metrics to compare
RTPS and TODAI:

� Resiliency, defined as the probability that a notification
is delivered to all subscribers.
� Overhead, defined as the additional traffic to deliver a

notification to subscribers, due to the adopted fault-tol-
erance mechanism.
� Latency, defined as the time needed to propagate a mes-

sage to all the subscribers.
� Average number of rounds, defined as the average of

rounds needed in TODAI to propagate a notification to
all subscribers.
� Average number of messages, defined as the average

number of messages exchanged during a round in
TODAI.
� Availability, defined as the percentage of uptime of the

system during a year.

5.1. Modeling assumptions

The objective of the following models is to evaluate the
defined reward metrics against a set of realistic impair-
ments. Therefore, in this work, we assume the following
classes of failures:

� Node crashes: a node of the LCCI suddenly stops its exe-
cution, and it is restored after a certain period of time.
� Message losses: links may exhibit message losses, due to

packet corruption, buffer overflow, and temporary
drops.
We assume that all the nodes are equipped with same
hardware and software, and that a unique ID is assigned
to all the SuperPeers in the system. Publisher nodes are as-
sumed to publish data periodically.

Failures can be related to hardware, software or the
communication infrastructure (networking failures). The
failure of a node occurs as service omission due to
the crash of the node or the loss of connection towards
other nodes [40]. Hardware faults stem from instabilities
of the underlying hardware platform, and can manifest as
errors at the software level [43] either in operating sys-
tem or in the application. We focus on intermittent and
transient faults, since it has been proved that they are
by far predominant [44].

Transient hardware faults are assumed to have an
exponential rate, characterized by the alternation of peri-
ods where normal fault rate is observed and periods with
abnormal, higher rate. The duration of a period follows an
exponential law (with normal periods being quite a bit
larger than abnormal ones). The restart of the application
removes the effects of the hardware faults at the applica-
tion level.

Intermittent application or operating system software
errors have been assumed to have an increasing rate
according to a lognormal distribution [45] since this is
consistent with the fact that the extent of the damage
increases with time, if no recovery action is taken.

Two alternative recovery actions are encompassed: (i)
restart of the application, to cure inconsistent application-
level states, and (ii) reboot of the peer, to fix erroneous states
of the operating system and of the applications. Both actions
cause a reset of the state of the peer, including all the incom-
ing and outgoing buffers, and a limited period in which the
peer is not available.

Channel failures and message losses are modeled fol-
lowing the Gilbert Model which is a 1st order Markov
chain model characterized by two states: state 0, with no
losses, and state 1, with losses. There are four transition
probabilities: (i) the probability to pass from state 0 to
state 1 is called P; (ii) the probability to remain in state 0
is (1 � P); (iii) the probability to pass from state 1 to state
0 is called Q; and (iv) the probability to remain in state 1 is
(1 � Q). Given the Packet Loss Rate (PLR), i.e., the percentage
of lost packets over the total number of exchanged packets,
and the Average Burst Length (ABL), i.e., the mean number of
consecutive lost packets, it is possible to compute P and Q
as follows [46]:

P ¼ PLR � Q
1� PLR

Q ¼ ABL�1 ð1Þ

To let the models be representative of a realistic wide-
scale scenario, we have estimated PLR and ABL values
by means of a network monitoring campaign performed
over PlanetLab [47], a geographically distributed overlay
platform designed for deploying and evaluating services
over wide-area networks. Further details on the experi-
mental campaign performed to characterize the channel
are presented in [9], here we provide only brief infor-
mation on such campaign. Specifically, we have selected
three paths between European cities hosting PlanetLab

Table 1
Measures of network behaviour over three European paths.

Delay (msec) PLR ABL

Median IQR Median IQR Median IQR

Path 1 8.9 0.87 0.65 1.24 1.59 0.28
Path 2 27.16 18 1.07 4.86 1.26 0.32
Path 3 43.81 0.78 1.77 0.85 1.44 0.11

1224 M. Cinque et al. / Computer Networks 56 (2012) 1215–1235
nodes, and measured dissemination delay, PLR and ABL
(each characterized as median and inter-quartile range
(IQR) of 1000 observations of 24-h monitor traces). Last,
tests have been conducted by exchanging messages be-
tween the publisher and the subscribers in a round trip
manner (only the last contacted subscriber return a
copy of the received message to the publisher), and
applying a workload extracted from the requirements
of SESAR, e.g., publishing rate of 100 Hz and notification
size of 100 KB. Results of such campaign can be seen in
Table 1, and they have been used to set PLR and ABL
values as the mean of the estimates obtained over the
three paths.

5.2. Composed models

The overall composed models are illustrated in Fig. 4,
and represent the hierarchical models of RTPS, in
Fig. 4(a), and of TODAI, in Fig. 4(b). They consists of sev-
eral logically distinct SANs connected together through
common places by the REP or JOIN operators. Failure,
Recovery and Channel models are the same for both RTPS
and TODAI (the names in the figure are different, e.g.,
failureModel_pub and failureModel_sub, since Mobius
does not allow to use the same name for different sub-
models; however the internals of the models are the
same). In particular, the FailureModel and RecoveryModel
mimic the failing and recovery behavior, respectively,
according to the assumptions described in Section 5.1.
The Channel model mimics the behavior of the communi-
cation channel, including message loss. As for PLR and
ABL, the values of delay and jitter of the modeled channel
are derived from the experimental campaign performed
on PlanetLab.

The RTPS composed model is conceived as the join of
three sub-models: (i) the channel, composed in turn by
two models, one for forward communications (the same
used in TODAI) and a separate one for handling the
ACKNACK mechanism (used for RTPS only), (ii) a given
number of replicated data readers, and (iii) a given
number of, replicated, data writers. Reader and writer
models are the join of failure and recovery modes and
Fig. 4. Composed model of
of the model actually performing the subscriber role
(RTPS_subscriber) or publisher role (RTPS_publisher),
respectively.

The TODAI composed model has a similar structure of
the RTPS composed model, but it adds another subtree to
model groups and super-peers. In particular, the model is
conceived as the join of the Channel model (for the exte-
rior-system domain) and the Groups model, devised as
the replication of several groups. Each group is in turn
composed of a group channel (for the interior-system do-
main), data readers and data writers, which represent sim-
ple peers (with a structure similar to RTPS nodes), and a
replication of leaders for modeling the semi-active replica-
tion scheme and the behavior of super-peers. The leader
subtree encompasses failure and recovery models, the
Election model, mimicking the Bully election algorithm
(in case of leader crash), and two models for the super-
peer: one to model the initiation and the end of gossiping
rounds towards other groups (TODAI_publisher) and an-
other one to model the packet reception and forwarding
process (TODAI_forwarder) when the super-peer receives
a packet from another group.

In the remainder of this section, six sub-models are de-
scribed in details, namely Failure and Channel models,
which are shared by RTPS and TODAI models, and
RTPS_publisher, RTPS_ subscriber, TODAI_publisher, and
TODAI_forwarder.

5.3. Failure model

Fig. 5 depicts the SAN Failure Model used for all the
modeled nodes. The model reproduces software and
(a) RTPS, (b) TODAI.

M. Cinque et al. / Computer Networks 56 (2012) 1215–1235 1225
hardware failures, according to the previous modeling
assumptions. Application and OS software failures are
modeled by the Lognormal distributed activities ApplFail
and OSFail, respectively, whereas hardware failures are
modeled by the Exponential activity HWFail. The rate of
this last activity depends on the marking of the places
NormalHWF (normal periods) and burstHWF (abnormal
periods). The Exponential activities Normal and Burst
govern the alternation of normal and abnormal periods.
During normal periods, which have an expected duration
indicated by the parameter TN, transient hardware faults
occur with a rate kN. On the other hand, during abnormal
periods, having an expected duration TB, faults are char-
acterized by a higher rate kB. When the failure model
triggers failures, the other sub-models of the node (e.g.,
publisher and subscriber sub-models) are disabled, by
using proper shared places.

5.4. Channel model

The Channel model is shown in Fig. 6(a). It models the
behavior of the packet delivery process over a communi-
cation channel, including the possibility of message loss.
A token placed in SampleSent (shared with publisher
Fig. 5. Node failu

Fig. 6. Channel model: (a) forward channel (b) back
sub-models and with the TODAI_forwarder) enables the
input gate named toTheChannel, which takes care of tak-
ing the packet from the DataWriter and moving it to the
place called OnTheChannel. The latter is a circular queue,
which abstracts the channel. Once packets have been
placed in this queue, the value of the place PacketsOnThe-
Channel is incremented, and this value (if positive) trig-
gers the timed activity called UDP_Channel. This activity
has a normal distribution, whose mean and variance are
determined by the size of the sent packet, stored in the
place PktDim. Once terminated this activity, the packet
is taken from the queue and inserted in the place named
SampleIn (shared with subscriber sub-models and with
the TODAI_forwarder), which indicates the reception of
a valid packet from the channel. Packets can be also dis-
carded by the UDP_Channel activity, according to the loss
probability parameter Ploss associated with the cases of
the activity.

It has to be noted that the return channel from Data-
Readers to the DataWriter has been modeled as a separate
sub-model, shown in Fig. 6(b). This choice has been moti-
vated by the necessity of handling the queue of received
ACKNACK (ACKNACK_ rec) packets, to trigger retransmis-
sions at the RTPS publisher model.
re model.

ward channel (used by the RTPS model only).

1226 M. Cinque et al. / Computer Networks 56 (2012) 1215–1235
5.5. RTPS_publisher

The RTPS publisher model (shown in Fig. 7) mimics the
publication of data (as explained in Section 2.4) from an
application to a set of subscribers through a DataWriter,
i.e., an RTPS entity that the publisher application can use
to disseminate notifications.

A mark in the place PubAppLive indicates that there is a
publishing in progress, and it enables the input gate named
CanWrite which is in charge of performing the actual writ-
ing in the output queue. In particular, each new published
sample, to which a sequence number is added, is written in
the place Queue containing a circular queue. Concurrently,
tokens are placed in positions named Queued and SendAc-
tive. The first place indicates that a new sample has been
queued; the second enables the sending activity to_send.
The activity to_send has two possible alternative opera-
tions, selected depending on the presence of a token in
place HBsend. For each sent message, the number of
samples in HowManySamples is increased. If a threshold
HBperiod is reached, a token is placed in HBsend, and a
HB is added to the payload of the next message to send.
The actual sending process is then performed by using
the channel model.

NormalRate and Burst are used to discriminate between
periods of normal publication rate against abnormal peri-
ods (bursty publication rate), using the same logic of the
failure model.

The model also controls if the sending queue is full, by
activating the place named QueueFull. When a token is put
in the place QueueFull, the activity toBlock inserts a token in
Blocked, which blocks the write queue. If the Publisher re-
mains blocked for a period longer than max_block-
ing_time, a timeout fires and the packets contained in
the queue are discarded (modeling a buffer overflow prob-
lem), else the token is removed from Blocked and the pub-
lication process is resumed.

An additional role of the publisher is the retransmis-
sion of packets that have not received by a DataReader.
For this purpose the Publisher model keeps track of
DataReaders that are still active. In particular, a maxi-
mum value of not responded HBs is defined, in order
to consider a DataReader as inactive. If one of the
Fig. 7. RTPS publi
values of waiting HBs exceeds the threshold, the pub-
lisher reduces the number of active DataReaders, which
has the effect to make the publisher waiting for fewer
ACKNACK to update the queue. The mechanism for
emptying the sending queue is based on the number
of received ACKNACK. If all active DataReaders sent their
ACKNACK, then the queue can be updated by removing
the acknowledged message. If a DataReader asks for
retransmitting lost packets, they are immediately placed
on the channel.

5.6. RTPS_subscriber

The RTPS subscriber model, illustrated in Fig. 8, mimics
a simple reliable DataReader, which reads data from an in-
put queue. The data reception is triggered by a token in
the place in DRSampleReceived (shared with the channel
model) and indicates the presence of a valid data in Samp-
leIn. The model encompasses the presence of a buffer stage
(place working) between the actual reception of the data
and its queuing by inserting specific delays. Once the
timer programmed by the queue operation is expired,
the application accounts for samples arrived out of order
and for which it must leave space in the queue in order
to send ACKNACK when requested by a HB command. If
the message contains a HB, it sends an ACKNACK message
to the DataWriter. When a new message is received, a
counter indicating the expected sequence number is incre-
mented. Messages stored in the receiving queue can be
moved to the output queue (which models the queue to
applications) if they are sorted by timestamps. This oper-
ation is managed by the output gate enqueue, while the
control of the ordering of received samples is made by
the input gate Checkorder. The model also takes into ac-
count the depletion of node receive buffers in the case of
the reboot of the DataReader (gate flush).

5.7. TODAI_publisher

Fig. 9 shows the TODAI super-peer model when acting
as publisher. The model is responsible of triggering gossip-
ing rounds towards the other groups. This can happen in
two ways: directly, i.e., the super-peer periodically creates
sher model.

Fig. 8. RTPS subscriber model.

Fig. 9. TODAI publisher model.

M. Cinque et al. / Computer Networks 56 (2012) 1215–1235 1227
a number of packets to be sent (it acts as a normal pub-
lisher) when a mark is present in the place PublisherRun-
ning, or indirectly, i.e., when a packet is received from
another publisher (peer_publisher model) within the
group, by means of the place PacketsFromPeers (shared
with the channels to the peers of the group). In both cases,
when at least one mark is contained in the places numPack-
etToSend and publish, the input gate publishAPacket enables
the publishing of a specific number of packets (equal to the
number of marks contained in numPacketToSend) and
starts a new Gossiping Round (a mark is put in the place
startANewRound). Packets are structured as records which
contain a unique signature, copied in the place currentSig-
nature. The signature is a random number selected by the
publisher to identify all created packets.

Then, the IDs of the nodes to be contacted are extracted
by setting the corresponding elements of a vector con-
tained in the place nodesInvolved. The extraction is per-
formed by using the gossiping, i.e., for each node in the
system, with a given probability (the gossiping fan-out) it
decides whether or not to contact that node, by means of
the output gate setANewRound. The selected node IDs are
then stored in the extended place nextToSendTo, which
contains a list of all the nodes to be contacted by means
of the channel model. After the publishing, the number of
marks of the place publish is set to zero.

The current round is terminated if all the contacted
nodes received the published data. This is accomplished
by the input gate endRound which activates the action the-
End consequently. In order to keep track of all the nodes
which received the current packet, each packet is equipped
with a sequence number and with a signature, stored in
currentSignature. When a node receives the sample for
the first time, the number of marks in the place num-
NodesReceivedThePacket (shared with the TODAI_forwarder
model) is incremented. When the number of marks of such
place reaches the number of groups, then the round is
ended and new round can start.

The place bootedNodes is used to keep track of the active
nodes. It is needed in the enabling predicate of input gate
publishAPacket, since a packet is created only after all
groups are up and running.

5.8. TODAI_forwarder

Fig. 10 shows the SAN model of the TODAI super-peer
node when acting as forwarder. This model basically per-
forms two operations: it receives messages from TODAI

Fig. 10. TODAI forwarder model.

1228 M. Cinque et al. / Computer Networks 56 (2012) 1215–1235
super-peers (i.e., from the TODAI_publisher model or from
other TODAI_forwarder models) and forwards them to
other super-peers using the gossiping logic. To this aim it
(i) is connected to the channel model and (ii) it must keep
track of the packets already forwarded, to avoid the explo-
sion of messages in the system. For (i), the model is acti-
vated once the place receivedPacket (shared with the
Channel model) contains a new packet. Then it checks
whether the packet is a duplicated packet, by using the sig-
nature of the packet. When the forwarder receives a packet
for the first time, it inserts its signature in a associative ta-
ble than is later used in the input gate duplicatedPacket.
This gate extracts the signature from the place receivedPac-
ket and use it as the key for the associative table. In the
case of a hit, it discards the packet (action receiveACopy)
and forces an increment of the number of marks in the
place dup which is later used to estimate a reward metric
for duplicated packets. In the case the message was not
duplicated, the action receiveAPacket is enabled and with
a probability of 1-gossipingFanOut the packet is not
forwarded and the round is concluded. Otherwise, the
packet is forwarded and the gate ForwardAPacket is used
to select randomly the nodes where to forward the mes-
sage to. Selected nodes IDs are then stored in the place
nextToSend which is shared with the channel model. When
the forwarding of a packet is ready, the packet is also sent
to subscribers within the group (modeled with the
peer_subscriber model). To this aim, the messageToAPeer
place is used, shared with the channels of subscribers
within the group.
1 A confidence interval gives an estimated range of values which is likely
to include an unknown population parameter. In our case, 99% of the
samples of the estimated metrics are within the interval of ±0.5% of their
expected value.
6. Experimental results

In this section, we report the results obtained from the
simulation of the defined SAN models. The aim of the
simulation campaign is to study the trade off between
resiliency improvement and performance penalty exhib-
ited by our approach and RTPS. Simulations are performed
over a simulated time of 5 years, and confidence level for
the measurements set to 99%.1

The proposed models have been used to simulate sev-
eral realistic LCCIs, inspired from a real deployment named
as Co-Flight [48] (a novel Flight Data Processor, realized
within the context of SESAR by Thales and Selex Sistemi
Integrati) with the main objective of enabling the coopera-
tion and interconnection of all European airports and hubs.
Co-Flight is an ATM application designed to update flight
data plans with information received from the Radar and
other ATM instrumentation, and to distribute them to con-
trol towers and other interested ATM entities. This way, we
design a set of experiments with a varying number of peer
groups and failure rate, in order to evaluate the sensitivity
of dissemination protocols to node and/or network failures
for LCCIs of different size. In particular, we decide to focus
on LCCI configurations spanning from 32 to 128 groups,
where each group is composed of 64 peers, and enabling
the simulation of several LCCIs, ranging from 2048 to
8192 nodes, representative of the actual size of the current
European airport network, shown in Fig. 11.

Simulation parameters, reported in Table 2, are mostly
taken from direct measurements on a real testbed, i.e.,
PlanetLab (http://www.planet-lab.org), and from [49]. In
addition, the model has been executed considering the
workload of CoFlight. The characteristics of this product
are: (i) publishing rate of 0.1 s, (ii) about ten data consum-
ers per given piece of information, and (iii) a message size
of around 100 Kbytes.

http://www.planet-lab.org

Fig. 11. Map of the European Airports and hubs (source: Wikipedia, the
free encyclopedia).

M. Cinque et al. / Computer Networks 56 (2012) 1215–1235 1229
6.1. RTPS

Fig. 12(a) indicates the resiliency of RTPS against the
number of considered groups, with a low failure rate
(1.1E�07). The resiliency is evaluated as the fraction of
packets correctly delivered to all interested destinations
when network suffers of message losses. We adopted a
group-based infrastructure for RTPS, to make results com-
parable with our approach and to simulate a realistic
deployment scenario over a LCCI. However, RTPS does
not exploit the group-based infrastructure, since no
super-peers nor replicas are defined. We assume nodes
on the same group (in the interior-system domain) to com-
municate over reliable, lossless channels, while nodes of
different groups (interconnected via the Internet on the
exterior-system domain) are assumed to communicate
over unreliable channels, with a packet loss probability
(Ploss) equals to 0.01.

The maximum resiliency level (99.96%) is achieved for
32 groups (2048 nodes), and decreases down to 99.87%
in the worst case, corresponding to 128 groups (8192
nodes) and with a HB period of 8 s. Hence, increasing the
number of nodes affects the probability of correct message
delivery. This is partially due to the ARQ protocol, which
requires one-to-one communications for handling lost
packets, and to the absence of replication schemes for fac-
ing node failures. In particular, the increasing number of
nodes impacts on the sending queue managed by publish-
ers, in terms of overflow probability. We experienced a
Table 2
Simulation parameters. Sensitivity analysis are performed with resp

Parameter Description

kN Hardware failure rate during no
TN Duration of the normal periods
kB Hardware failure rate during ab
TB Duration of the abnormal perio
Ploss Packet loss probability
Ng Number of groups
F Fan-out of the epidemic algorit
HB RTPS Heartbeat period
Prate Rate of the publication process
Psize Packet size
peak overflow probability of 80% when sending messages
to 128 groups, and with a sending queue size of 1200 mes-
sages. This strongly impacts on the resiliency of the LCCI,
since nodes not receiving messages cannot benefit of the
ARQ scheme due to buffer overflow at the publisher side.
At the same time, increasing the buffer size of all the pub-
lishers impacts on the scalability of the system. For in-
stance, in our case, to keep the same resiliency level
between 64 and 128 groups, we had to use a sending queue
size of 1,440,000 packets, which corresponds to about 141
MB of required memory, for each publisher. This highlights
the scalability limits of RTPS when applied to LCCIs.

For the performed experiments, the latency required for
disseminating all the messages to all subscribers (not
shown for lack of space) accounts to 40 ms on average,
with a peak of 62.4 ms for the case of low failure rate
and 128 groups.
6.2. TODAI

Fig. 12(b) indicates the resiliency of the proposed
approach, against the number of considered groups. We
observe a different dynamic if compared to RTPS. In
particular, for the proposed approach the resiliency is an
increasing function of the number of groups, while it is a
decreasing function for RTPS. More specifically, the resil-
iency varies from 99.7176% in the worst case (32 groups,
high failure rate, 3% fan-out) up to 99.9990% in the case
of 128 groups, low failure rate, and 12% fan-out.

This is the effect of the proactive nature of the epidemic
data dissemination, which causes the redundancy of data
in the LCCI to increase proportionally to the number of in-
volved groups, without affecting super-peers (in this case,
they do not have to manage retransmissions). This effect is
also observed when increasing the failure rate of 2 orders
of magnitude, from 1.1E�07, to 1.1E�05.

As expected, we can observe how the fan-out can be
used as a mean to increase the resiliency of the LCCI. For
instance, looking at Fig. 12(b), for the case of 64 groups,
with high failure rate, the resiliency shifts from 99.8697%
up to 99.9846% when doubling the fan-out from 3% to
6%, respectively. This effect is less observable in the case
of low failure rate, in which, for the same case, a 3% fan-
out is already enough to deliver 99.9753% of resiliency.

The increasing level of resiliency is achieved at the price
of an increased overhead, as can be observed looking at
ect to values reported in square brackets.

Values

rmal periods [1.1E�07;1.1E�05]
27215640 s

normal periods 8.33E-03
ds 360 s

0.01
[32;64;128]

hm [3%;6%;12%]
[2;4;8] sec
100 Hz
100 KB

.

.

.

.

.

.

.

.

.

.

. .

.

.

.

.

.

.

.

.

.

.

.

.

(a) (b)

(d)(c)

Fig. 12. Experimental results, (a) RTPS resiliency; (b) TODAI resiliency; (c) TODAI overhead; (d) TODAI latency. Dashed lines report results obtained with a
low failure rate.

1230 M. Cinque et al. / Computer Networks 56 (2012) 1215–1235
Fig. 12(c). The overhead, or link stress, is evaluated in
terms of extra-packets needed to disseminate a single mes-
sage to all the subscribers. Results show an overhead
highly varying from 2.83% up to 155.30%. In almost all
cases, the overhead is an increasing function of the number
of groups and of the fan-out, as expected. However, we can
observe that, in the case of high fan-out and high failure
rate, the overhead decreases from 135.88% for 64 groups
to 109.12% for 128 groups. This is the effect of failures,
which increase the downtime of super-peers, and reduce
the rounds needed to reach all alive super-peers.

The achieved overhead is higher than the one of RTPS,
where a 25% overhead is observed to achieve a 99.9753%
resiliency level in the case of 64 groups and low failure
rate. The same case with the epidemic dissemination ac-
counts for a 65.69% overhead. This is reflected by increased
delivery latency. As shown in Fig. 12(d), the latency is al-
ways greater than the one achieved for RTPS (at most of
one order of magnitude). However, it is interesting to note
that the latency is a decreasing function of the number of
nodes, thanks to the increasing number of nodes contacted
for each round, whereas it is an increasing function of the
number of nodes for RTPS, once again confirming the sca-
lability properties of our approach.

Fig. 13(a) shows that increasing the fan-out, the number
of needed rounds to deliver a notification decreases, as
evident for the cases with low failure rate (dashed lines
in the figure). With respect to the cases with high failure
rate, we can observe this trend when passing from a fanout
of 3% to one of 6%, while with 12% we have a number of
rounds similar to the one with 6% when the group size is
32, and to the one with 3% in the other cases.

The number of messages exchanged during a round (de-
picted in Fig. 13(b)) strongly depends on the number of
groups and the fanout. In addition, also the failure rate
exhibited by the network affects the number of exchanged
messages, as can be observed if comparing the lines with
fanout equals to 12%.

6.3. Group availability

Finally, we performed two simulations to evaluate the
trend of the system availability as the function of (i) the pub-
lishing rate and the number of nodes in a group (where each
node acts as a passive replica of the super-peer, without
semi-active replication), and (ii) the number of SuperPeers
in the local group (i.e., when the semi-active replication
scheme is adopted).

The results of the first simulation are reported in Table 3.
They show how the system availability increases as the
number of peers grows: with the constant publishing rate
of 0.1 s, using one peer we have an availability of three
nines (i.e., colloquial term used in engineering to indicate
reliability and preceded by a number indicating the degree
of such reliability, e.g., electricity that is delivered without
interruptions – blackouts, brownouts or surges – 99.999%

Table 3
Analysis of the system availability (expressed as number of nines) as
function of the number of nodes and the publishing rate.

Number of nodes System availability

Rate = 0.1 s Rate = 1 s Rate = 10 s

1 3 nines 3 nines 3 nines
5 5 nines 5 nines 6 nines
10 5 nines 5 nines 6 nines
15 5 nines 6 nines 6 nines

Table 4
Analysis of the system availability (expressed as num-
ber of nines) as function of the number of super-peers.

Number of super-peers Group availability

1 5 nines
2 7 nines
3 7 nines

M. Cinque et al. / Computer Networks 56 (2012) 1215–1235 1231
of the time would have 5 nines reliability); with five peers
to 15 peers, we obtain 5 nines. It is worth noting that the
availability improvement is remarkable when we pass from
one to five peers in a local group. After five peers, the addic-
tion of further peers does not lead to significant improve-
ments. This means that a high availability level can be
achieved with a relatively low amount of passive replicas
(i.e., backup nodes) in the group, and thus with an accept-
able performance penalty. From Table 3, it is evident that
decreasing the publishing rate, the availability level in-
creases. Clearly, when the publishing rate is lower, unavail-
ability periods becomes less perceivable by the other peers
in the system or, in other terms, a lower fraction of mes-
sages are lost during unavailability periods if compared
with the case of high publishing rate.

The results of the second simulation are shown in Table 4.
Simulation parameters are five peers into the local group and
a publishing rate of 1 s. Doubling from one SuperPeer to two,
the availability improves from five nines to seven, and it re-
mains the same with three SuperPeers. Comparing this re-
sult with the previous one, it is clear that adding one more
super peer to a local group, using the semi-active replication
scheme (which implies a lower time-to-repair, since the rep-
lica can suddenly replace the failed super-peer), results on a
better availability level than the one achievable in the case
with one SuperPeer and 10–15 peer nodes.
7. Related work

Peer clustering is a well known approach for segmenting a
data dissemination infrastructure into a number of groups.
Such approach has been the subject of extensive research
in many different fields with respect to heterogeneous
objectives. Table 5 provides a taxonomy of current related
work that applied clustering in several IT research commu-
nities, pointing-out the objectives addressed by each work.

7.1. Peer-to-peer networks

The most known application of peer clustering is on
peer-to-peer infrastructures by means of so-called Super-
Peer Networks, such as FastTrack [50] (i.e., the protocol used
by Kazaa, Grokster, iMesh, and Morpheus file sharing
Fig. 13. Experimental results, (a) Average number of round to deliver a notifica
lines report results obtained with a low failure rate.
programs). Super-Peer Networks are architected by means
of two different types of peers: normal peers, where user
applications are running, and super peers, which have
duties of control and management. Normal peers are con-
nected to a single super-peer, so to form the so-called peer
cluster, while super-peers are connected among each other
through a proper overlay. From the outside world, super-
peers act as representatives of their assigned cluster and
receive all the requests from other clusters (i.e., they hold
metadata over the data of connected normal peers so to re-
ply to queries coming from other clusters). Within a clus-
ter, super-peers allow normal peers to be interconnected
with all other peers (both belonging to the same cluster,
but also participating to other clusters), and they manage
joining and leaving procedures. Super-Peer Networks have
been introduced to resolve the inefficiencies that the pure
Peer-to-peer approach exhibits in terms of fast and effec-
tive research of data, bottlenecks caused by the resources
heterogeneity of participating peers, and scale at the Inter-
net level [60].

Since the scale of such networks has been increasing,
how super-peers are interconnected becomes a key aspect
to be properly investigated. In the classic Super-Peer
tion; (b) average number of messages exchanged during a round. Dashed

Table 5
Taxonomy of related works in clustering.

Research communities Solution Objective

Peer-to-peer networks Flat Super-Peer Networks [50] Scalability
Hierarchical Super-Peer Networks [51] Scalability
Topology-aware hierarchical Super-Peer Networks [52] Scalability and efficiency

Multicast services NICE [53] Scalability
TOMA [54] Scalability
Topology-aware clust-ered multicast [55] Scalability and efficiency
OMNI [56] Scalability and real-time
Quilt [57] Scalability
Hierarchical gossiping [58] Scalability and reliability

Publish/subscribe middleware Interest clustering [59] Scalability and efficiency

1232 M. Cinque et al. / Computer Networks 56 (2012) 1215–1235
Networks, the overlay interconnecting super-peers is
architected in a classic pure peer-to-peer way. However,
such approach has been questioned when the number of
super-peers is high. Therefore, several works, such as
[51], have proposed a hierarchical organization of super-
peers, i.e., super-peers are clustered in groups, each one
with super-peers of second level, then the latter ones are
further grouped in clusters of third level and so on until
there is only one peer at the top of the hierarchy and clus-
tering of higher level cannot be performed. In addition, to
lower the performance overhead related to a hierarchical
interconnection of super-peers, network-awareness has
been introduced so to realize an efficient topology based
on proximity information [52]. Specifically, only close
peers are clustered during each iteration of the clustering
process.

7.2. Multicast services

Based on the experience from efficient construction of
peer-to-peer networks, clustering has also been applied
within the context of multicast services, mainly for scala-
bility reasons. In fact, researchers have observed that clus-
tering is able to alleviate the issue of building and
maintaining multicast trees, to optimize the resource
usage by reducing the required control overhead, to pro-
vide lower and more stable performances in extreme large
multicast infrastructures. NICE [53] has been the first, and
widely known, Application Level Multicast (ALM) solution
to use clustering: it applies clustering within a multicast
group, i.e., the set of nodes interested to receive a certain
message, and adopts the hierarchical interconnection of
super-peers as mentioned for [51] in peer-to-peer net-
works. TOMA, proposed in [54], is slightly different than
NICE: it does not have a hierarchy for interconnecting
super-peers, but a backbone made of proxies properly de-
ployed by the service provider for conveying multicast
traffic respecting service level agreements established with
users. Also with respect to ALM, we witness the same evo-
lution of clustering by including topology-related data to
improve efficiency of the clustered architecture [55].

The usage of clustering in multicast services is not only
limited to the enhancement of scalability properties, but it
also aims to improve other aspects of multicast services.
There are several concrete examples. For instance, OMNI
[56] exploits a clustered organization of its nodes within
an overlay to benefit real-time applications. Specifically,
the overlay consists of two different types of nodes: multi-
cast service nodes (MSN) form the backbone of the overlay
and provides efficient data dissemination to meet the
requirements of real-time applications running on end-
host nodes. The overlay among MSNs is autonomously
organized with the intent of reducing latency. An other
interesting application of clustering is presented in [57],
where Quilt uses clustering for resolving the deployment
and scalability issues that characterize IP Multicast. In fact,
the main problem of IP Multicast is that it is not supported
all over Internet, especially in its backbone. A narrowed
routing domain managed by a single organization, such
as a LAN, typically provides a support to IP Multicast traf-
fic; however, outside such domains routers do not convey
IP Multicast traffic. Quilt applies the well-known technique
of tunneling in combination with clustering to glue to-
gether IP Multicast-enabled ‘‘islands’’: a routing domain
where IP Multicast is enabled is considered as a cluster,
while an overlay, the authors used OMNI ALM, is used to
perform inter-cluster communication.

Clustering has been also used to address the issue of
jointly providing scalability and reliability in Internet-scale
multicast services. The main flaws of approaches for
guaranteeing data delivery over faulty Internet-scale
networking infrastructures is that they can not scale up
when incrementing the number of destinations or the
amount of published data, and the lack of adaptivity to
the experienced network conditions. For example, gossip-
based dissemination suffers of the generation of a large
number of repairing messages, which may overwhelm rou-
ters and exacerbate the faulty behavior of the network.
Specifically, gossip imposes the same traffic load all over
the infrastructure, even in portions where the network
behavior is less faulty and demands lower intervention
by the gossip protocol to achieve successful deliveries.
Clustering has been used in [58] for dealing with these
problems: nodes are organized in a hierarchical manner,
called Leaf Box Hierarchy, similarly as seen for NICE, and
the gossip protocol is made adaptive by adjusting its
parameters with respect to the position of a node within
the hierarchy. Specifically, the targets of a gossip round
are chosen among the neighbors within the hierarchy so
to reduce network traffic by limiting gossiping between
nodes too far away. The usage of acknowledged messages
allows calibrating the gossip protocol to the real needs of
the network: if all messages are acknowledged, gossiping
is never triggered, while when losses are experienced then

M. Cinque et al. / Computer Networks 56 (2012) 1215–1235 1233
gossip rounds are issued. Since gossip is network-aware,
this assures that additional traffic is experienced only
where needed, so to alleviate the flaws that occur when
trying to have reliability in Internet-scale multicast
services.

7.3. Publish/subscribe middleware

The solutions that we have discussed with respect to
multicast services can also be considered as topic-based
publish/subscribe middleware. In addition, within this re-
search community another innovative application of clus-
tering has been proposed, such as clustering interest,
instead of nodes. In publish/subscribe services the defini-
tion of destinations is not network-centric, i.e., by specify-
ing their addresses as happens in UDP protocol or the
address of a multicast group as occurs in IP Multicast,
but it is data-centric, i.e., by indicating the interest in the
type or content of events that the destinations are willing
to receive. Therefore, interest becomes another dimension
for the scale of a publish/subscribe service that has to be
opportunely managed: when expressions of interest in-
crease too much, the overhead to manage them can com-
promise the efficiency of the publish/subscribe service. A
brilliant solution to keep the service efficient even if there
is a large number of such expressions is interest clustering,
i.e., nodes that exhibit the same interests are placed closer
to each other on the ALM. This concept is similar to sub-
scription regionalism, i.e., nodes that are geographically
close also share the same interests, which has been ob-
served in some particular application scenarios, such as
news spreading of particular topics (politics or sport) that
are of interest for a certain country but not for another
one. In [59], there are several examples where interest
clustering is applied for improving scalability.

7.4. Progress beyond the state of the art

The work presented in this paper goes beyond the state
of the art described in the previous subsection by using
Peer clustering not only for scalability (as seen in [59] or
[51]), but also for reliability improvement. In fact, it has
been applied also for improving the provided QoS so to
better tailor the applied reliability means to the network
conditions. In addition, it goes beyond what was done in
[58], since the presented approach can be used to make
different reliability approaches (not only gossiping) coexis-
ting within the context of the overall data dissemination
infrastructure.
8. Final remarks

This paper proposed TODAI, a novel approach for data
dissemination in LCCIs, based on a two-layered super-peer
organization, the semi-active replication of super-peers,
and the epidemic delivery of messages among peer groups.
The approach is shown to be able to scale up to thousands
of nodes with desirable availability and resiliency proper-
ties. In particular, the use of peer groups and the adoption
of the semi-active replication scheme for super-peers allow
obtaining a 7 nines availability for each individual group. In
addition, the proactive nature of the proposed epidemic
dissemination approach delivers a resiliency, which is an
increasing function of the number of nodes involved in
the dissemination task. Compared to the standard solution
based on RTPS, our approach is able to deliver up to 5 nines
of resiliency for 128 groups (8192 peers), while keeping a
delivery latency of 87 ms, against the 3 nines resiliency
and 62 ms latency achievable with RTPS. Finally, the pro-
posed approach does not suffer of sending buffer overflow
problems, which on the other side limits the size of systems
where RTPS can be successfully adopted. Hence, the
proposed dissemination approach is promising to build
scalable and resilient DDS-based systems over Internet-
federated large-scale critical infrastructures.

The adopted evaluation approach, based on Stochastic
Activity Networks, can be easily exploited and extended
to conduct further performance and dependability assess-
ment campaigns in the future, i.e., to evaluate the resil-
iency of TODAI with respect to weaker assumptions or
against a wider set of threats, including security attacks,
which are a serious concern in LCCIs. As an example, it is
possible to assume a less controlled environment for the
internal system domain, which could expose peer nodes
belonging to the same group to network failures. As for
security attacks, while there is still a strong debate in the
community, a concrete example is [61], about the diffi-
culty/impossibility to model the behavior of attackers
(and hence to assume realistic values for attack probability
and attack success probability), it could be interesting to
assess the impact of well-known attacks on the behavior
of the system. Examples are Distributed Denial of Service
attacks affecting a set of super-peers at the same time, or
attacks causing super-peers behaving in an erratic way,
such as, randomly loosing/duplicating messages, or intro-
ducing fake messages in the overlay.
Acknowledgements

This work has been partially supported by the Italian
Ministry for Education, University, and Research (MIUR)
in the framework of the Project of National Research Inter-
est (PRIN) ‘‘DOTS-LCCI: Dependable Off-The-Shelf based
middleware systems for Large-scale Complex Critical
Infrastructures’’.
References

[1] C. Esposito, D. Cotroneo, A. Gokhale, D.C. Schmidt, Architectural
evolution of monitor and control systems – issues and challenges,
Introduction paper for the Special Issue on Data Dissemination for
Large scale Complex Critical Infrastructures at International Journal
of Network Protocols and Algorithms 2 (3) (2010) 1–17.

[2] P. Marwedel, Embedded System Design, Springer, 2006.
[3] SESAR, 2011. <http://www.eurocontrol.int/sesar/-public/subsite_

homepage/home-page.html>.
[4] NASPI, 2011. <http://www.naspi.org>.
[5] PENS, 2011. <http://www.eurocontrol.int/communications/public/

standard_page/pens.html>.
[6] J.P.G. Sterbenz, D. Hutchison, E.K. Çetinkaya, A. Jabbar, J.P. Rohrer, M.

Schöller, P. Smith, Resilience and survivability in communication
networks: strategies, principles, and survey of disciplines, Computer
Networks: Special Issue on Resilient and Survivable Networks 54 (8)
(2010) 1245–1265.

http://www.eurocontrol.int/sesar/-public/subsite_homepage/home-page.html
http://www.eurocontrol.int/sesar/-public/subsite_homepage/home-page.html
http://www.naspi.org
http://www.eurocontrol.int/communications/public/standard_page/pens.html
http://www.eurocontrol.int/communications/public/standard_page/pens.html

1234 M. Cinque et al. / Computer Networks 56 (2012) 1215–1235
[7] P.Th. Eugster, P.A. Felber, R. Guerraoui, A. Kermarrec, The many faces
of publish/subscribe, ACM Computing Surveys 35 (2) (2003) 114–
131.

[8] OMG. Data Distribution Service (DDS) for Real-Time Systems, v1.2,
2007. <http://www.omg.org>.

[9] C. Esposito. Data Distribution Service (DDS) Limitations for Data
Dissemination w.r.t. Large-scale Complex Critical Infrastructures
(LCCI), 2011. <http://www.mobilab.unina.it>.

[10] C. Diot, B.N. Levine, B. Lyles, H. Kassan, D. Balendiefen, Deployment
numbers for the IP Multicast services and architecture, IEEE
Networks – Special Number Multicasting 14 (1) (2000) 78–88.

[11] Y. Chu, S.G. Rao, S. Seshan, H. Zhang, A case for end system multicast,
IEEE Journal on Selected Areas in Communications (JSAC) 20 (8)
(2002) 1456–1471.

[12] J.F. Meyer, Performability modeling of distributed real-time systems,
Computer Performance and Reliability (1983) 361–372.

[13] C. Esposito, C. Di Martino, M. Cinque, D. Cotroneo, Effective data
dissemination for large-scale complex critical infrastructures, in:
Proceedings of the 3rd International Conference on Dependability
(DEPEND 2010), 2010, pp. 64–69.

[14] W. Vogels, R. van Renesse, K. Birman, Using epidemics techniques for
building ultra-scalable reliable communication systems, in:
Proceedings of the Workshop on New Visions for Large-Scale
Networks (LSN): Research and Applications, 2001.

[15] O. Ozkasap, End-to-end epidemic multicast loss recovery: analysis of
scalability and robustness, Computer Communication 32 (4) (2009)
668–678.

[16] W.H. Sanders, J.F. Meyer, Stochastic Activity Networks: Formal
Definitions and Concepts. Lecture Notes in Computer Science,
Springer, Berlin, 2001. 2090/2001:315–343.

[17] L. Northrop et al. Ultra-large-scale Systems, The Software Challenge
of the Future, 2006. <http://www.sei.cmu.edu/uls/>.

[18] G. Muhl, L. Fiege, P. Pietzuch, Distributed Event-Based Systems,
Springer, 2006.

[19] R. Meier, V. Cahill, Taxonomy of distributed event-based
programming systems, The Computer Journal 28 (5) (2002) 602–
626.

[20] S.P. Mahambre, M. Kumar, U. Bellur, A taxonomy of QoS-aware,
adaptive event-dissemination middleware, IEEE Internet Computing
11 (4) (2007) 35–44.

[21] OMG, DDS Interoperability Protocol (DDSI), v2.1, 2009. <http://
www.omg.org>.

[22] S. Lin, D. Costello, M. Miller, Automatic-repeat-request error-control
schemes, IEEE Communications Magazine 22 (12) (1984) 5–
17.

[23] S.R. Chandran, A selective repeat ARQ scheme for point-to-
multipoint communications and its throughput analysis, ACM
SIGCOMM Computer Communication Review 16 (3) (1986) 292–
301.

[24] M. Xiong, J. Parsons, J. Edmondson, H. Nguyen, D.C. Schmidt,
Evaluating technologies for tactical information management in
net-centric systems, in: Proceedings of SPIE: Defense Transformation
and Net-Centric Systems, vol. 6578, 2007, pp. 657–668.

[25] A. Corsaro, The Data Distribution Service for Real-Time Systems,
2010. <http://www.drdobbs.com/architecture-and-design/222900
238>.

[26] K.C. Almeroth, The evolution of multicast: from the mbone to
interdomain multicast to internet2 deployment, IEEE Network 14 (1)
(2000) 10–20.

[27] J.-H. Cui, J. Kim, D. Maggiorini, K. Boussetta, M. Gerla, Aggregated
multicast – a comparative study, Cluster Computing 8 (1) (2005) 15–
26.

[28] N. Bonmariage, G. Leduc, A survey of optimal network congestion
control for unicast and multicast transmission, Computer Networks:
The International Journal of Computer and Telecommunications
Networking 50 (3) (2006) 448–468.

[29] J.F. De Rezende, S. Fdida, Scalability issues on reliable multicast
protocol, in: Proceedings of COST 237 Workshop, 1999.

[30] N. Feamster, D.G. Andersen, H. Balakrishnan, M.F. Kaashoek,
Measuring the effects of internet path faults on reactive routing,
ACM SIGMETRICS Performance Evaluation Review 31 (1) (2003)
126–137.

[31] A. Markopoulou, F. Tobagi, M. Karam, Loss and delay measurements
of internet backbones, Computer Communications 29 (10) (2003)
1590–1604.

[32] J. Seibert, D. Zage, S. Fahmy, C. Nita-Rotaru, Experimental
comparison of peer-to-peer streaming overlays: an application
perspective, in: Proceedings of the 33rd IEEE Conference on Local
Computer Networks, 2008, pp. 20–27.
[33] M. Wiesmann, F. Pedone, A. Schiper, B. Kemme, G. Alonso,
Understanding replication in databases and distributed systems,
in: Proceedings of the 20th International Conference on Distributed
Computing Systems (ICDCS 2000), 2000, pp. 464–474.

[34] H. Garcia-Molina, Elections in a distributed computing system, IEEE
Transactions on Computers (TC) C-31 (1) (1982) 48–50.

[35] P.Th. Eugster, R. Guerraoui, S.B. Handurukande, P. Kouznetsov, A.-M.
Kermarrec, Lightweight probabilistic broadcast, ACM Transaction on
Computer Systems 21 (4) (2003) 341–374.

[36] P. Costa, M. Migliavacca, G.P. Picco, G. Cugola, Introducing reliability
in content-based publish-subscribe through epidemic algorithms,
in: Proceedings of the 2nd international workshop on Distributed
event-based systems (DEBS 03), 2003, pp. 1–8.

[37] D. Deavours, G. Clark, T. Courtney, D. Daly, S. Derisavi, J.M. Doyle,
W.H. Sanders, P.G. Webster, The mobius framework and its
implementation, IEEE Transactions on Software Engineering 28
(10) (2002) 956–969.

[38] S. Chiaradonna, F. Di Giandomenico, P. Lollini, Evaluation of Critical
Infrastructures: Challenges and Viable Approaches. Architecting
Dependable Systems V, Lecture Notes in Computer Science,
Springer, Berlin/ Heidelberg, 2008. 5135/2008:52–77.

[39] A. Bondavalli, M. Nelli, L. Simoncini, G. Mongardi, Hierarchical
modelling of complex control systems: dependability analysis of a
railway interlocking, Journal of Computer Systems Science and
Engineering 16 (4) (2001) 249–261.

[40] A. Bondavalli, S. Chiaradonna, D. Cotroneo, L. Romano, Effective fault
treatment for improving the dependability of COTS and legacy-based
applications, IEEE Transactions on Dependable and Secure
Computing 1 (4) (2003) 1545–5971.

[41] D. Cotroneo, C. Di Martino, Field data based modeling of sender
based message logging protocols for supercomputers checkpointing,
2010, pp. 294–301.

[42] M. Cinque, D. Cotroneo, C. Di Martino, Automated generation of
performance and dependability models for the assessment of
wireless sensor networks, IEEE Transactions on Computers
2011;99(PrePrints).

[43] K.K. Goswami, R.K. Iyer, Simulation of software behavior under
hardware faults, in: Proceedings of the Twenty-Third International
Symposium on Fault-Tolerant Computing (FTCS-23), 1993, pp. 218–
227.

[44] K.I. Ravishankar, T. Dong, Experimental analysis of computer system
dependability. Fault-tolerant computer system design, Prentice-Hall,
Inc., 1996. 282–392.

[45] R. Mullen, The lognormal distribution of software failure rates:
origin and evidence, in: Proceedings of the International Symposium
on Software Reliability Engineering (ISSRE 98), 1998, pp. 124–133.

[46] G. Hasslinger, O. Hohlfeld, The Gilbert–Elliott model for packet loss
in real time services on the internet, in: Proceedings of the 14th GI/
ITG Conference on Measuring, Modelling and Evaluation of
Computer and Communication Systems, 2008, pp. 1–15.

[47] A. Bavier, M. Bowman, D. Culler, B. Chun, S. Karlin, S. Muir, L.
Peterson, T. Roscoe, T. Spalink, M. Wawrzoniak, Operating system
support for planetary-scale network services, in: Proceedings of the
First Symposium on Networked Systems Design and
Implementation (NSDI 04), 2004, pp. 253–266.

[48] A. Corsaro, CoFlight eFDP. available on the DDS portal at
portalsomgorg/dds/sites/default/files/dds_06-09-05_0pdf 2006;.

[49] E. Halepovic, R. Deters, B. Traversat. Performance Evaluation of JXTA
Rendezvous. Lecture Notes in Computer Science: On the Move to
Meaningful Internet Systems 2004: CoopIS, DOA, and ODBASE –
Springer Berlin/ Heidelberg 2004;3291/2004:1125–1142.

[50] J. Liang, R. Kumar, K.W. Ross, The fasttrack overlay: a measurement
study, Computer Networks 50 (6) (2006) 842–858.

[51] K.M. Hammouda, M.S. Kamel, Hierarchically distributed peer-to-peer
document clustering and cluster summarization, IEEE Transactions
on Knowledge and Data Engineering 21 (5) (2009) 681–698.

[52] E.K. Lua, X. Zhou, Network-aware superpeers-peers geometric
overlay network, in: Proceedings of the 16th International
Conference on Computer Communications and Networks (ICCCN
2007), 2007, pp. 141–148.

[53] S. Banerjee, S. Lee, B. Bhattacharjee, C. Kommareddy, Scalable
application layer multicast, in: ACM SIGCOMM Computer
Communication Review – Proceedings of the 2002 Conference on
Applications, Technologies, Architectures, and Protocols for
Computer Communications (SIGCOMM 2002), vol. 32, issue 4,
2002, pp. 205–217.

[54] L. Lao, J.-H. Cui, M. Gerla, S. Cheng, A scalable overlay multicast
architecture for large-scale applications, IEEE Transactions on
Parallel and Distributed Systems 18 (4) (2007) 449–459.

http://www.omg.org
http://www.mobilab.unina.it
http://www.sei.cmu.edu/uls/
http://www.omg.org
http://www.omg.org
http://www.drdobbs.com/architecture-and-design/222900238
http://www.drdobbs.com/architecture-and-design/222900238

M. Cinque et al. / Computer Networks 56 (2012) 1215–1235 1235
[55] X. Zhanga, X. Lia, W. Luoa, B. Yan, An application layer multicast
approach based on topology-aware clustering, Computer
Communications 32 (6) (2009) 1095–1103.

[56] S. Banerjee, C. Kommareddy, K. Kar, B. Bhattacharjee, S. Khuller,
OMNI: an efficient overlay multicast infrastructure for real-time
applications, Computer Networks 50 (6) (2006) 826–841.

[57] Q. Huang, Y. Vigfusson, K. Birman, H. Li, Quilt: a patchwork of
multicast regions, in: Proceedings of the Fourth ACM International
Conference on Distributed Event-Based Systems (DEBS 2010), 2010,
pp. 184–195.

[58] I. Gupta, A.-M. Kermarrec, A.J. Ganesh, Efficient and adaptive
epidemic-style protocols for reliable and scalable multicast, IEEE
Transactions on Parallel and Distributed Systems 17 (7) (2006) 593–
605.

[59] L. Querzoni, Interest clustering techniques for efficient event routing
in large-scale settings, in: Proceedings of the second international
conference on Distributed event-based systems (DEBS 2008), 2008,
pp. 13–22.

[60] B. Yang, H. Garcia-Molina, Designing a super-peer network, in:
Proceedings of the 19th International Conference on Data
Engineering (ICDE 2003), 2003, pp. 49–60.

[61] D.M. Nicol, W.H. Sanders, K.S. Trivedi, Model-based evaluation: from
dependability to security, IEEE Transactions on Dependable and
Secure Computing 1 (1) (2004) 48–65.

Marcello Cinque graduated with honours
from University of Naples, Italy, in 2003,
where he received the PhD degree in com-
puter engineering in 2006. Currently, he is
Assistant Professor at the Department of
Computer and Systems Engineering (DIS) of
the University of Naples Federico II. Cinque is
chair and/or TPC member of several technical
conferences and workshops on dependable,
mobile, and pervasive systems, including IEEE
PIMRC, DEPEND, and ACM ICPS. His research
interests include dependability analysis of

mobile and sensor systems, and middleware solutions for mobile ubiq-
uitous systems.
Catello Di Martino received the MS degree
with honours and PhD in computer engi-
neering from the University of Naples in 2006
and 2009, respectively. Currently, he is a
research fellow at the Computer Engineering
and Systems Department (DIS) at the Uni-
versity of Naples. His interests include
dependability assessment techniques of WSN
and large scale computer systems. Di Martino
has been at the Center for Reliable and High-
Performance Computing of the University of
Illinois, Urbana Champaign for 18 months

doing research with R.K. Iyer. He has also worked as a consultant for
Critical Software Inc. in the context of verification and validation cam-
paigns of large satellite projects.
Christian Esposito graduated in Computer
Engineering at Universitá di Napoli Federico II
in 2006, and got his PhD at the same univer-
sity in 2009. Currently he is a post-doc
researcher at Consorzio Inter-Universitario
Nazionale per l’Informatica (CINI) and
Department of Computer and Systems Engi-
neering (DIS) at Universitá di Napoli Federico
II. His main interests include positioning sys-
tems for mobile ad hoc networks, bench-
marking aspects of publish/subscribe services,
and reliability strategies for data dissemina-

tion in large-scale critical systems. He is currently involved in the EU
project called CRITICAL STEP (FP7-PEOPLE-2008-IAPP-230672), and ital-
ian project called PRIN DOTS-LCCI (PRIN-2008-LWRBHF).

	On data dissemination for large-scale complex critical infrastructures
	1 Introduction
	2 Background and requirements
	2.1 LCCI
	2.2 Middleware requirements for LCCI
	2.3 Middleware solutions for LCCI
	2.4 Data Dissemination Service (DDS)

	3 Problem statement
	4 The TODAI approach to data dissemination
	4.1 Super-peer organization
	4.2 Semi-active replication
	4.3 Epidemic data dissemination
	4.4 Dissemination example

	5 Modeling RTPS and TODAI behaviors
	5.1 Modeling assumptions
	5.2 Composed models
	5.3 Failure model
	5.4 Channel model
	5.5 RTPS_publisher
	5.6 RTPS_subscriber
	5.7 TODAI_publisher
	5.8 TODAI_forwarder

	6 Experimental results
	6.1 RTPS
	6.2 TODAI
	6.3 Group availability

	7 Related work
	7.1 Peer-to-peer networks
	7.2 Multicast services
	7.3 Publish/subscribe middleware
	7.4 Progress beyond the state of the art

	8 Final remarks
	Acknowledgements
	References

