
UNIQUENESS THEOREM FOR MIXTURES WITH MEMORY

S. De Cicco1, L. Nappa

Dipartimento di Costruzioni e Metodi Matematici in Architettura,
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Abstract

This work concerns the theory of viscoelastic composites which are modeled as

mixtures of two interpenetrating solid continua. First it is given a characterization of

the boundary-initial value problem in which the initial conditions are incorporated into

the field equations. Then a uniqueness theorem for the dynamic theory is established

avoiding the use of Laplace transform.
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1. Introduction

The theory of mixtures has undergone significant developments in re-
cent decades. The theoretical progress in the field is discussed in detail
in the review articles by Bowen [1], Atkin and Craine [2], Bedford and
Drumheller [3] and in the books of Samohyl [4] and Rajagopal and Tao [5].
The significance of the theory has been demonstrated amply for his appli-
cations to a variety of different fields of physics and engineering. It provide
a mathematical model to study material aggregates composed of various
ingredients such as slurries and suspensions, porous rocks and soil infused
with water or oil, biological tissues and muscles, plasmas and gaseous mix-
tures. Moreover, by appealing to this theory we can overcome the inade-
quacy of Darcy’s law in providing some important information on diffusion
processes.

The idea of employing interpenetrating continua as a model of compos-
ite materials has been introduced by Bedford and Stern [6]. Their approach
is based on the Lagrangian description of motion. The theory developed in
[6] has been extended by Pop and Bowen [7], who established a thermody-
namic theory of mixtures with long-range spatial interactions. The model
of interpenetrating solid continua was applied by Tiersten and Jahanmir
[8] to derive a theory of composites where the relative displacement of the
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individual constituents is infinitesimal. The influence of viscous dissipation
is included in the general treatment. The theory of viscoelastic composites
modelled as interpenetrating solid continua with memory has been investi-
gated by several authors (see e.g. [9]-[12]). In [11], McCarthy has studied
the propagation of shock and higher order waves in a binary viscoelastic
mixture.

In this paper we consider the linear theory of viscoelastic composites
modelled as interpenetrating solid continua with memory presented in [10,
12]. First, we give a characterization of the boundary-initial value problem
in which the initial conditions are incorporated into the field equations.
Then we use the results established by Gurtin, McCamy and Murphy [13] to
derive a uniqueness theorem for the mixed problem. This result is obtained
avoiding the use of Laplace transform.

A minimum principle in the theory of viscoelastic mixtures has been
presented in [14].

2. Basic equations

We consider a body which is made up of two solid interpenetrating
continua with memory. We assume that the body occupies at time t0
the properly regular region B of Euclidean three-dimensional space and is
bounded by the piecewise smooth surface ∂B. The motion of the body is
referred to a fixed system of rectangular Cartesian axes Oxi(i = 1, 2, 3).
We designate by n the outward unit normal of ∂B. Letters in boldface
stand for tensor of an order p ≥ 1, and if v has the order p, we write vij...s(p
subscripts) for the components of v in the Cartesian coordinate system. We
shall employ the usual summation and differentiation conventions: Latin
subscripts are understood to range over the integers (1, 2, 3), summation
over repeated subscripts is implied, and subscripts preceded by a comma
denote partial differentiation with respect to the corresponding Cartesian
coordinate. In all that follows, we use a superposed dot to denote partial
differentiation with respect to the time.

We consider the basic equations for the mechanical behavior of a binary
mixture in the framework of the linearized theory. We assume that the
constituents s1 and s2 are each viscoelastic bodies. We denote by u and
w the displacement vector fields associated with the constituents s1 and
s2, respectively. Let t and s be the partial stress tensors associated with
the constituents s1 and s2, respectively. The equations of motion can be
expressed as

tji,j − pi + Fi = ρ0
1üi, sji,j + pi + Gi = ρ0

2ẅi, (2.1)

where p is the internal body force, F is the body force per unit volume
acting on the constituent s1,G is the body force per unit volume acting
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on s2, and ρ0
α is the mass density of the constituent sα at time t0. We

introduce the measures of deformation eij , gij and di (see [2, 15])

eij =
1
2
(ui,j + uj,i), gij = uj,i + wi,j , di = ui − wi. (2.2)

The constitutive equations are

tji(x, t) =
∫ t

−∞
{[Ajimn(x, t− s) + Bmnji(x, t− s)]ėmn(x, s)+

+[Bjimn(x, t− s) + Cjimn(x, t− s)]ġmn(x, s)+

+[Djim(x, t− s) + Ejim(x, t− s)]ḋm(x, s)}ds,

sij(x, t) =
∫ t

−∞
{Bmnji(x, t− s)ėmn(x, s) + Cjimn(x, t− s)ġmn(x, s)+

+Ejim(x, t− s)ḋm(x, s)}ds,

pi(x, t) =
∫ t

−∞
{Dmni(x, t− s)ėmn(x, s) + Emni(x, t− s)ġmn(x, s)+

+aij(x, t− s)ḋj(x, s)}ds,

(2.3)
where the relaxation functions are twice continuously differentiable on B×
[0,∞) and possess the following symmetry properties [16, 10, 12]

Aijmn = Ajimn = Amnij , Bijmn = Bjimn, Cijmn = Cmnij ,

Dijm = Djim, aij = aji on B × (0,∞). (2.4)

Let T and S be the partial tractions associated with the constituents
s1 and s2, respectively, acting at a point x on the surface Σ. Then

Ti = tjinj , Si = sjinj , (2.5)

where n is the outward unit normal to Σ at x.
Let f be a function on B × (−∞,∞). We say that f ∈ CM,N if

∂m

∂xi∂xj . . . ∂xp

(
∂nf

∂tn

)
,

exists and is continuous on B×(−∞,∞) for m = 0, 1, . . . , M, n = 0, 1, . . . , N ,
and m + n ≤ max(M, N). We write CN for CN,N .

We introduce the notion of an admissible process

π = {ui, wi, eij , gij , di, tij , sij , pi}
by which we mean an ordered array of functions ui, wi, eij , gij , tij , sij and
pi defined on B × (−∞,∞) with the following properties:

15



AMIM Vol.13 No.1, 2008 S. De Cicco, L. Nappa +

(i) ui, wi, u̇i, ẇi, üi, ẅi, eij , gij , di, ėij , ġij , ḋi, and pi are continuous on B ×
(−∞,∞); (ii) eij = eji, tji− sij = tij − sji; (iii) tij and sij are of class C1,0

on B× (−∞,∞); (iv) tij , tji,j , sij and sji,j are continuous on B× (−∞,∞).
If we define addition and multiplication of an admissible process by a scalar
through

π + π′ = {ui + u′i, wi + w′i, . . . , pi + p′i}, λπ = {λui, λwi, . . . , λpi},
then the set of all admissible processes is a linear vector space.

A viscoelastic material remembers its past history so that we must
prescribe the functions ui, wi, eij , gij , di, tij , sij and pi up to some instant
t1. The initial data consists of the functions {u∗i , w∗i , e∗ij , g∗ij , d∗i , t∗ij , s∗ij , p∗i } =
π∗, defined on B × (−∞, t1) which satisfy the field equations. The initial
history condition is

π(i) = π∗, (2.6)

where π(i) is the restriction of the admissible process π to B × (−∞, t1).
Without loss of generality, we take t1 = 0. If π is an admissible process
that satisfies the initial history condition (2.6), then ui, wi, u̇i and ẇi auto-
matically satisfy the initial conditions

ui(x, 0) = lim
t→0

u∗i (x, t) ≡ α0
i , u̇i(x, 0) lim

t→0
u̇∗i (x, t) = β0

i ,

wi(x, t) = lim
t→0

w∗i (x, t) ≡ γ0
i , ẇi(x, 0) = lim

t→0
ẇ∗i (x, t) = δ0

i , x ∈ B.

(2.7)
The boundary conditions in the theory of mixtures have been discussed

in [1]-[5]. Let S1 and S2 be subsets of ∂B so that S ∪ S2 = ∂B and
S1 ∩ S2 = ∅. We consider the following boundary conditions

ui = ũi, wi = w̃i on S1 × I,

(tji + sji)nj = σ̃i, di = d̃i on S2 × I,
(2.8)

where ũi, w̃i, σ̃i and d̃i are prescribed functions, and I = (0,∞). We assume
that: (α) F and G are continuous on B × I; (β) ρ0

1 and ρ0
2 are of class C1

and strictly positive on B; (γ) ũi and w̃i are continuous on S1 × I; (δ) σ̃i

are piecewise regular on S2 × I, and d̃i are continuous on S2 × I.
By a viscoelastic process corresponding to the body loads {F,G} we

mean an admissible process that satisfies the equations (2.1)-(2.3). By a
solution of the mixed problem we mean a viscoelastic process corresponding
to the body loads {F,G} that satisfies the initial history condition (2.6)
and the boundary conditions (2.8).

Let u and v be scalar fields on B × I that are continuous in time. We
denote by u ∗ v the convolution

(u ∗ v)(x, t) =
∫ t

0
u(x, t− τ)v(x, τ)dτ, x ∈ B, t ∈ I.
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The constitutive equations (2.3) can be expressed in the form

tji = Tji +
d

dt
[(Ajimn + Bmnji) ∗ emn + (Bjimn + Cjimn) ∗ gmn+

+(Djim + Ejim) ∗ dm],

sij = Sij +
d

dt
(Bmnji ∗ emn + Cjimn ∗ gmn + Ejim ∗ dm),

pi = Pi +
d

dt
(Dmni ∗ emn + Emni ∗ gmn + aij ∗ dj),

(2.9)

where

Tji =
∫ ∞

0
{[Ȧjimn(t + s) + Ḃmnji(t + s)]emn(−s)+

+[Ḃjimn(t + s) + Ċjimn(t + s)]gmn(−s)+

+[Ḋjim(t + s) + Ėjim(t + s)]dm(−s)}ds,

Sij =
∫ ∞

0
[Ḃmnji(t + s)emn(−s) + Ċjimn(t + s)gmn(−s)+

+Ėjim(t + s)dm(−s)]ds,

Pi =
∫ ∞

0
[Ḋmni(t + s)emn(−s) + Ėmni(t + s)gmn(−s)+

+ȧij(t + s)dj(−s)]ds,

(2.10)

and, for convenience, we have suppressed the argument x. Thus, π =
{ui, wi, eij , gij , tij ,
sij , pi} is a viscoelastic process corresponding to the body loads {F,G},
with the initial history π∗, if and only if π is admissible and satisfies the
equations (2.1), (2.2), (2.9) and the condition (2.6).

3. A uniqueness result

The uniqueness question in the dynamic linear theory of viscoelastic-
ity has been considered in various works (see, e.g., [17]-[20]). Uniqueness
results in the theory of mixture of elastic solids have been presented in
[1, 21, 22]. In this section we use the results established by Gurtin, Mc-
Camy and Murphy [13] to derive a uniqueness theorem for the mixed prob-
lem presented in Section 2.

We denote

e∗ij(x, α, β) = eij(x, α)− eij(x, β), g∗ij(x, α, β) = gij(x, α)− gij(x, β),
d∗i (x, α, β) = di(x, α)− di(x, β), x ∈ B, α, β ∈ I.

(3.1)
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Let us introduce the notations

Φ(α, β; ρ) =
1
2
Aijmn(ρ)e∗ij(α, β)e∗mn(α, β)+

+ Bmnji(ρ)e∗mn(α, β)g∗ji(α, β) +
1
2
Cijmn(ρ)g∗ij(α, β)g∗mn(α, β)+

+ Dmni(ρ)e∗mn(α, β)d∗i (α, β) + Emni(ρ)g∗mn(α, β)d∗i (α, β)+

+
1
2
aij(ρ)d∗i (α, β)d∗j (α, β),

Ψ(α, β; ρ) =
1
2
Ȧijmn(ρ)e∗ij(α, β)e∗mn(α, β)+

+ Ḃmnji(ρ)e∗mn(α, β)g∗ji(α, β) +
1
2
Ċijmn(ρ)g∗ij(α, β)g∗mn(α, β)+

+ Ḋmni(ρ)e∗mn(α, β)d∗i (α, β) + Ėmni(ρ)g∗mn(α, β)d∗i (α, β)+

+
1
2
ȧij(ρ)d∗i (α, β)d∗j (α, β),

Γ(α, β; ρ) =
1
2
Äijmn(ρ)e∗ij(α, β)e∗mn(α, β)+

+ B̈mnji(ρ)e∗mn(α, β)g∗ji(α, β) +
1
2
C̈ijmn(ρ)g∗ij(α, β)g∗mn(α, β)+

+ D̈mni(ρ)e∗mn(α, β)d∗i (α, β) + Ëmni(ρ)g∗mn(α, β)d∗i (α, β)+

+
1
2
äij(ρ)d∗i (α, β)d∗j (α, β), α, β, ρ ∈ I,

(3.2)
where, for convenience, we have suppressed the argument x.

Theorem 3.1. If π = {ui, wi, eij , gij , tij , sij , pi} is an admissible process
that corresponds to null initial history and satisfies the constitutive equa-
tions, then

∫ t

0
(tjiu̇i,j + sjiẇi,j + piḋi)ds = Φ(t, 0; t)−

∫ t

0
Ψ(τ, 0; τ)dτ−

−
∫ t

0
Ψ(t, τ ; t− τ)dτ +

1
2

∫ t

0

∫ t

0
Γ(r, s; |r − s|)drds.

(3.3)

Proof. In the case of the null initial history we have

e∗ij(t, 0) = eij(t), g∗ij(t, 0) = gij(t), d∗i (t, 0) = di(t), t ∈ I.

Since π corresponds to null initial history, the constitutive equations (2.3)
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reduce to

tji(t) = [Ajimn(0) + Bmnji(0)]emn(t) + [Bjimn(0) + Cjimn(0)]gmn(t)+

+ [Djim(0) + Ejim(0)]dm(t) +
∫ t

0
{[Ȧjimn(t− s)+

+ Ḃmnji(t− s)]emn(s) + [Ḃjimn(t− s) + Ċjimn(t− s)]gmn(s)+

+ [Ḋjim(t− s) + Ėjim(t− s)]dm(s)}ds,

sij(t) = Bmnji(0)emn(t) + Cjimn(0)gmn(t) + Ejim(0)dm(t)+

+
∫ t

0
{Ḃmnji(t− s)emn(s) + Ċjimn(t− s)gmn(s)+

+ Ėjim(t− s)dm(s)}ds,

pi(t) = Dmni(0)emn(t) + Emni(0)gmn(t) + aij(0)dj(t)+

+
∫ t

0
{Ḋmni(t− s)emn(s) + Ėmni(t− s)gmn(s) + ȧij(t− s)dj(s)}ds.

(3.4)
In view of the initial conditions we get

∫ t

0
(tjiu̇i,j + sjiẇi,j + piḋi)ds = tjiui,j + sjiwi,j+

+pidi −
∫ t

0
(ṫjiui,j + ṡjiwi,j + ṗidi)ds.

By (2.2), (2.4) and (3.4),

tjiui,j +sjiwi,j + pidi = 2Φ(t, 0; 0) +
∫ t

0
{Ȧijmn(t− s)eij(t)emn(s)+

+ Ḃmnji(t− s)[emn(s)gji(t) + emn(t)gji(s)]+

+ Ċjimn(t− s)gji(t)gmn(s) + Ḋjim(t− s)[eji(t)dm(s) + eji(s)dm(t)]+

+ Ėjim(t− s)[gji(t)dm(s) + gji(s)dm(t)] + ȧij(t− s)di(t)dj(s)}ds.

(3.5)
It follows from (3.4) that

ṫjiui,j + ṡjiwi,j + ṗidi =
d

dt
Φ(t, 0; 0) + 2Ψ(t, 0; 0)+

+
∫ t

0
{Äijmn(t− s)eij(t)emn(s)+

+ B̈mnji(t− s)[emn(s)gji(t) + emn(t)gji(s)]+

+ C̈jimn(t− s)gji(t)gmn(s)+

+ D̈jim(t− s)[eji(t)dm(s) + eji(s)dm(t)]+

+ Ëjim(t− s)[gji(t)dm(s) + gji(s)dm(t)] + äij(t− s)di(t)dj(s)}ds.

(3.6)
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In view of (3.5) and (3.6) we obtain
∫ t

0
(tjiu̇i,j + sjiẇi,j + piḋi)ds = Φ(t, 0; 0)− 2

∫ t

0
Ψ(s, 0; 0)ds + Ω(t), (3.7)

where

Ω(t) =
∫ t

0
{Ȧijmn(t− s)eij(t)emn(s)+

+ Ḃmnji(t− s)[emn(s)gji(t) + emn(t)gji(s)]+

+ Ċjimn(t− s)gji(t)gmn(s) + Ḋjim(t− s)[eji(t)dm(s) + eji(s)dm(t)]+

+ Ėjim(t− s)[gji(t)dm(s) + gji(s)dm(t)] + ȧij(t− s)di(t)dj(s)}−

−
∫ t

0

∫ s

0
{Äijmn(s− τ)eij(s)emn(τ) + B̈mnji(s− τ)[emn(τ)gji(s)+

+ emn(s)gji(τ)] + C̈jimn(s− τ)gji(s)gmn(τ)+

+ D̈jim(s− τ)[eji(s)dm(τ)+

+ eji(τ)dm(s)] + Ëjim(s− τ)[gji(s)dm(τ) + gji(τ)dm(s)]+
+ äij(s− τ)di(s)dj(τ)}dsdτ, t ∈ I.

(3.8)
Following [13] we find that
∫ t

0
Ḃmnji(t− s)[emn(s)gji(t) + emn(t)gji(s)]ds =

= [Bmnji(t)−Bmnji(0)]emn(t)gji(t) +
∫ t

0
Ḃmnji(t− s)emn(s)gji(s)ds−

−
∫ t

0
Ḃmnji(t− s)[emn(t)− emn(s)][gji(t)− gji(s)]ds,

2
∫ t

0

∫ s

0
äij(s− τ)di(s)dj(τ)dτds =

∫ t

0

∫ t

0
äij(|s− τ |)di(τ)dj(τ)dτds−

−1
2

∫ t

0

∫ t

0
äij(|s− τ |)[di(s)− di(τ)][dj(s)− d(τ)]dτds,

∫ t

0

∫ s

0
B̈mnji(s− τ)[emn(τ)gji(s) + emn(s)gji(τ)]dτds =

=
∫ t

0

∫ t

0
B̈mnji(|s− τ |)emn(s)gji(τ)dτds =

=
∫ t

0

∫ ∞

0
B̈mnji(|s− τ |)emn(τ)gji(τ)dτds−

−1
2

∫ t

0

∫ t

0
B̈mnji(|s− τ |)[emn(s)− emn(τ)][gji(s)− gji(τ)]dτds,

∫ t

0
äij(|s− τ |)ds = ȧij(τ) + ȧij(t− τ)− 2ȧij(0). (3.9)
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If we use (3.9) we get

Ω(t) = −Φ(t, 0; 0) + Φ(t, 0; t)−
∫ t

0
Ψ(t, τ ; t− τ)dτ −

∫ t

0
Ψ(τ, 0; τ)dτ+

+2
∫ t

0
Ψ(τ, 0; 0)dτ +

1
2

∫ t

0

∫ t

0
Γ(s, τ ; |s− τ |)dsdτ, t ∈ I.

(3.10)
From (3.7) and (3.10) we obtain the desired result.¤

Theorem 3.2. Assume that
(i) ρ0

1 and ρ0
2 are strictly positive;

(ii) Φ ≥ 0, Ψ ≤ 0, Γ ≥ 0, on B × I, for any e∗ij , g
∗
ij , d

∗
i with e∗ij = e∗ji.

Then the mixed problem has at most one solution.

Proof. Let π = {ui, wi, eij , gij , tij , sij , pi} be the difference of two solutions
of the mixed problem. Then π corresponds to null data. In view of the
equations of motion, we have

tjiu̇i,j + sjiẇi,j + piḋi = (tjiu̇i + sjiẇi),j − 1
2

∂

∂t
(ρ0

1u̇
2 + ρ0

2ẇ
2).

By using the divergence theorem, we find that
∫

B
(tjiu̇i,j + sjiẇi,j + piḋi)dv

=
∫
∂B(tjiu̇i + sjiẇi)njda− 1

2
d
dt

∫
B(ρ0

1u̇
2 + ρ0

2ẇ
2)dv. (3.11)

If we take into account the boundary conditions we can write

(tjiu̇i + sjiẇi)nj =
1
2
[(tji + sji)nj(u̇i + ẇi) + (tji − sji)nj ḋi] = 0 on ∂B × I.

(3.12)
From (3.3), (3.11), (3.12) and the initial data we obtain

∫

B
{1
2
(ρ0

1u̇
2 + ρ0

2ẇ
2) + Φ(t, 0; t)−

∫ t

0
Ψ(τ, 0; τ)dτ−

−
∫ t

0
Ψ(t, τ ; t− τ)dτ +

1
2

∫ t

0

∫ t

0
Γ(r, s; |r − s|)drds}dv = 0.

(3.13)

It follows from (3.13) and the hypotheses of the theorem that u̇ = 0, ẇ = 0
on B × I. In view of the initial data we conclude that u and w vanish on
B × I. ¤

The existence of a generalized solution can be studied by using the
method given by Dafermos in [23].
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