
This article was downloaded by: [Dipartmento di Studi E Reicerche]
On: 23 January 2012, At: 03:39
Publisher: Taylor & Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered
office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Communications in Algebra
Publication details, including instructions for authors and
subscription information:
http://www.tandfonline.com/loi/lagb20

A Family of Algebraically Closed Fields
Containing Polynomials in Several
Variables
Fuensanta Aroca a & Giovanna Ilardi b
a Instituto de Matemáticas, Unidad Cuernavaca, Universidad
Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
b Department of Mathematics and Application “Renato Caccioppoli”,
Federico II Polo of Science and Technology Studies of Naples,
Naples, Italy

Available online: 28 Mar 2009

To cite this article: Fuensanta Aroca & Giovanna Ilardi (2009): A Family of Algebraically Closed Fields
Containing Polynomials in Several Variables, Communications in Algebra, 37:4, 1284-1296

To link to this article:  http://dx.doi.org/10.1080/00927870802278750

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.tandfonline.com/page/terms-and-conditions

This article may be used for research, teaching, and private study purposes. Any
substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing,
systematic supply, or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation
that the contents will be complete or accurate or up to date. The accuracy of any
instructions, formulae, and drug doses should be independently verified with primary
sources. The publisher shall not be liable for any loss, actions, claims, proceedings,
demand, or costs or damages whatsoever or howsoever caused arising directly or
indirectly in connection with or arising out of the use of this material.

http://www.tandfonline.com/loi/lagb20
http://dx.doi.org/10.1080/00927870802278750
http://www.tandfonline.com/page/terms-and-conditions


Communications in Algebra®, 37: 1284–1296, 2009
Copyright © Taylor & Francis Group, LLC
ISSN: 0092-7872 print/1532-4125 online
DOI: 10.1080/00927870802278750

A FAMILY OF ALGEBRAICALLY CLOSED FIELDS
CONTAINING POLYNOMIALS IN SEVERAL VARIABLES

Fuensanta Aroca1 and Giovanna Ilardi2
1Instituto de Matemáticas, Unidad Cuernavaca, Universidad Nacional
Autónoma de México, Cuernavaca, Morelos, Mexico
2Department of Mathematics and Application “Renato Caccioppoli”,
Federico II Polo of Science and Technology Studies of Naples, Naples, Italy

We introduce a family of fields of series with support in strongly convex rational
cones. All these fields contain polynomials in several variables. We prove that they are
algebraically closed with a construction that is analogous to the Newton polygon for
algebraic curves. As a corollary, we show the existence of fractional power solutions
with support in cones for systems of equations.

Key Words: Newton polygon; Parametrization; Puiseux series.
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1. INTRODUCTION

To extend Puiseux’s theorem from one to several variables, the usual approach
is to consider the field of multi-Laurent series with support in well-ordered sets
for the lexicographic order. This field is used in Sathaye (1983) to extend the
Abhyankar–Moh Semigroup theorem. The same construction can be done with any
compatible total order in �N (see Rayner, 1974 or Ribenboim, 1992). These fields
are called fields of generalized power series.

McDonald (1995) shows that a polynomial in y with coefficients polynomials
in N variables has a root in the ring of Puiseux series with support in some strongly
convex polyhedral cone. Then González Pérez (2000) notes that McDonald’s proof
may be extended to consider coefficients in the ring of Puiseux series with support
in a strongly convex polyhedral cone.

Series with support in cones have many interesting properties: They can
be transformed in series with support in an orthant by a chain of monomial
transformations (Aranda, 2002; Soto and Vicente, 2006), an extension of Abel’s
theorem holds (Aroca, 2004), they appear in the solutions of holonomic systems
(Saito et al., 2000).
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ALGEBRAICALLY CLOSED FIELDS 1285

In this note, we introduce a family of fields (called �-positive Puiseux series) that
arise as an infinite union of rings of series with support in strongly convex polyhedral
cones. Our fields are strictly smaller than the ones described in the first paragraph.

We prove the following theorem.

Theorem 1. The field of �-positive Puiseux series is algebraically closed.

McDonald (2002) extends his explorations in McDonald (1995) to systems of
equations. He gives a construction that works for “general” systems but he cannot
characterize the systems for which solutions do exist. Once Theorem 1 is established,
the existence of solutions is just a consequence of Hilbert’s Nullstellensatz. We see
this in the last section of this note.

In an article in preparation with López de Medrano, we will give a method to
find these solutions using the tropicalization of the ideal generated by the system.

Theorem 1 follows from a general theorem proved in Rayner (1974) using
valuation theory. It can also be seen as a consequence of a construction for partial
differential equations given in Aroca et al. (2003).

Here we give a simple constructive proof using two geometrical objects: the
�-Newton polygon and the �-barrier wedge.

2. THE FIELDS

We will work on an algebraically closed field � of characteristic zero. For
� = ��1� � � � � �N � ∈ �N set x� �= x

�1
1 · · · x�NN . With this notation a fractional power

series � in N variables is expressed as

� = ∑
�∈�N

c�x
�� c� ∈ ��

The set of exponents of � is the set

���� �= 	� ∈ �N � c� �= 0
�

A fractional power series � is a Puiseux series when its set of exponents is
contained in a lattice. That is, there exists K ∈ � such that ���� ⊂ 1

K
�

N
. The set �

of Puiseux series is a group with addition but multiplication is not always defined.
A convex rational polyhedral cone is a subset of �N of the form

� = 	�1v1 + · · · + �rvr � �i ∈ �� �i ≥ 0
� (1)

where v1� � � � � vr ∈ �N are vectors. A cone is said to be strongly convex if it contains
no nontrivial linear subspaces.

Let � ⊂ �N be a strongly convex cone. Then �N ∩ � is a semigroup, and the
set of Puiseux series with support in �

�
�� = 	� ∈ � � ���� ⊂ �


is a ring.
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1286 AROCA AND ILARDI

Figure 1 The exponents of a Puiseux series with support in a translate of �.

The set of Puiseux series with support in translates of � (see Fig. 1)

�
��T = 	� ∈ � ���x−��� ⊂ � for some � ∈ �N 


is also a ring. When N = 1, �
��T is a field but for N ≥ 2 it is not.
Given � ∈ �N , we say that a cone � is �-positive when it is contained in the

half space �� = 	v ∈ �N � � · v ≥ 0
.

Remark 1. The union of �-positive rational cones is always contained in
a �-positive rational cone. When � is of rationally independent coordinates a
�-positive rational cone is strongly convex.

We say that a Puiseux series � is �-positive when there exists � ∈ �N and a
�-positive rational cone � such that ��x−��� ⊂ �.

The set of �-positive Puiseux series will be denoted by 	�. When � is of
rationally independent coordinates, by Remark 1, 	� is a ring. We will show that
	� is an algebraically closed field.

We end the section with a remark that we will need later on.

Remark 2. Let � be a �-positive Puiseux series, and let � ∈ �N be such that
� · � ≤ � · � for all � ∈ ����. Then there exists a �-positive rational cone � such
that ��x−��� ⊂ �.

Figure 2 �-Positive rational cones.
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ALGEBRAICALLY CLOSED FIELDS 1287

Figure 3 Different cones for the same �-positive Puiseux series.

3. NEWTON POLYGON

From now on, � will stand for a vector of rationally independent coordinates,
and by cone we will mean strongly convex rational polyhedral cone.

We will be dealing with polynomials

f =
d∑
i=0

�i�x�y
i� (2)

where �i are �-positive Puiseux series. Since d is finite f may be written as

f = ∑
�∈��+��∩ 1

K �N �i=0�����d

a��ix
�yi� (3)

where � is a w-positive rational cone, � ∈ �N , K ∈ �, and a��i ∈ �.
The set of exponents of f is the subset of �N+1

��f� = 	��� i� ∈ �N ×� � a��i �= 0
�

We will say that the last coordinate of a point in �N+1 is its height. We say
that a set is horizontal when it has constant height. Given two points P and P ′ in
�N+1, if the height of P ′ is smaller than that of P, we say that P is higher than P ′

and that P ′ is lower than P.
Let �� be the projection from �N+1 to �2 given by

�� � �N ×� −→ �2

��� h� 
→ �� · �� h��

The preimage of a point P ∈ �2 is an horizontal linear space of codimension 2
orthogonal to ��� 0�.

Figure 4 The sets ��f�, NP�1���f and NP���1�f for f = y2 + x1y − x31 − x2.
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1288 AROCA AND ILARDI

Figure 5 Remark 3.

Proposition 1. Given P = �q� h� ∈ �2 the linear space �−1
� �P� has at most one point

of rational coordinates.

Proof. Suppose that ��� h� and ��′� h� are in �−1
� �P�, then

� · � = q = � · �′ ⇒ � · ��− �′� = 0

so, if � �= �′ are rational ��− �′� is a rational combination of the coordinates of �.
�

As a consequence of Proposition 1 we have that the correspondence

�w � ��f� −→ �w���f��

is one to one.
If f is as in (3) then the set �w���f�� is contained in the half band

	�q� h� ∈ �2 � q ≥ � · �� 0 ≤ h ≤ d
�

Definition 1. Given � ∈ �N of rationally independent coordinates and f , a
polynomial with coefficients in 	�. The �-Newton polygon of f is the convex hull of
the set �����f��+ ��≥0 × 	0
� that is

NP�f = conv
( ⋃

P∈��f�
���P�+ ��≥0 × 	0
�

)
�

The �-Newton polygon has a finite number of edges. Two of the edges are
horizontal and unbounded and the rest are bounded. NP�f touches the axis of
abscissas if and only if y = 0 is not a root of f .

We state here a remark that we will use later on:

Remark 3. Let � ∈ � be such that the vector ���−1� is parallel to the lowest finite
edge of NP�f and let P = �a� h� be a point in NP�f . The segment 	P + ����−1� �
0 ≤ � ≤ h
 is contained in NP�f (see Fig. 5).
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ALGEBRAICALLY CLOSED FIELDS 1289

4. BARRIER WEDGE

Let � be an N -dimensional cone, and let � be a nonhorizontal line in �N+1.
The wedge of spine � and openness � is the set

W = ⋃
x∈�

	x + ��� 0� � � ∈ �
�

A wedge is just a translate of a (not strongly) convex cone.

Remark 4. Let P be a point in the spine of a wedge W and let v ∈ �N+1 be a
vector different than zero. If the point P + v is contained in W , then the half line
	Q+ �v � � ∈ �≥0
 is in W for all Q ∈ W .

Remark 5. Let P be a point in the spine of a wedge W , then

�+ � = 	� ∈ �N �P + ���−1� ∈ W
�

where ���−1� is parallel to the spine of W and � is its openness.

A wedge of �-positive rational openness will be called a �-barrier wedge of f
if its spine contains a point of the set of exponents of f , and all the set is contained
in W .

Proposition 2. Let Q be a point in ��f�. If ���Q� is a vertex of NP�f , then there
exists a �-barrier wedge of f containing Q in its spine.

Proof. Let l be a supporting line of NP�f with ���Q� ∈ l, and let � be a non
horizontal line contained in �−1

� �l� passing through Q.
Since NP�f ⊂ �����+ ��≥0 × 	0
�, then ��f� ⊂ �+ ��w × 	0
�. In particular,

if f is as in (2) and, for i = 0� � � � � d, ��i� i� is the point of � of height i, then � · �i ≤
� · � for all � ∈ ���i�. So, by Remark 2 and the fact that d is finite, there exists a
�-positive rational cone � such that ��f� ⊂ �+ �� × 	0
�. �

5. THE CONSTRUCTION

Let � ∈ �N be of rationally independent coordinates, and let f be a
polynomial with coefficients in 	� such that y = 0 is not a root of f .

Figure 6 Wedge of spine � and openness �.

D
ow

nl
oa

de
d 

by
 [

D
ip

ar
tm

en
to

 d
i S

tu
di

 E
 R

ei
ce

rc
he

] 
at

 0
3:

39
 2

3 
Ja

nu
ar

y 
20

12
 



1290 AROCA AND ILARDI

Figure 7 Remark 5.

Let V and V be the vertex of height zero and the vertex of smallest positive
height of NP�f , respectively. Set (Proposition 1)

Q = ��� 0� = �−1
� �V� ∩ ��f� and Q = ��� h� = �−1

� �V� ∩ ��f�� (4)

The segment joining Q and Q will be called the �-segment of f , and the
N -tuple

� = � − �̄

h
� (5)

will be called the �-slope of f .

Remark 6. The slope of the line containing ���Q� and ���Q� is −1
�·� .

Given a subset 
 ⊂ �N+1 and f as in (3), we denote

f �
 �= ∑
�∈�+��i=0�����d

���i�∈


a��ix
�yi�

Let L be the �-segment of f , let Q be its upper vertex, and let � be the �-slope
of f . We have

L ∩ ��N ×�� = 	Q+ i���−1� � i = 0� � � � � h


and then

f �L =
h∑

i=0

aQ+i���−1�x
�̄+i�yh−i� (6)

Figure 8 Barrier wedge.
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ALGEBRAICALLY CLOSED FIELDS 1291

Figure 9 The �1� ��-segment of f = y2 + x1y − x31 − x2.

The �-characteristic polynomial of f is the polynomial defined by

��c� = f �L�1� c��

that is,

��c� =
h∑

i=0

aQ+i���−1�c
h−i� (7)

The �-characteristic polynomial is a polynomial of degree h with coefficients in �
so it has a root.

Construction. Set f �0� = f and define inductively f �i+1� = f �i��x� y+ cix
��i� �. Where

(i) When y = 0 is not a root of f �i�, ��i� is the �-slope of f �i�, ci a root of the
�-characteristic polynomial of f �i�;

(ii) When y = 0 is a root of f �i�, ��i� = 0 and ci = 0.

Set

��x� =
�∑
i=0

cix
��i� �

Example. Set f = y2 + x1y − x31 − x2. For � = �1� �� the construction gives

� = x21 + x−1
1 x2 − x31 − 2x2 − x−3

1 x22 + 6x1x2 + 6x−2
1 x22 + · · ·

Figure 10 The ��� 1�-segment of f = y2 + x1y − x31 − x2.
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1292 AROCA AND ILARDI

and for � = ��� 1�, we get

� = x
1
2
2 − 1

2
x1 +

1
8
x1

2x
− 1

2
2 + 1

2
x31x

− 1
2

2 − 1
128

x41x
− 3

2
2 − 1

16
x51x

− 3
2

2 + · · · �

When the construction gives a finite sum of monomials y = 0 is a root of
f �i��y� = 0 for some i and then � is a root of f .

We claim that even when the process is infinite ��x� is a �-positive Puiseux
series and that it is a root of f .

6. FROM ����f�i�� TO ����f�i+1��

Let f be a polynomial in y with coefficients in 	w such that y does not
divide f . Construct

f̃ �x� y� = f�x� y + cx���

where c is a root of the �-characteristic equation of f and � is its �-slope. The result
is a new polynomial in y with coefficients in 	w. In this section, we study the relation
between the set of exponents of f , and the set of exponents of f̃ .

Let’s start with a monomial

x̃�yi = x��y + cx��i = x�
i∑

j=0

(
i
j

)
cjxj�yi−j�

since � is of characteristic zero,

��x̃�yi� = 	��� i�+ j���−1� � j = 0� � � � � i
� (8)

So, for any polynomial f the set of exponents of f̃ is contained in segments
parallel to the �-segment whose upper vertex is an exponent of f . That is

��f̃ � ⊂ ⋃
���h�∈��f�

	��� h�+ ����−1� � 0 ≤ � ≤ h
� (9)

Remark 7. Given a point P ∈ �N ×�, let l+P be the half-line over P parallel to the
�-segment. That is, l+P = 	P + ����−1� � � ∈ �≤0
. From (8) it follows:

(i) If l+P ∩ ��f� = ∅, then P � ��f̃ �;
(ii) If l+P ∩ ��f� is only one point, then P ∈ ��f̃ �.

Proposition 3. The lower vertex of the �-segment of f is never an exponent of f̃ .

Proof. Let L be the �-segment of f . Note that f̃ �L = f̃ �L, so Q � ��f̃ � if and only

if y = 0 is a root of f̃ �L. Now

f̃ �L�x� 0� = f �L�x� cx�� by �6� and �7�= x�+h�f �L�1� c�

is zero when c is a root of the characteristic polynomial. �
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ALGEBRAICALLY CLOSED FIELDS 1293

From Remark 4 and Eq. (9) the following remark follows.

Remark 8. Let W be a �-barrier wedge of f containing Q in its spine. The set of
exponents of f̃ is contained in W .

7. THE PIVOT

The projection �� induces an injective map between lines parallel to the
�-segment containing a point in �N+1 and lines in �2 parallel to the lower finite
edge of NP�f (i.e., of slope −1

�·� ).
Equation (9) gives

NP�f
�i+1� ⊂ ⋃

�a�h�∈NP�f�i�

	�a� h�+ ��� · ��i��−1� � 0 ≤ � ≤ h
�

By Remarks 3 and 6, this is equivalent to

NP�f
�i+1� ⊂ NP�f

�i�� (10)

Proposition 3 translates into the following remark.

Remark 9. The lower vertex of NP�f
�i� is never in NP�f

�i+1�.

Then Remark 7 together with (10) implies the following remark.

Remark 10. All vertexes of positive height of NP�f
�i� are again vertexes of

NP�f
�i+1�.

Suppose that f �i��x� 0� �= 0 and f �i+1��x� 0� �= 0. Let Q
�i�

and Q
�i+1�

be the upper
vertex of the �-segment of f �i� and f �i+1�, respectively.

By Remark 10, either Q
�i� = Q

�i+1�
or Q

�i�
is higher than Q

�i+1�
. Since the height

is a natural number there exists k ∈ � such that the upper vertex of the w-segment
of f �i� is the same for all i ≥ k. This point is called the pivot of the construction.

Proposition 4. Let k ∈ � be such that the upper vertex of the �-segment of f �k� is
the pivot. There exists a wedge W that is a �-barrier wedge of f �i� for all i ≥ k.

Proof. Let W be a �-barrier wedge of f �k� containing the pivot in its spine
(Proposition 2).

From Remark 4 and Eq. (9) it follows that ��f �k+1�� ⊂ W . The upper vertex of
the �-segment of f �k+1� is again the pivot, and the result follows by induction. �

8. THE THEOREM

Remarks 6 and 9 imply −1
�·��i� <

−1
�·��i+1� or equivalently

� · ��i� < � · ��i+1��

D
ow

nl
oa

de
d 

by
 [

D
ip

ar
tm

en
to

 d
i S

tu
di

 E
 R

ei
ce

rc
he

] 
at

 0
3:

39
 2

3 
Ja

nu
ar

y 
20

12
 



1294 AROCA AND ILARDI

In particular, ��i� �= ��j� for i �= j, and the construction of Section 5 is a well defined
fractional power series � = ∑�

i=0 cix
��i� with

���� = 	��i� � i ∈ �
�

To see that 	� is algebraically closed, we need to see that � is an element of
	� and that it is actually a root of f .

Proposition 5. Let � be a result of the construction of Section 5. There exists � and
a �-positive rational cone such that ��x−��� ⊂ �.

Proof. Let k ∈ � be such that the upper vertex of the �-segment of f �k� is the
pivot. Let W be a �-barrier wedge of f �i� for all i ≥ k (Proposition 4). By definition,
the vector ���i��−1� is parallel to the �-segment of f �i�. For i ≥ k, the �-segment of
f �i� is contained in W , and its upper vertex is contained in its spine (it is the pivot).
Then, by Remark 5

��i� ∈ �+ � ∀i ≥ k�

where � is the openness of W , and ���−1� is parallel to the spine of W .
Since

∑k
i=0 cix

��i� is finite, we have the result. �

Proposition 6. Let � be a result of the construction of Section 5. There exists K ∈ �
such that ���� ⊂ 1

K
�N .

Proof. Let k ∈ � be such that the upper vertex of the �-segment of f �k� is the pivot.
Let K ∈ � be such that 	�i � i = 0� � � � � k− 1
 ⊂ 1

K
�N . Then ��f �k�� ⊂ 1

K
�N ×�.

Since Q
�k� = Q

�k+1� = Pivot, then Q
�k� + ���k��−1� � ��f �k+1�� and then, by

Remark 7, Q
�k� + ���k��−1� ∈ ��f �k��. Therefore, ��k� ∈ 1

K
�N and, by induction,

��i� ∈ 1
K
�N for all i ∈ �. �

Proof of Theorem 1. By Propositions 5 and 6, the result of the construction is
in 	�. It rests to see that it is actually a solution.

For each step �i� in the construction, define ��i� as in (4). We have that
�����

�i�� 0�� is the lowest vertex of NP�f
�i�. Then, Remark 9 together with Eq. (10)

implies

� · ��i� < � · ��i+1��

By Proposition 6, there exists a rational lattice that contains ��f �i��x� y�� for
all i ∈ �. And, by Proposition 4, there exists a wedge W that is a �-barrier wedge
of f �i� for any i sufficiently large. In particular, there exists K ∈ �N , � ∈ �N , and a
�-positive cone, �, such that ��i� ∈ 1

K
�N ∩ ��+ ��. Therefore,

lim
i→�

� · ��i� = ��
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ALGEBRAICALLY CLOSED FIELDS 1295

By construction,

f

(
x�

i−1∑
j=0

cjx
��j�

)
= f �i��x� 0�

and, since �� · ��i�� 0� is the lowest vertex of NP�f
�i�,

��f �i��x� 0�� ⊂ 	� ∈ �N �� · � ≥ � · ��i�
× 	0
�

And then �
(
f
(
x�

∑�
j=0 cjx

��j�
))

is the empty set. �

9. SYSTEMS OF EQUATIONS

Given r algebraic equations in N +M variables

fi�x1� � � � � xN � y1� � � � � yM� = 0 for i = 1� � � � � r� (11)

We want to find a strongly convex rational cone � ⊂ �N and an M-tuple of
fractional power series with exponents in a translate of �

� = ��1�x1� � � � � xN �� � � � � �M�x1� � � � � xN ��

such that

fi�x��� = 0� i = 1� � � � � r� (12)

Let � be the ideal generated by the fi’s. The equalities (12) hold if and only if

f�x��� = 0� ∀f ∈ � �

This explains the following remark.

Remark 11. If � ∩�
x� �= 	0
 then the system does not have a solution.

Let ��x� denote the field of fractions of �
x�, and let �e be the extension of
� to ��x�
y� via the natural inclusion

�
x� y� = �
x�
y� ⊂ ��x�
y��

Suppose that there exists f ∈ �e ∩ ���x�\	0
�; then

f = g

h
= g1

h1

f1 + · · · + gr
hr

fr ⇒ f
r∏

i=1

hi = g1f1

r∏
i=2

hi + · · · + grfr

r−1∏
i=1

hi ∈ �
x�\	0
�
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1296 AROCA AND ILARDI

Remark 12. If � ∩�
x� = 	0
 then �e ∩��x� = 	0
.

By Remark 12, if � ∩�
x� = 	0
, then �e ∩��x�
y� is a proper ideal of
��x�
y�. Given � ∈ �N of rationally independent coordinates 	� is an algebraically
closed extension of ��x�. Then, by the Nullstellensatz, the zero locus of �e in 	M

�

is not empty.
In particular, there exists � ∈ 	M

� such that the equalities (12) hold.
We get the following corollary.

Corollary 1. Given r polynomials in N +M variables f1� � � � � fr ∈ �
x� y� and
� ∈ �N of rationally independent coordinates. Let � be the ideal of �
x� y� generated
by the fis. There exists a �-positive cone � and an M-tuple � of Puiseux power series
with support in a translate of � such that y = � solves the system 	fi = 0
 if and only
if � ∩�
x� = 0.
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