Singular Surfaces in Thermoviscoelastic Materials with Voids

S. DE CICCO and L. NAPPA*
Dipartimento di Costruzioni e Metodi Matematici in Architettura, Università di Napoli, Via Monteoliveto 3, 80134, Napoli, Italy. E-mail: nappa@unina.it

Received 7 May 2003; in revised form 15 October 2003

Abstract

In the first part of the paper we derive a linear theory of thermoviscoelastic materials with voids. Then, the propagation conditions and growth equations, which govern the propagation of singular surfaces of order 1 are derived and discussed. The coupling between the discontinuities in the mechanical and thermal fields are studied.

Mathematics Subject Classifications (2000): 74A60, 74D05, 74F05, 74JXX.
Key words: thermoviscoelasticity, materials with voids, time-reversal, singular surfaces.

1. Introduction

The theory of elastic materials with voids is a recent generalization of the classical theory of elasticity. The intended applications of the theory are to geological materials and to manufactured porous materials. The nonlinear theory of elastic materials with voids has been established by Nunziato and Cowin [1]. In this theory, the bulk density is written as the product of two fields, the matrix material field and the volume fraction field. This representation introduces an additional degree of kinematic freedom. The linear theory of elastic materials with voids has been established by Cowin and Nunziato [2]. Extensions of this theory to viscoelastic materials and thermoelastic materials exist (cf. [3, 4]).

This paper is concerned with a linear theory of thermoviscoelastic materials with voids. In the first part of the paper we use the results established by Day [5] and Gurtin [6] to give the necessary and sufficient conditions that the infinitesimal entropy production be invariant under time-reversal. We present a linear theory of thermoviscoelastic materials with voids in which the heat flux is independent on the present temperature gradient, but depends upon the past history of this gradient. In the second part of the paper we study the propagation conditions and growth equations which govern the propagation of singular surfaces of order 1 in the case of linear homogeneous isotropic thermoviscoelastic materials with voids. In the

[^0]isothermal case, the wave propagation in materials with voids has been studied in various papers (see, e.g., [7-9]).

2. Preliminaries

We consider a body which at time t^{0} occupies the region B of Euclidean threedimensional space and is bounded by the piecewise smooth surface ∂B. The configuration of the body at time t^{0} is taken as reference configuration. The motion of the body is referred to the reference configuration and a fixed system of rectangular Cartesian axes. We use vector and Cartesian tensor notation with Latin indices having the value $1,2,3$. Greek indices are confined to the range (1,2). Letters in boldface stand for tensors of an order $p \geqslant 1$, and if \boldsymbol{v} has the order p, we write $v_{i j \ldots k}$ (p subscripts) for the components of \boldsymbol{v} in the underlying rectangular Cartesian coordinate system. In all that follows, subscripts preceded by a comma denote partial differentiation with respect to corresponding material coordinate. Also, we use a superposed dot to denote differentiation with respect to t holding the material coordinates fixed. The position of a typical particle of the body at time t is \boldsymbol{x}. The motion of continuum is described by the mappings

$$
\begin{equation*}
x_{i}=x_{i}\left(X_{j}, t\right), \quad\left(X_{j}, t\right) \in B \times I \tag{2.1}
\end{equation*}
$$

where I is a time interval. The above functions are assumed to be sufficiently smooth for the ensuing analysis to be valid. The concept of a distributed body asserts that the mass density at time t has the decomposition

$$
\begin{equation*}
\rho=v \gamma \tag{2.2}
\end{equation*}
$$

where γ is the density of the matrix material and v is the volume fraction field. The relation (2.2) also holds for the reference configuration, $\rho_{0}=\nu_{0} \gamma_{0}$ where ρ_{0} is the density at time t^{0} and v_{0} is the volume fraction field for the reference configuration.

The law of balance of linear momentum leads to the equations

$$
\begin{equation*}
T_{j i, j}+\rho_{0} b_{i}=\rho_{0} \ddot{x}_{i} \tag{2.3}
\end{equation*}
$$

where $T_{j i}$ is the first Piola-Kirchhoff stress tensor and \boldsymbol{b} is the body force per unit mass. The local form of the law of balance of equilibrated forces can be written as

$$
\begin{equation*}
H_{i, i}+P+\rho_{0} l=\rho_{0} \kappa \ddot{v} \tag{2.4}
\end{equation*}
$$

where H_{j} is the equilibrated stress associated with surfaces in B which were originally coordinate planes perpendicular to the X_{j}-axes through the point \boldsymbol{X}, measured per unit area of these planes, P is the intrinsic equilibrated body force per unit mass, l is the extrinsic equilibrated body force per unit mass and κ is the equilibrated inertia.

The equation of moment of momentum is

$$
\begin{equation*}
\varepsilon_{i j k} x_{j, s} T_{s k}=0 \tag{2.5}
\end{equation*}
$$

where $\varepsilon_{i j k}$ is the alternating symbol.

Let e denote the internal energy per unit mass, and let s denote the external heat supply per unit mass, per unit time. The balance of energy is given by

$$
\begin{equation*}
\rho_{0} \dot{e}=T_{k i} \dot{x}_{i, k}+H_{i} \dot{v}_{, i}-P \dot{v}+\rho_{0} s+Q_{i, i}, \tag{2.6}
\end{equation*}
$$

where \boldsymbol{Q} is the heat flux vector. Let η denote the entropy per unit mass, and let T (>0) denote the absolute temperature. The entropy production rate is defined by

$$
\begin{equation*}
\gamma=\rho_{0} \dot{\eta}-\frac{1}{T} \rho_{0} s-\left(\frac{1}{T} Q_{i}\right)_{, i} . \tag{2.7}
\end{equation*}
$$

In the remainder of this section we follow closely the definitions presented by Gurtin [6]. Let U and W be two finite-dimensional inner product spaces. We write $L(U, W)$ for the space of all linear transformations from U into W. The transpose of $\boldsymbol{A} \in L(U, W)$ is denoted by $\boldsymbol{A}^{\mathrm{T}}$. We write $\boldsymbol{A}[\boldsymbol{u}]$ for the action of \boldsymbol{A} on $\boldsymbol{u} \in U$. Let \mathbb{R} be the set of all reals. Let U_{0} be an open subset of U. A closed path in U_{0} starting from $\boldsymbol{v} \in U_{0}$ is a smooth function $f: \mathbb{R} \rightarrow U_{0}$ such that $f(t)=\boldsymbol{v}$ whenever $t<-t_{0}$ or $t>t_{0}$, for some $t_{0}>0$. We write $G\left(U_{0}, \boldsymbol{v}\right)$ for the set of all closed paths in U_{0} starting from $\boldsymbol{v} \in U_{0}$. The history up to time t of a closed path in U_{0} is the function $\boldsymbol{f}^{t}:[0, \infty) \rightarrow U_{0}$ defined by $\boldsymbol{f}^{t}(s)=\boldsymbol{f}(t-s)$ for every $s \geqslant 0$. We write $\Phi\left(U_{0}, \boldsymbol{v}\right)$ for the set of all histories of paths belonging to $G\left(U_{0}, \boldsymbol{v}\right)$. The time-reversal of a closed path $\boldsymbol{f} \in G\left(U_{0}, \boldsymbol{v}\right)$ is the function $\overline{\boldsymbol{f}}: \mathbb{R} \rightarrow U_{0}$ defined by $\overline{\boldsymbol{f}}(t)=\boldsymbol{f}(-t)$, for every $t \in \mathbb{R}$. Let $F: \Phi\left(U_{0}, \boldsymbol{v}\right) \rightarrow W$, where $\boldsymbol{v} \in U_{0}$ is fixed. The functional F is smooth in time if given any $f \in G\left(U_{0}, \boldsymbol{v}\right)$ the function $t \rightarrow$ $F\left(\boldsymbol{f}^{t}\right)$ is smooth. We say that F has a derivative δF at \boldsymbol{v} if given any $\boldsymbol{f} \in G\left(U_{0}, \mathbf{0}\right)$ the limit

$$
\delta F\left(\boldsymbol{f}^{t}\right)=\lim _{\alpha \rightarrow 0} \frac{1}{\alpha}\left[F\left(\boldsymbol{v}+\alpha \boldsymbol{f}^{t}\right)-F(\boldsymbol{v})\right],
$$

exists uniformly for $t \in \mathbb{R}$ and the function $t \rightarrow \delta F\left(\boldsymbol{f}^{t}\right)$ is continuous. We say that F has the relaxation property at \boldsymbol{v} if given any $\boldsymbol{f} \in G\left(U_{0}, \boldsymbol{v}\right)$ we have $\lim _{t \rightarrow \infty} F\left(\boldsymbol{f}^{t}\right)=F(\boldsymbol{v})$. Let V be the three-dimensional vector space. We use the notations $J=L(V, V), J^{*}=\{\boldsymbol{M} \in V \mid \boldsymbol{M}$ is symmetric $\}$ and $J^{+}=$ $\{\boldsymbol{M} \in J \mid \operatorname{det} \boldsymbol{M}>0\}$. By a site we mean the ordered collection of functions $\sigma=\{\mathbf{F}, \nu, \mathbf{G}, T, \mathbf{g}\}$, where $\boldsymbol{F}=\left(F_{i j}\right), \boldsymbol{G}=\left(G_{i}\right), \boldsymbol{g}=\left(g_{i}\right), F_{i j}=x_{i, j}, G_{i}=v_{i, i}$, $g_{i}=T_{i, i}$. Clearly, $F \in J^{+}, \boldsymbol{g}, \boldsymbol{G} \in V, T \in \mathbb{R}^{+}$. We denote by T_{0} the constant absolute temperature of the body in its reference state. The site $\sigma_{0}=\left(\mathbf{I}, v_{0}, \mathbf{0}, T_{0}, \mathbf{0}\right\}$, where $\mathbf{I}=\left(\delta_{i j}\right)$, is called the equilibrium site.

We introduce the displacement vector field \boldsymbol{u} defined by $u_{i}=x_{i}-X_{i}$. We define the temperature change ϑ by $\vartheta=T-T_{0}$, and the volume fraction change φ by $\varphi=v-v_{0}$. We say that \boldsymbol{u}, φ and ϑ are infinitesimal if $\boldsymbol{u}=\varepsilon \boldsymbol{u}^{\prime}, \varphi=\varepsilon \varphi^{\prime}$, $\vartheta=\varepsilon \vartheta^{\prime}$, where ε is a constant small enough for squares and higher powers to be neglected, and $\boldsymbol{u}^{\prime}, \varphi^{\prime}$ and ϑ^{\prime} are independent of ε. By an infinitesimal site we mean the following collection $\zeta=\{\boldsymbol{L}, \varphi, \boldsymbol{G}, \vartheta, \boldsymbol{g}\}, \boldsymbol{L}=\left(u_{i, j}\right), \boldsymbol{G}=\left(\varphi_{i}\right), \boldsymbol{g}=(\vartheta, i)$, where \boldsymbol{u}, φ and ϑ are infinitesimal.

We write Z for the set of all sites. A one-parameter family $\sigma(t)=\{\boldsymbol{F}(t), v(t)$, $\boldsymbol{G}(t), T(t), \boldsymbol{g}(t)\}(-\infty<t<\infty)$ of sites is called a closed process if $\sigma(\cdot)$ is a closed path in Z starting from σ_{0}. Let Z^{*} be the set of all infinitesimal sites. A oneparameter family $\zeta(t)(-\infty<t<\infty)$ of infinitesimal sites is an infinitesimal closed process if $\zeta(\cdot)$ is a closed path in Z^{*} starting from zero.

The infinitesimal strain tensor is given by

$$
\begin{equation*}
e_{i j}=\frac{1}{2}\left(u_{i, j}+u_{j, i}\right) \tag{2.8}
\end{equation*}
$$

3. Constitutive Equations

In the linearized theory of viscoelastic materials, Day [5] proved that the work done in every closed strain path starting from zero is invariant under time-reversal if and only if the stress relaxation function is symmetric. In [6], Gurtin derived an extension of Day's result within the context of thermodynamics of materials with memory. Throughout this section we use the results of Gurtin [6] to establish conditions that are both necessary and sufficient for the infinitesimal entropy production to be invariant under time-reversal.

Let $S_{i j}$ be the second Piola-Kirchhoff stress tensor,

$$
\begin{equation*}
T_{k i}=S_{k j} x_{i, j} \tag{3.1}
\end{equation*}
$$

Equations (2.5) become

$$
\begin{equation*}
S_{i j}=S_{j i} \tag{3.2}
\end{equation*}
$$

and the balance of energy can be written in the form

$$
\begin{equation*}
\rho_{0} \dot{e}=S_{i j} \dot{E}_{i j}+H_{i} \dot{v}_{, i}-P \dot{v}+\rho_{0} s+Q_{i, i} \tag{3.3}
\end{equation*}
$$

where

$$
\begin{equation*}
E_{i j}=\frac{1}{2}\left(x_{m, i} x_{m, j}-\delta_{i j}\right) \tag{3.4}
\end{equation*}
$$

With the help of (3.3), the entropy production rate becomes

$$
\begin{equation*}
\gamma=\rho_{0} \dot{\eta}-\frac{1}{T} \rho_{0} \dot{e}+\frac{1}{T}\left(S_{i j} \dot{E}_{i j}+H_{i} \dot{v}_{, i}-P \dot{v}\right)+\frac{1}{T^{2}} Q_{i} T_{, i} \tag{3.5}
\end{equation*}
$$

In what follows we study materials defined by constitutive relations giving the stresses $T_{i j}(t), H_{i}(t)$, the internal energy $e(t)$, the intrinsic equilibrated body force $P(t)$, the entropy $\eta(t)$, and the heat flux $Q_{i}(t)$ at time t when the site-history σ^{t} is known,

$$
\begin{array}{cll}
T_{i j}(t)=\widehat{T}_{i j}\left(\sigma^{t}\right), & H_{i}(t)=\widehat{H}_{i}\left(\sigma^{t}\right), & P(t)=\widehat{P}\left(\sigma^{t}\right) \\
e(t)=\hat{e}\left(\sigma^{t}\right), & \eta(t)=\hat{\eta}\left(\sigma^{t}\right), & Q_{i}(t)=\widehat{Q}_{i}\left(\sigma^{t}\right) \tag{3.6}
\end{array}
$$

The response functionals have $\Phi\left(Z, \sigma_{0}\right)$ as their common domain. We assume that
(i) the response functionals are smooth in time;
(ii) $\hat{e}, \widehat{T}_{i j}, \widehat{H}_{i}, \widehat{P}$ and \widehat{Q}_{i} have derivative $\delta \hat{e}, \delta \widehat{T}_{i j}, \delta \widehat{P}$ and $\delta \widehat{Q}_{i}$ at σ_{0};
(iii) \hat{e} and $\hat{\eta}$ have the relaxation property at σ_{0};
(iv) $\widehat{\boldsymbol{T}}\left(\sigma_{0}\right)=\mathbf{0}, \widehat{\boldsymbol{H}}\left(\sigma_{0}\right)=\mathbf{0}, \widehat{P}\left(\sigma_{0}\right)=0, \widehat{\boldsymbol{Q}}\left(\sigma_{0}\right)=\mathbf{0}$.

Let $\sigma(\cdot)=\{\boldsymbol{F}(\cdot), v(\cdot), \boldsymbol{G}(\cdot), T(\cdot), \boldsymbol{g}(\cdot)\}$ be a closed process. We define the entropy production $\Gamma\{\sigma(\cdot)\}$ on $\sigma(\cdot)$ by

$$
\begin{equation*}
\Gamma\{\sigma(\cdot)\}=\int_{-\infty}^{\infty}\left\{\rho_{0} \dot{\eta}-\frac{1}{T} \rho_{0} \dot{e}+\frac{1}{T}\left(S_{i j} \dot{E}_{i j}+H_{i} \dot{v}_{, i}-P \dot{v}\right)+\frac{1}{T^{2}} Q_{i} T_{, i}\right\} \mathrm{d} t \tag{3.7}
\end{equation*}
$$

Since $\sigma(\cdot)$ is a closed process, we conclude from (3.7) and (iii) that

$$
\begin{equation*}
\left.\Gamma\{\sigma(\cdot)\}=\int_{-\infty}^{\infty} \frac{1}{T}\left\{S_{i j} \dot{E}_{i j}+H_{i} \dot{\dot{v}}_{, i}-P \dot{v}-\frac{1}{T} \rho_{0} \dot{T} e+\frac{1}{T} Q_{i} T_{, i}\right)\right\} \mathrm{d} t \tag{3.8}
\end{equation*}
$$

Let $\zeta(\cdot)=\{\boldsymbol{L}(\cdot), \varphi(\cdot), \boldsymbol{G}(\cdot), \vartheta(\cdot), \boldsymbol{g}(\cdot)\}$ be an infinitesimal closed process, and let

$$
\begin{array}{rlrl}
e^{*}(t) & =\delta \hat{e}\left(\zeta^{t}\right), & t_{i j}(t) & =\delta T_{i j}\left(\zeta^{t}\right), \\
g(t) & =\delta \widehat{P}\left(\zeta^{t}\right), & q_{i}(t)=\delta H_{i}\left(\zeta^{t}\right) \tag{3.9}\\
& =\delta \widehat{Q}_{i}\left(\zeta^{t}\right) &
\end{array}
$$

We define the infinitesimal entropy production $\Omega\{\zeta(\cdot)\}$ on $\zeta(\cdot)$ by (cf. [6])

$$
\begin{equation*}
\Omega\{\zeta(\cdot)\}=\frac{1}{T_{0}^{2}} \int_{-\infty}^{\infty}\left\{T_{0} t_{i j} \dot{e}_{i j}+T_{0} h_{i} \dot{\varphi}_{, i}-T_{0} g \dot{\varphi}-\rho_{0} e^{*} \dot{\vartheta}+q_{i} \vartheta_{, i}\right\} \mathrm{d} t \tag{3.10}
\end{equation*}
$$

We can prove that if the entropy production Γ is invariant under time-reversal, then the infinitesimal entropy production Ω is invariant under time-reversal. Following Gurtin [6] we call

$$
\boldsymbol{\Lambda}=\left(e_{i j}, \varphi_{, i}, \varphi, \vartheta\right)
$$

the generalized infinitesimal strain, and

$$
\boldsymbol{\Sigma}=\left(T_{0} t_{i j}, T_{0} h_{i},-T_{0} g,-\rho_{0} e^{*}\right)
$$

the generalized infinitesimal stress. The quantities $\boldsymbol{\Lambda}$ and $\boldsymbol{\Sigma}$ are both elements of $W=J^{*} \times V \times \mathbb{R} \times \mathbb{R}$. If we introduce the notation

$$
\boldsymbol{\Sigma} \cdot \dot{\boldsymbol{\Lambda}}=T_{0}\left(t_{i j} \dot{e}_{i j}+h_{i} \dot{\varphi}_{, i}-g \dot{\varphi}\right)-\rho_{0} e^{*} \dot{\vartheta}
$$

then relation (3.10) can be written in the form

$$
\begin{equation*}
\Omega\{\zeta(\cdot)\}=\frac{1}{T_{0}^{2}} \int_{-\infty}^{\infty}(\boldsymbol{\Sigma} \cdot \dot{\boldsymbol{\Lambda}}+\boldsymbol{q} \cdot \boldsymbol{g}) \mathrm{d} t \tag{3.11}
\end{equation*}
$$

We assume that there exist the continuous functions $\boldsymbol{M}:[0, \infty) \rightarrow L(W, W)$, $\boldsymbol{Y}:[0, \infty) \rightarrow L(V, W), \boldsymbol{Z}:[0, \infty) \rightarrow L(W, V), \boldsymbol{K}:[0, \infty) \rightarrow L(V, V)$, such
that given any infinitesimal closed process $\zeta(\cdot)=\{\boldsymbol{L}(\cdot), \varphi(\cdot), \boldsymbol{G}(\cdot), \vartheta(\cdot), \boldsymbol{g}(\cdot)\}$ we have

$$
\begin{align*}
& \boldsymbol{\Sigma}(t)=\delta \widehat{\boldsymbol{\Sigma}}\left(\zeta^{t}\right)=\int_{-\infty}^{t}\{\boldsymbol{M}(t-s)[\dot{\boldsymbol{\Lambda}}(s)]+\boldsymbol{Y}(t-s)[\boldsymbol{g}(s)]\} \mathrm{d} s \\
& \boldsymbol{q}(t)=\delta \widehat{\boldsymbol{Q}}\left(\zeta^{t}\right)=\int_{-\infty}^{t}\{\boldsymbol{Z}(t-s)[\dot{\boldsymbol{\Lambda}}(s)]+\boldsymbol{K}(t-s)[\boldsymbol{g}(s)]\} \mathrm{d} s \tag{3.12}
\end{align*}
$$

The dependence on \boldsymbol{L} only through $e_{i j}$ is a consequence of the principle of material frame-indifference and (iv).

THEOREM 1. A necessary and sufficient condition that the infinitesimal entropy production be invariant under time-reversal is that the following statements be true for every $s \geqslant 0$:
(a) the function \boldsymbol{M} is symmetric;
(b) the function \boldsymbol{K} is symmetric;
(c) $\boldsymbol{Y}(s)=-\boldsymbol{Z}^{\mathrm{T}}(s)+$ constant .

The proof of the theorem is identical to that of Theorem 3 from [6].
In what follows we assume that the infinitesimal entropy production is invariant under time-reversal. Equations (3.12) can be expressed as

$$
\begin{align*}
t_{i j}(t)= & \int_{-\infty}^{t}\left\{G_{i j m n}(t-s) \dot{e}_{m n}(s)+D_{i j m}(t-s) \dot{\varphi}_{, m}(s)\right. \\
& \left.+B_{i j}(t-s) \dot{\varphi}(s)-b_{i j}(t-s) \dot{\vartheta}(s)-L_{i j m}(t-s) \vartheta_{, m}(s)\right\} \mathrm{d} s \\
h_{i}(t)= & \int_{-\infty}^{t}\left\{D_{i m n}^{*}(t-s) \dot{e}_{m n}(s)+A_{i j}(t-s) \dot{\varphi}_{, j}(s)\right. \\
& \left.+D_{i}(t-s) \dot{\varphi}(s)-d_{i}(t-s) \dot{\vartheta}(s)-N_{i j}(t-s) \vartheta_{, j}(s)\right\} \mathrm{d} s, \\
g(t)= & \int_{-\infty}^{t}\left\{B_{i j}^{*}(t-s) \dot{e}_{i j}(s)+D_{i}^{*}(t-s) \dot{\varphi}_{, i}(s)-M(t-s) \dot{\varphi}(s)\right. \tag{3.13}\\
& \left.+m(t-s) \dot{\vartheta}(s)-M_{i}(t-s) \vartheta_{, j}(s)\right\} \mathrm{d} s \\
\rho_{0} e^{*}(t)= & \int_{-\infty}^{t}\left\{b_{i j}^{*}(t-s) \dot{e}_{i j}(s)+C_{i}^{*}(t-s) \dot{\varphi}_{, i}(s)+D(t-s) \dot{\varphi}(s)\right. \\
& \left.+E(t-s) \dot{\vartheta}(s)+T_{0} R_{i}(t-s) \vartheta_{, i}(s)\right\} \mathrm{d} s, \\
q_{i}(t)= & \int_{-\infty}^{t}\left\{L_{i m n}^{*}(t-s) \dot{e}_{m n}(s)+F_{i j}^{*}(t-s) \dot{\varphi}_{, j}(s)+M_{i}^{*}(t-s) \dot{\varphi}(s)\right. \\
& \left.+R_{i}^{*}(t-s) \dot{\vartheta}(s)+K_{i j}(t-s) \vartheta,, j(s)\right\} \mathrm{d} s .
\end{align*}
$$

Theorem 1 has the following immediate consequences.

COROLLARY 1. For every $s \geqslant 0$,

$$
\begin{array}{rlrl}
G_{i j m n}(s) & =G_{m n i j}(s), \quad D_{i m n}^{*}(s)=D_{m n i}^{*}(s), & & A_{i j}(s)=A_{j i}(s) \\
B_{i j}^{*}(s) & =-B_{i j}(s), \quad \quad D_{i}^{*}(s)=-D_{i}(s), & b_{i j}^{*}(s)=T_{0} b_{i j}(s) \\
C_{i}^{*}(s) & =T_{0} d_{i}(s), \quad D(s)=T_{0} m(s), & \tag{3.14}\\
L_{i m n}^{*}(s) & =T_{0} L_{m n i}(s)+\mathrm{constant}, & \\
F_{i j}^{*}(s) & =T_{0} N_{j i}(s)+\mathrm{constant}, \quad M_{i}^{*}(s)=T_{0} M_{i}(s)+\text { constant }, \\
R_{i}^{*}(s) & =T_{0} R_{i}(s)+\mathrm{constant}, \quad K_{i j}(s)=K_{j i}(s)
\end{array}
$$

The equilibrium conductivity tensor

$$
\boldsymbol{K}_{\infty}=\int_{0}^{\infty} \boldsymbol{K}(s) \mathrm{d} s
$$

if it exists, is symmetric. In what follows we assume that $\boldsymbol{L}_{\infty}, \boldsymbol{N}_{\infty}, \boldsymbol{M}_{\infty}, \boldsymbol{R}_{\infty}, \boldsymbol{L}_{\infty}^{*}$, $\boldsymbol{F}_{\infty}^{*}, \boldsymbol{M}_{\infty}^{*}$ and $\boldsymbol{R}_{\infty}^{*}$ are equal to zero. Then, following Gurtin [6], we can prove that

$$
\begin{align*}
L_{j m n}^{*}(s) & =T_{0} L_{m n j}(s), & & F_{i j}^{*}(s)=T_{0} N_{j i}(s) \tag{3.15}\\
M_{i}^{*}(s) & =T_{0} M_{i}(s), & & R_{i}^{*}(s)=T_{0} R_{i}(s)
\end{align*}
$$

for every $s \geqslant 0$.
We assume that $\hat{\eta}$ has a derivative at σ_{0}. We can show that for every infinitesimal process we have

$$
\begin{align*}
\rho_{0} \eta(t)= & \rho_{0} \delta \hat{\eta}\left(\zeta^{t}\right) \\
= & \int_{-\infty}^{t}\left\{b_{i j}(t-s) \dot{e}_{i j}(s)+d_{i}(t-s) \dot{\varphi}_{, i}(s)\right. \\
& \left.+m(t-s) \dot{\varphi}(s)+a(t-s) \dot{\vartheta}(s)+R_{i}(t-s) \vartheta_{, i}(s)\right\} \mathrm{d} s \tag{3.16}
\end{align*}
$$

for every $t \in \mathbb{R}$, where $T_{0} a(s)=E(s), s \geqslant 0$.
We conclude that, in the context of the linear theory, the constitutive equations consist of (3.16) and

$$
\begin{aligned}
t_{i j}(t)= & \int_{-\infty}^{t}\left\{G_{i j m n}(t-s) \dot{e}_{m n}(s)+D_{i j m}(t-s) \dot{\varphi}_{, m}(s)\right. \\
& \left.+B_{i j}(t-s) \dot{\varphi}(s)-b_{i j}(t-s) \dot{\vartheta}(s)-L_{i j m}(t-s) \vartheta_{, m}(s)\right\} \mathrm{d} s
\end{aligned}
$$

$$
\begin{align*}
h_{i}(t)= & \int_{-\infty}^{t}\left\{D_{m n i}(t-s) \dot{e}_{m n}(s)+A_{i j}(t-s) \dot{\varphi}_{, j}(s)+D_{i}(t-s) \dot{\varphi}(s)\right. \\
& \left.-d_{i}(t-s) \dot{\vartheta}(s)-N_{i j}(t-s) \vartheta_{, j}(s)\right\} \mathrm{d} s, \\
g(t)= & -\int_{-\infty}^{t}\left\{B_{i j}(t-s) \dot{e}_{i j}(s)+D_{i}(t-s) \dot{\varphi}_{, i}(s)+M(t-s) \dot{\varphi}(s)\right. \\
& \left.-m(t-s) \dot{\vartheta}(s)+M_{i}(t-s) \vartheta_{, j}(s)\right\} \mathrm{d} s, \tag{3.17}\\
\rho_{0} e^{*}(t)= & T_{0} \int_{-\infty}^{t}\left\{b_{i j}(t-s) \dot{e}_{i j}(s)+d_{i}(t-s) \dot{\varphi}_{, i}(s)+m(t-s) \dot{\varphi}(s)\right. \\
& \left.+a(t-s) \dot{\vartheta}(s)+R_{i}(t-s) \vartheta_{, i}(s)\right\} \mathrm{d} s, \\
q_{i}(t)= & \int_{-\infty}^{t}\left\{T_{0} L_{m n i}(t-s) \dot{e}_{m n}(s)+T_{0} N_{j i}(t-s) \dot{\varphi}_{, j}(s)\right. \\
& \left.+T_{0} M_{i}(t-s) \dot{\varphi}(s)+T_{0} R_{i}(t-s) \dot{\vartheta}(s)+K_{i j}(t-s) \vartheta_{, j}(s)\right\} \mathrm{d} s .
\end{align*}
$$

We note that (3.2) and (3.14) imply

$$
\begin{align*}
G_{i j m n}(s) & =G_{j i m n}(s)=G_{m n i j}(s), & & D_{i j m}(s)=D_{j i m}(s), \\
b_{i j}(s) & =b_{j i}(s), & & L_{i j m}(s)=L_{j i m}(s), \tag{3.18}\\
A_{i j}(s) & =A_{j i}(s), & & K_{i j}(s)=K_{j i}(s),
\end{align*}
$$

for every $s \geqslant 0$.
In what follows we consider the initial history conditions

$$
\begin{equation*}
\boldsymbol{u}(\boldsymbol{X}, t)=0, \quad \varphi(\boldsymbol{X}, t)=0, \quad \vartheta(\boldsymbol{X}, t)=0, \quad(\boldsymbol{X}, t) \in B \times(-\infty, 0) . \tag{3.19}
\end{equation*}
$$

In the relations (3.17) the functions $t_{i j}, h_{i}, g$ and e^{*} are independent of the history of the temperature gradient if and only if the heat flux is independent of the histories of $e_{i j}, \varphi, \varphi_{, j}$ and ϑ. In the case of centro-symmetric materials the constitutive moduli $D_{i j r}, L_{i j m}, D_{i}, d_{i}, M_{i}$ and R_{i} are equal to zero. Coleman and Gurtin [10] have shown that, under the assumption of fading memory, the equilibrium heat flux vanishes when the temperature gradient vanishes. In what follows we consider constitutive equations which are consistent with this result and restrict our attention to homogeneous and isotropic materials. Thus, we have

$$
\begin{aligned}
G_{i j r s}(\boldsymbol{X}, t) & =\lambda(t) \delta_{i j} \delta_{r s}+\mu(t)\left(\delta_{i r} \delta_{j s}+\delta_{i s} \delta_{j r}\right), \\
B_{i j}(\boldsymbol{X}, t) & =b(t) \delta_{i j}, \quad b_{i j}(\boldsymbol{X}, t)=\beta(t) \delta_{i j},
\end{aligned}
$$

$$
\begin{array}{cll}
D_{i j r}(\boldsymbol{X}, t)=0, & L_{i j r}(\boldsymbol{X}, t)=0, & D_{i}(\boldsymbol{X}, t)=0 \\
N_{i j}(\boldsymbol{X}, t)=0, & d_{i}(\boldsymbol{X}, t)=0, & M_{i}(\boldsymbol{X}, t)=0 \\
R_{i}(\boldsymbol{X}, t)=0, & A_{i j}(\boldsymbol{X}, t)=\alpha(t) \delta_{i j}, & K_{i j}(\boldsymbol{X}, t)=k(t) \delta_{i j} \tag{3.20}\\
(\boldsymbol{X}, t) \in B \times(-\infty, \infty), &
\end{array}
$$

where $\delta_{i j}$ is the Kronecker delta. We assume that the relaxation functions λ, μ, β, b, α and k are of class C^{2} on $(-\infty, \infty)$. With the help of (3.19) the constitutive equations become

$$
\begin{align*}
t_{i j}(\boldsymbol{X}, t)= & G_{i j m n}(0) e_{m n}(\boldsymbol{X}, t)+B_{i j}(0) \varphi(\boldsymbol{X}, t)-b_{i j}(0) \vartheta(\boldsymbol{X}, t) \\
& +\int_{0}^{t}\left\{\dot{G}_{i j m n}(t-s) e_{m n}(\boldsymbol{X}, s)+\dot{B}_{i j}(t-s) \varphi(\boldsymbol{X}, s)\right. \\
& \left.-\dot{b}_{i j}(t-s) \vartheta(\boldsymbol{X}, s)\right\} \mathrm{d} s \\
h_{i}(\boldsymbol{X}, t)= & A_{i j}(0) \varphi_{, j}(\boldsymbol{X}, t)+\int_{0}^{t} \dot{A}_{i j}(t-s) \varphi_{, j}(\boldsymbol{X}, s) \mathrm{d} s, \\
g(\boldsymbol{X}, t)= & -B_{i j}(0) e_{i j}(\boldsymbol{X}, t)-M(0) \varphi(\boldsymbol{X}, t)+m(0) \vartheta(\boldsymbol{X}, t) \\
& +\int_{0}^{t}\left\{\dot{m}(t-s) \vartheta(\boldsymbol{X}, s)-\dot{B}_{i j}(t-s) e_{i j}(\boldsymbol{X}, s)\right. \\
& -\dot{M}(t-s) \varphi(\boldsymbol{X}, s)\} \mathrm{d} s, \tag{3.21}\\
\rho_{0} e^{*}(\boldsymbol{X}, t)= & \rho_{0} T_{0} \eta(\boldsymbol{X}, t) \\
= & T_{0}\left\{b_{i j}(0) e_{i j}(\boldsymbol{X}, t)+m(0) \varphi(\boldsymbol{X}, t)+a(0) \vartheta(\boldsymbol{X}, t)\right. \\
& +\int_{0}^{t}\left[\dot{b}_{i j}(t-s) e_{i j}(\boldsymbol{X}, s)+\dot{m}(t-s) \varphi(\boldsymbol{X}, s)\right. \\
& +\dot{a}(t-s) \vartheta(\boldsymbol{X}, s)] \mathrm{d} s\} \\
q_{i}(\boldsymbol{X}, t)= & \left.\int_{0}^{t} K_{i j}(t-s) \vartheta,, \boldsymbol{X}, s\right) \mathrm{d} s
\end{align*}
$$

where the constitutive moduli have the form (3.20) and we have used the notation $G_{i j r s}(0)=G_{i j r s}(X, 0)$, etc.

We assume that

$$
\begin{array}{llll}
\lambda(0)+2 \mu(0)>0, & \mu(0)>0, & \alpha(0)>0, & k(0)>0, \\
a(0)>0, & \dot{\lambda}(0)+2 \dot{\mu}(0)<0, & \dot{\mu}(0)<0, & \dot{\alpha}(0)<0 . \tag{3.22}
\end{array}
$$

The restrictions concerning $\lambda, \mu, \dot{\lambda}, \dot{\mu}, a$ and k have been extensively studied in the classical thermoviscoelasticity [11-14]. Let us show that the restrictions on α and
$\dot{\alpha}$ are compatible with the second law of thermodynamics. In the linear theory, the second law of thermodynamics may be written in the form

$$
\begin{equation*}
\int_{0}^{t}\left(\rho_{0} \dot{\eta} \vartheta+t_{i j} \dot{e}_{i j}+h_{i} \dot{\varphi}_{, i}-g \dot{\varphi}+\frac{1}{T_{0}} q_{i} \vartheta_{, i}\right) \mathrm{d} \tau \geqslant 0 \tag{3.23}
\end{equation*}
$$

for every $t \geqslant 0$. We restrict our attention only to porosity effect. In this case, the relation (3.23) reduces to the following dissipation inequality

$$
\begin{equation*}
U(X, t) \geqslant 0, \quad(X, t) \in B \times[0, \infty) \tag{3.24}
\end{equation*}
$$

where the function U is defined by

$$
\begin{align*}
U(\boldsymbol{X}, t) & =\int_{0}^{t}\left[h_{i}(\boldsymbol{X}, \tau) \dot{\varphi}_{, i}(\boldsymbol{X}, \tau)-g(\boldsymbol{X}, \tau) \dot{\varphi}(\boldsymbol{X}, \tau)\right] \mathrm{d} \tau \\
(\boldsymbol{X}, t) & \in B \times[0, \infty) \tag{3.25}
\end{align*}
$$

Clearly, we have

$$
\begin{align*}
U(t)= & h_{i}(t) \varphi_{, i}(t)-g(t) \varphi(t) \\
& +\int_{0}^{t}\left[\dot{g}(\tau) \varphi(\tau)-\dot{h}_{i}(\tau) \varphi_{, i}(\tau)\right] \mathrm{d} \tau, \quad t \geqslant 0 \tag{3.26}
\end{align*}
$$

where, for convenience, we have suppressed the argument \boldsymbol{X}. In view of the constitutive equations (3.21) and the initial conditions, we find that

$$
\begin{align*}
\dot{h}_{i}(t) & =A_{i j}(0) \dot{\varphi}_{, j}(t)+\dot{A}_{i j}(0) \varphi_{, j}(t)+\int_{0}^{t} \ddot{A}_{i j}(t-s) \varphi_{, j}(s) \mathrm{d} s \\
\dot{g}(t) & =-M(0) \dot{\varphi}(t)-\dot{M}(0) \varphi(t)-\int_{0}^{t} \ddot{M}(t-s) \varphi(s) \mathrm{d} s \tag{3.27}
\end{align*}
$$

Thus, from (3.21), (3.27) and (3.26) we obtain

$$
\begin{align*}
U(t)=\frac{1}{2} & {\left[A_{i j}(0) \varphi_{, j}(t) \varphi_{, i}(t)+M(0) \varphi^{2}(t)\right] } \\
& -\int_{0}^{t}\left[\dot{A}_{i j}(0) \varphi_{, j}(s) \varphi_{, i}(s)+\dot{M}(0) \varphi^{2}(s)\right] \mathrm{d} s \\
& +\varphi_{, i}(t) \int_{0}^{t} \dot{A}_{i j}(t-s) \varphi_{, j}(s) \mathrm{d} s+\varphi(t) \int_{0}^{t} \dot{M}(t-s) \varphi(s) \mathrm{d} s \\
& -\int_{0}^{t}\left\{\varphi_{, i}(s) \int_{0}^{s} \ddot{A}_{i j}(s-\tau) \varphi_{, j}(\tau) \mathrm{d} \tau\right. \\
& \left.+\varphi(s) \int_{0}^{s} \ddot{M}(s-\tau) \varphi(\tau) \mathrm{d} \tau\right\} \mathrm{d} s, \quad t \geqslant 0 . \tag{3.28}
\end{align*}
$$

Now we use the following identities [15]

$$
\begin{aligned}
& 2 \varphi(t) \int_{0}^{t} \dot{M}(t-s) \varphi(s) \mathrm{d} s \\
& =\int_{0}^{t} \dot{M}(t-s) \varphi^{2}(s) \mathrm{d} s \\
& \quad-\int_{0}^{t} \dot{M}(t-s)[\varphi(t)-\varphi(s)]^{2} \mathrm{~d} s+[M(t)-M(0)] \varphi^{2}(t), \\
& 2 \varphi_{, i}(t) \int_{0}^{t} \dot{A}_{i j}(t-s) \varphi_{, j}(s) \mathrm{d} s \\
& =\int_{0}^{t} \dot{A}_{i j}(t-s) \varphi_{, i}(s) \varphi_{, j}(s) \mathrm{d} s \\
& \quad-\int_{0}^{t} \dot{A}_{i j}(t-s)\left[\varphi_{, j}(t)-\varphi_{, j}(s)\right] \\
& \quad \quad \times\left[\varphi_{, i}(t)-\varphi_{, i}(s)\right] \mathrm{d} s+\left[A_{i j}(t)-A_{i j}(0)\right] \varphi_{, j}(t) \varphi_{, i}(t), \\
& 2 \int_{0}^{t} \int_{0}^{s} \ddot{A}_{i j}(s-\tau) \varphi_{, i}(s) \varphi_{, j}(\tau) \mathrm{d} s \mathrm{~d} \tau \\
& =\int_{0}^{t} \int_{0}^{t} \ddot{A}_{i j}(|s-\tau|) \varphi_{, i}(s) \varphi_{, j}(\tau) \mathrm{d} s \mathrm{~d} \tau \\
& =\int_{0}^{t} \int_{0}^{t} \ddot{A}_{i j}(|s-\tau|) \varphi_{, i}(s) \varphi_{, j}(s) \mathrm{d} s \mathrm{~d} \tau \\
& \quad \quad-\frac{1}{2} \int_{0}^{t} \int_{0}^{t} \ddot{A_{i j}}(|s-\tau|)\left[\varphi_{, i}(s)-\varphi_{, i}(\tau)\right]\left[\varphi_{, j}(s)-\varphi_{, j}(\tau)\right] \mathrm{d} s \mathrm{~d} \tau, \\
& 2 \int_{0}^{t} \int_{0}^{s} \ddot{M}(s-\tau) \varphi(s) \varphi(\tau) \mathrm{d} s \mathrm{~d} \tau \\
& =\int_{0}^{t} \int_{0}^{t} \ddot{M}(|s-\tau|) \varphi(s) \varphi(\tau) \mathrm{d} s \mathrm{~d} \tau \\
& =\int_{0}^{t} \int_{0}^{t} \ddot{M}(|s-\tau|) \varphi^{2}(s) \mathrm{d} s \mathrm{~d} \tau \\
& \quad-\frac{1}{2} \int_{0}^{t} \int_{0}^{t} \ddot{M}(|s-\tau|)[\varphi(s)-\varphi(\tau)]^{2} \mathrm{~d} s \mathrm{~d} \tau, \\
& \int_{0}^{t} \ddot{M}(|s-\tau|) \mathrm{d} \tau=\dot{M}(s)+\dot{M}(t-s)-2 \dot{M}(0) .
\end{aligned}
$$

It follows from (3.28) and (3.29) that

$$
U(t)=\frac{1}{2}\left[A_{i j}(t) \varphi_{, j}(t) \varphi_{, i}(t)+M(t) \varphi^{2}(t)\right]
$$

$$
\begin{align*}
& -\frac{1}{2} \int_{0}^{t}\left[\dot{A}_{i j}(s) \varphi_{, j}(s) \varphi_{, i}(s)+\dot{M}(s) \varphi^{2}(s)\right] \mathrm{d} s \\
& -\frac{1}{2} \int_{0}^{t}\left\{\dot{A}_{i j}(t-s)\left[\varphi_{, i}(t)-\varphi_{, i}(s)\right]\left[\varphi_{, j}(t)-\varphi_{, j}(s)\right]\right. \\
& \left.+\dot{M}(t-s)[\varphi(t)-\varphi(s)]^{2}\right\} \mathrm{d} s \\
& +\frac{1}{4} \int_{0}^{t} \int_{0}^{t}\left\{\ddot{A}_{i j}(|s-\tau|)\left[\varphi_{, i}(s)-\varphi_{, i}(\tau)\right]\left[\varphi_{, j}(s)-\varphi_{, j}(\tau)\right]\right. \\
& \left.+\ddot{M}(|s-\tau|)[\varphi(s)-\varphi(\tau)]^{2}\right\} \mathrm{d} s \mathrm{~d} \tau, \quad t \geqslant 0 \tag{3.30}
\end{align*}
$$

In the case of isotropic bodies the relation (3.30) reduces to

$$
\begin{align*}
U(t)= & \frac{1}{2}\left[\alpha(t) \varphi_{, i}(t) \varphi_{, i}(t)+M(t) \varphi^{2}(t)\right] \\
& -\frac{1}{2} \int_{0}^{t}\left[\dot{\alpha}(s) \varphi_{, i}(s) \varphi_{, i}(s)+\dot{M}(s) \varphi^{2}(s)\right] \mathrm{d} s \\
& -\frac{1}{2} \int_{0}^{t}\left\{\dot{\alpha}(t-s)\left[\varphi_{, i}(t)-\varphi_{, i}(s)\right]\left[\varphi_{, i}(t)-\varphi_{, i}(s)\right]\right. \\
& \left.+\dot{M}(t-s)[\varphi(t)-\varphi(s)]^{2}\right\} \mathrm{d} s \mathrm{~d} \tau \\
& +\frac{1}{4} \int_{0}^{t} \int_{0}^{t}\left\{\ddot{\alpha}(|s-\tau|)\left[\varphi_{, i}(s)-\varphi_{, i}(\tau)\right]\left[\varphi_{, i}(s)-\varphi_{, i}(\tau)\right]\right. \\
& \left.+\ddot{M}(|s-\tau|)[\varphi(s)-\varphi(\tau)]^{2}\right\} \mathrm{d} s \mathrm{~d} \tau \tag{3.31}
\end{align*}
$$

From (3.31) we conclude that the dissipation inequality (3.24) is satisfied if $\alpha \geqslant 0$, $M \geqslant 0, \dot{\alpha} \leqslant 0, \dot{M} \leqslant 0, \ddot{\alpha} \geqslant 0, \ddot{M} \geqslant 0$. Thus, our assumptions concerning the relaxation function α are compatible with the second law of thermodynamics. For convenience, in what follows we shall denote the material coordinates by $\left(x_{1}, x_{2}, x_{3}\right)$.

4. Singular Surfaces

We consider an arbitrary open region Π in the continuum, bounded by a surface $\partial \Pi$, at time t, and we suppose that ω is the corresponding region in the domain occupied by the undeformed body. We note that in the framework of the linear theory the materials with voids behaves according to the global balance law of linear momentum

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} t} \int_{\omega} \rho_{0} v_{i} \mathrm{~d} v=\int_{\omega} \rho_{0} b_{i} \mathrm{~d} v+\int_{\partial \omega} t_{j i} n_{j} \mathrm{~d} a \tag{4.1}
\end{equation*}
$$

the law of balance of equilibrated force

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} t} \int_{\omega} \rho_{0} \kappa \dot{\varphi} \mathrm{~d} v=\int_{\omega}\left(\rho_{0} l+g\right) \mathrm{d} v+\int_{\partial \omega} h_{i} n_{i} \mathrm{~d} a \tag{4.2}
\end{equation*}
$$

and the law of balance energy

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} t} \int_{\omega} \rho_{0} e^{*} \mathrm{~d} v=\int_{\omega} \rho_{0} s \mathrm{~d} v+\int_{\partial \omega} q_{i} n_{i} \mathrm{~d} a . \tag{4.3}
\end{equation*}
$$

Here \boldsymbol{n} is the outward unit normal to $\partial \omega$ and $v_{i}=\dot{u}_{i}$.
Let S be a moving surface defined by the equations

$$
x_{i}=x_{i}\left(\theta^{1}, \theta^{2}, t\right),
$$

where θ^{1}, θ^{2} are curvilinear coordinates on the surface. We suppose that the above functions are continuously differentiable with respect to their arguments, and that S is smooth in the sense that the matrix $\left(\partial x_{i} / \partial \theta^{\alpha}\right)$ has rank two. The metric tensor of the surface is denoted by $a_{\alpha \beta}$. In what follows we denote by n_{i} the unit normal to S. We note that [16]

$$
\begin{align*}
n_{i} n_{i} & =1, \quad n_{i} x_{i ; \alpha}=0, \quad x_{i ; \alpha \beta}=b_{\alpha \beta} n_{i}, \tag{4.4}\\
n_{i ; \alpha} & =-a^{\lambda \rho} b_{\rho \alpha} x_{i ; \lambda},
\end{align*}
$$

where indices followed by a semicolon represent covariant partial differentiation based on the metric of $S, b_{\alpha \beta}$ is the second fundamental form of the surface and $a^{\alpha \beta}$ are the elements of the inverse of matrix $\left(a_{\alpha \beta}\right)$. We have

$$
\begin{equation*}
a^{\alpha \beta} x_{i ; \alpha} x_{j ; \beta}=\delta_{i j}-n_{i} n_{j}, \quad H=\frac{1}{2} a^{\alpha \beta} b_{\alpha \beta}, \tag{4.5}
\end{equation*}
$$

where H is the mean curvature of the surface.
Let f be a function on $B \times(-\infty, \infty)$. We assume that f is a continuously differentiable function on each side of the moving surface S. We denote by $[f]$ the jump of the function f across S. The discontinuities in the first and second derivative of f satisfy the relations [17]:

$$
\begin{align*}
{\left[f_{i}\right]=} & a^{\alpha \beta} A_{; \alpha} x_{i ; \beta}+B n_{i}, \quad[\dot{f}]=\frac{\delta A}{\delta t}-V B, \\
{\left[f_{, i j}\right]=} & a^{\alpha \beta}\left(B_{; \alpha}+a^{\lambda \rho} b_{\alpha \lambda} A_{; \rho}\right)\left(n_{i} x_{j ; \beta}+n_{j} x_{i ; \beta}\right) \\
& +a^{\alpha \beta} a^{v \rho}\left(A_{; \alpha \nu}-b_{\alpha \nu} B\right) x_{i ; \beta} x_{j ; \rho}+C n_{i} n_{j}, \tag{4.6}\\
{\left[\dot{f}_{i,}\right]=} & a^{\alpha \beta}\left(\frac{\delta A}{\delta t}-V B\right)_{; \alpha} x_{j ; \beta}+\left(\frac{\delta B}{\delta t}+a^{\alpha \beta} A_{; \alpha} V_{; \beta}-C V\right) n_{i}, \\
{[\ddot{f}]=} & \frac{\delta}{\delta t}\left(\frac{\delta A}{\delta t}-V B\right)-V\left(\frac{\delta B}{\delta t}+a^{\alpha \beta} A_{; \alpha} V_{; \beta}-C V\right),
\end{align*}
$$

where

$$
\frac{\delta}{\delta t}=\frac{\partial}{\partial t}+V n_{i} \frac{\partial}{\partial x_{i}}
$$

is the convected derivative for an observer moving with the surface, V is the speed of propagation of the surface, and

$$
\begin{equation*}
A=[f], \quad B=\left[f_{, i} n_{i}\right], \quad C=\left[f_{, i j} n_{i} n_{j}\right] \tag{4.7}
\end{equation*}
$$

In what follows we assume that the body loads b_{i}, l and s are continuous on $B \times(-\infty, \infty)$. Following [18], by a wave of order 1 we mean a solution $\left(u_{i}, \varphi, \theta\right)$ of equations (4.1)-(4.3), (3.21), (2.8), with the properties: (1) the functions u_{i}, φ and θ are continuous on $B \times(-\infty, \infty)$; (2) the first order derivative of the five-dimensional vector $\left(u_{i}, \varphi, \theta\right)$ have jump discontinuities across S, but are continuous elsewhere. We say also that S is a singular surface of order 1 and we shall refer to it as a wave surface of order 1. The balance laws (4.1)-(4.3) have the form

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \int_{\omega} \rho_{0} F \mathrm{~d} v=\int_{\omega} Q \mathrm{~d} v+\int_{\partial \omega} G_{i} n_{i} \mathrm{~d} a
$$

which, at singular surface S, is equivalent to the condition [17]

$$
\begin{equation*}
-V\left[\rho_{0} F\right]=\left[G_{i}\right] n_{i} \tag{4.8}
\end{equation*}
$$

If we apply (4.8) to the global balance laws (4.1)-(4.3) then we obtain

$$
\begin{align*}
\rho_{0} V\left[\dot{u}_{i}\right]+\left[t_{j i}\right] n_{j} & =0, \quad \rho_{0} \kappa V[\dot{\varphi}]+\left[h_{i}\right] n_{i}=0, \tag{4.9}\\
\rho_{0} V\left[e^{*}\right]+\left[q_{i}\right] n_{i} & =0 .
\end{align*}
$$

It follows from (4.6) that

$$
\begin{array}{lll}
{\left[u_{i, j}\right]=\xi_{i} n_{j},} & {\left[\varphi_{, i}\right]=\zeta n_{i},} & {\left[\vartheta_{, i}\right]=\gamma n_{i}} \tag{4.10}\\
{\left[\dot{u}_{i}\right]=-V \xi_{i},} & {[\dot{\varphi}]=-V \zeta,} & {[\dot{\vartheta}]=-V \gamma}
\end{array}
$$

where

$$
\begin{equation*}
\xi_{i}=\left[\frac{\partial u_{i}}{\partial n}\right], \quad \zeta=\left[\frac{\partial \varphi}{\partial n}\right], \quad \gamma=\left[\frac{\partial \vartheta}{\partial n}\right] \tag{4.11}
\end{equation*}
$$

We denote by n the distance measured along the normal to the wave surface. In what follows we shall use the following result established by Fisher and Gurtin [13].

LEMMA 1. Let u and v be functions on $B \times(-\infty, \infty)$ with the following properties: (1) u is continuous; (2) v is continuous everywhere except for a possible jump discontinuity across S; (3) v is bounded on every compact subset of $B \times(-\infty, \infty)$. Then the function

$$
w(\boldsymbol{x}, t)=\int_{0}^{t} u(\boldsymbol{x}, t-s) v(\boldsymbol{x}, s) \mathrm{d} s
$$

is continuous on $B \times(-\infty, \infty)$.

In view of Lemma 1, from (3.21), (2.8) and (4.10) we obtain

$$
\begin{array}{ll}
{\left[t_{i j}\right]=G_{i j r s}(0) \xi_{r} n_{s},} & {\left[h_{i}\right]=A_{i j}(0) \zeta n_{j},} \\
{[g]=-B_{i j}(0) \xi_{i} n_{j},} & {\left[\rho_{0} e^{*}\right]=T_{0} b_{i j}(0) \xi_{i} n_{j},} \tag{4.12}
\end{array} \quad\left[q_{i}\right]=0 .
$$

With the help of (4.10) and (4.12), conditions (4.9) become

$$
\begin{align*}
& \left(G_{i j r s}(0) n_{s} n_{j}-\rho_{0} V^{2} \delta_{i r}\right) \xi_{r}=0, \tag{4.13}\\
& \left(A_{i j}(0) n_{i} n_{j}-\rho_{0} \kappa V^{2}\right) \zeta=0, \tag{4.14}\\
& \beta(0) \xi_{i} n_{i}=0 . \tag{4.15}
\end{align*}
$$

The jumps ξ_{i}, ζ and γ cannot all be zero. If $\beta(0)=0$ then equation (4.15) is identical satisfied. Equations (4.13) admit a non trivial solution for ξ_{i} if and only if

$$
\operatorname{det}\left(G_{i j r s}(0) n_{j} n_{s}-\rho_{0} V^{2} \delta_{i r}\right)=0 .
$$

Taking into account (3.20) this equation reduces to

$$
\left(c_{1}^{2}-V^{2}\right)\left(c_{2}^{2}-V^{2}\right)^{2}=0,
$$

where

$$
\begin{equation*}
c_{1}=\left[\frac{\lambda(0)+2 \mu(0)}{\rho_{0}}\right]^{1 / 2}, \quad c_{2}=\left[\frac{\mu(0)}{\rho_{0}}\right]^{1 / 2} . \tag{4.16}
\end{equation*}
$$

If $V=c_{1}$ the wave is longitudinal $\left(\xi_{i}=\xi n_{i}\right)$. When $V=c_{2}$ we obtain transverse waves ($\xi_{i} n_{i}=0$).

If $\zeta \neq 0$, the wave is a wave of compaction (or distension). The possible speed of propagation of this wave is $V=c_{3}$ where

$$
\begin{equation*}
c_{3}=\left[\frac{\alpha(0)}{\left(\rho_{0} \kappa\right)}\right]^{1 / 2} . \tag{4.17}
\end{equation*}
$$

We now assume that $\beta(0) \neq 0$. Then from (4.15) we obtain $\xi_{i} n_{i}=0$ so that in this case there are two type of singular surfaces of order 1 : transverse waves and waves of compaction. We remark that the transverse mechanical waves are not coupled with compaction waves or thermal waves.

5. The Growth of Waves

The local forms of the balance laws (4.1)-(4.3) are

$$
\begin{align*}
t_{j i, j}+\rho_{0} b_{i} & =\rho \ddot{u}_{i}, \tag{5.1}\\
h_{i, i}+g+\rho_{0} l & =\rho_{0} \kappa \ddot{\varphi}, \tag{5.2}\\
q_{i, i}+\rho_{0} s & =\rho_{0} \dot{e}^{*}, \tag{5.3}
\end{align*}
$$

respectively. Using the fact that V is constant for all waves, from (4.6) we have

$$
\begin{align*}
& {\left[u_{s, i j}\right]=a^{\alpha \beta} \xi_{s ; \alpha}\left(n_{i} x_{j ; \beta}+n_{j} x_{i ; \beta}\right)-a^{\alpha \beta} a^{v \rho} b_{\alpha \nu} \xi_{s} x_{i ; \beta} x_{j ; \rho}+\mu_{s} n_{i} n_{j},} \\
& {\left[\dot{u}_{i, j}\right]=\left(-V \mu_{i}+\frac{\delta \xi_{i}}{\delta t}\right) n_{j}-V a^{\alpha \beta} \xi_{i ; \alpha} x_{j ; \beta},} \tag{5.4}\\
& {\left[\ddot{u}_{i}\right]=V^{2} \mu_{i}-2 V \frac{\delta \xi_{i}}{\delta t},}
\end{align*}
$$

where $\mu_{i}=\left[u_{i, r s} n_{r} n_{s}\right]$. It follows from (5.1) that

$$
\begin{equation*}
\left[t_{j i, j}\right]=\rho_{0}\left[\ddot{u}_{i}\right] . \tag{5.5}
\end{equation*}
$$

From (4.6) we get

$$
\begin{align*}
V\left[t_{j i, j}\right] & =V\left[t_{r i, j} n_{j}\right] n_{r}+V a^{\alpha \beta}\left[t_{j i}\right]_{; \alpha} x_{j ; \beta} \\
& =-\left[\dot{t}_{j i}\right] n_{j}+n_{j} \frac{\delta}{\delta t}\left[t_{j i}\right]+V a^{\alpha \beta}\left[t_{j i}\right]_{; \alpha} x_{j ; \beta} . \tag{5.6}
\end{align*}
$$

When the constitutive relations for $t_{i j}$ is differentiated with respect to t and jumps are taken across S, we obtain

$$
\begin{align*}
{\left[\dot{t}_{j i}\right]=} & -V G_{i j r s}(0) \mu_{r} n_{s}-V B_{i j}(0) \zeta+V \gamma b_{i j}(0) \\
& +G_{i j r s}(0) n_{s} \frac{\delta \xi_{r}}{\delta t}-V G_{i j r s}(0) a^{\alpha \beta} \xi_{r ; \alpha} \alpha_{s ; \beta}+G_{i j r s}^{(1)}(0) \xi_{r} n_{s} . \tag{5.7}
\end{align*}
$$

Here we have used the notation $\boldsymbol{G}^{(1)}=\dot{\boldsymbol{G}}$.
With the aid of equations (5.4), (5.6) and (5.7), equation (5.5) may be written as

$$
\begin{align*}
V & \left\{G_{i j r s}(0) n_{j} n_{r}-\rho_{0} V^{2} \delta_{i s}\right\} \mu_{s}+V B_{i j}(0) n_{j} \zeta-V \gamma b_{i j}(0) n_{j} \\
& \quad-G_{i j r s}(0) n_{s} n_{j} \frac{\delta \xi_{r}}{\delta t}+G_{i j r s}(0) n_{j} \frac{\delta}{\delta t}\left(\xi_{r} n_{s}\right)+2 \rho_{0} V^{2} \frac{\delta \xi_{i}}{\delta t} \\
& +V G_{i j r s}(0) a^{\alpha \beta}\left(\xi_{r} n_{s}\right)_{; \alpha} x_{j ; \beta}+V G_{i j r s}(0) n_{j} a^{\alpha \beta} \xi_{r ; \alpha} x_{s ; \beta} \\
& -G_{i j r s}^{(1)}(0) \xi_{r} n_{s} n_{j}=0 . \tag{5.8}
\end{align*}
$$

We note that

$$
\begin{equation*}
a^{\alpha \beta} \xi_{i ; \alpha} x_{i ; \beta}=a^{\alpha \beta}\left(x_{i ; \beta} \xi_{i}\right)_{; \alpha}-2 H n_{i} \xi_{i}, \quad \frac{\delta n_{i}}{\delta t}=0 \tag{5.9}
\end{equation*}
$$

With the help of (3.20), (4.4), (4.5) and (5.9), equations (5.8) reduce to

$$
\begin{align*}
& V\left\{[\lambda(0)+\mu(0)] n_{i} n_{r}+\mu(0) \delta_{i r}-\rho_{0} V^{2} \delta_{i r}\right\} \mu_{r}+2 \rho_{0} V^{2} \frac{\delta \xi_{i}}{\delta t} \\
& \quad+V b(0) n_{i} \zeta-V \beta(0) n_{i} \gamma+V[\lambda(0)+\mu(0)]\left\{a^{\alpha \beta} n_{i}\left(x_{r ; \beta} \xi_{r}\right)_{; \alpha}\right. \\
& \left.\quad+a^{\alpha \beta}\left(\xi_{r} n_{r}\right)_{; \alpha} x_{i ; \beta}-2 H \xi_{r} n_{r} n_{i}\right\}-2 H V \mu(0) \xi_{i} \\
& \quad-\left[\lambda^{(1)}(0)+\mu^{(1)}(0)\right] \xi_{r} n_{r} n_{i}-\mu^{(1)}(0) \xi_{i}=0 . \tag{5.10}
\end{align*}
$$

We denote $\xi=\xi_{i} n_{i}$. If we multiply (5.10) by n_{i} and sum on i, we obtain

$$
\begin{align*}
& V\left\{\lambda(0)+2 \mu(0)-\rho_{0} V^{2}\right\} \mu_{s} n_{s}+V \zeta b(0)+V \gamma \beta(0)+2 \rho_{0} V^{2} \frac{\delta \xi}{\delta t} \\
& \quad+V[\lambda(0)+\mu(0)] a^{\alpha \beta}\left(x_{r ; \beta} \xi_{r}\right)_{; \alpha}-2 V[\lambda(0)+2 \mu(0)] H \xi \\
& \quad-\left[\lambda^{(1)}(0)+2 \mu^{(1)}(0)\right] \xi=0 \tag{5.11}
\end{align*}
$$

In the case of longitudinal waves, (5.11) yields the growth equation

$$
\begin{equation*}
\frac{1}{c_{1}} \frac{\delta \xi}{\delta t}=\frac{\mathrm{d} \xi}{\mathrm{~d} n}=\xi\left(H-J_{1}\right) \tag{5.12}
\end{equation*}
$$

where we have used the notation

$$
\begin{equation*}
J_{1}=-\left[\lambda^{(1)}(0)+2 \mu^{(1)}(0)\right]\left(2 \rho_{0} c_{1}^{3}\right)^{-1} \tag{5.13}
\end{equation*}
$$

If, at some instant $t=t_{0}$, the mean and Gaussian curvatures of surfaces are H_{0} and K_{0}, respectively, then at a subsequent time t,

$$
\begin{equation*}
H=\frac{H_{0}-n K_{0}}{1-2 n H_{0}+n^{2} K_{0}} \tag{5.14}
\end{equation*}
$$

and (5.12) may be integrated to give

$$
\begin{equation*}
\xi=\xi_{0}\left(1-2 n H_{0}+n^{2} K_{0}\right)^{-1 / 2} \exp \left(-n J_{1}\right) \tag{5.15}
\end{equation*}
$$

where ξ_{0} is the strength of the wave at time $t=t_{0}$.
The speed of propagation of irrotational waves is c_{2} and for these waves we have $\xi_{i} n_{i}=0$. In this case, assuming that $c_{2} \neq c_{3}$, equation (5.11) reduces to

$$
[\lambda(0)+\mu(0)]\left[a^{\alpha \beta}\left(x_{r ; \beta} \xi_{r}\right)_{; \alpha}+\mu_{s} n_{s}\right]+\beta(0) \gamma=0
$$

Thus, from (5.10) we obtain

$$
\begin{equation*}
\frac{1}{c_{2}} \frac{\delta \xi_{i}}{\delta t}=\frac{\delta \xi_{i}}{\mathrm{~d} n}=\left(H-J_{2}\right) \xi_{i} \tag{5.16}
\end{equation*}
$$

where

$$
\begin{equation*}
J_{2}=-\mu^{(1)}(0)\left(2 \rho_{0} c_{2}^{3}\right)^{-1} \tag{5.17}
\end{equation*}
$$

As before, we obtain

$$
\begin{equation*}
\xi_{i}=\xi_{i}^{0}\left(1-2 n H_{0}+n^{2} K_{0}\right)^{-1 / 2} \exp \left(-n J_{2}\right) \tag{5.18}
\end{equation*}
$$

where $\xi_{i}^{0}=\xi_{i}\left(t_{0}\right)$.
In the case of a wave of compaction we have $V=c_{3}$. If we assume that $c_{3} \neq c_{1}$ also $c_{3} \neq c_{2}$ then from (5.10) we obtain

$$
\begin{equation*}
\left\{[\lambda(0)+\mu(0)] n_{i} n_{s}+\mu(0) \delta_{i s}-\rho_{0} s_{3}^{2} \delta_{i s}\right\} \mu_{s}=-b(0) n_{i} \zeta+\beta(0) n_{i} \gamma \tag{5.19}
\end{equation*}
$$

This relation implies that

$$
\begin{equation*}
\rho_{0}\left(c_{1}^{2}-c_{3}^{2}\right) \mu_{s} n_{s}=-b(0) \zeta+\beta(0) \gamma \tag{5.20}
\end{equation*}
$$

By using (5.20) in (5.19) we obtain

$$
\begin{equation*}
\mu_{i}=-[b(0) \zeta-\beta(0) \gamma] n_{i}\left[\rho_{0}\left(c_{1}^{2}-c_{3}^{2}\right)\right]^{-1} \tag{5.21}
\end{equation*}
$$

We see that a thermal wave or a wave of compaction induces a longitudinal mechanical acceleration discontinuity.

It follows from (5.2) that

$$
\begin{equation*}
\left[h_{i, i}\right]+[g]=\rho_{0} \kappa\left(V^{2} \tau-2 V \frac{\delta \zeta}{\delta t}\right) \tag{5.22}
\end{equation*}
$$

where $\tau=\left[\varphi_{, i j} n_{i} n_{j}\right]$. With the help of relations

$$
\begin{align*}
& V\left[h_{i, i}\right]=-\left[\dot{h}_{i}\right] n_{i}+n_{i} \frac{\delta}{\delta t}\left[h_{i}\right]+V a^{\alpha \beta}\left[h_{j}\right]_{; \alpha} x_{j ; \beta} \\
& {\left[\dot{h}_{i}\right]=\alpha(0)\left\{\left(\frac{\delta \zeta}{\delta t}-V \tau\right) n_{i}-V a^{\alpha \beta} \zeta_{; \alpha} x_{i ; \beta}\right\}+\alpha^{(1)}(0) \zeta n_{i}} \tag{5.23}\\
& {\left[h_{i}\right]=\alpha(0) \zeta n_{i}, \quad[g]=-b(0) \xi_{i} n_{i}}
\end{align*}
$$

from (5.22) we find

$$
\begin{align*}
& {\left[\alpha(0)-\rho_{0} \kappa V^{2}\right] V \tau-2 H V \alpha(0) \zeta-\alpha^{(1)}(0) \zeta-V b(0) \xi} \\
& \quad+2 \rho_{0} \kappa V^{2} \frac{\delta \zeta}{\delta t}=0 \tag{5.24}
\end{align*}
$$

We assume now that $V=c_{3}$ with $c_{3} \neq c_{1}$ and $c_{3} \neq c_{2}$. Then (5.24) reduces to

$$
\begin{equation*}
\frac{1}{c_{3}} \frac{\delta \zeta}{\delta t}=\left(H-J_{3}\right) \zeta \tag{5.25}
\end{equation*}
$$

where

$$
\begin{equation*}
J_{3}=-\alpha^{(1)}(0)\left(2 \rho_{0} \kappa c_{3}^{3}\right)^{-1} \tag{5.26}
\end{equation*}
$$

It follows from (5.25) that

$$
\begin{equation*}
\zeta=\zeta^{0}\left(1-2 n H_{0}+n^{2} K_{0}\right)^{-1 / 2} \exp \left(-n J_{3}\right) \tag{5.27}
\end{equation*}
$$

where $\zeta^{0}=\zeta\left(t_{0}\right)$. If $V=c_{1} \neq c_{3}$ then (5.24) reduces to

$$
\begin{equation*}
\left[\alpha(0)-\rho_{0} \kappa c_{1}^{2}\right] \tau=b(0) \xi \tag{5.28}
\end{equation*}
$$

so that a longitudinal wave induces an acceleration discontinuity in the waves of compaction.

Let us consider now equation (5.3). This equation implies that

$$
\begin{equation*}
\left[q_{i, i}\right]=\left[\rho_{0} \dot{e}^{*}\right] \tag{5.29}
\end{equation*}
$$

In the view of relations

$$
\begin{align*}
& {\left[q_{i}\right]=0, \quad V\left[q_{i, i}\right]=-\left[\dot{q}_{i}\right] n_{i}, \quad\left[\dot{q}_{i}\right]=k(0) \gamma n_{i},} \\
& {\left[\rho_{0} \dot{e}^{*}\right]=} \tag{5.30}
\end{align*}
$$

from (5.29) we get

$$
\begin{align*}
{\left[k(0)-T_{0} a(0) V^{2}\right] \gamma=} & T_{0} V\left\{\beta(0)\left[V \mu_{i} n_{i}+V a^{\alpha \beta} \xi_{i ; \alpha} x_{i ; \beta}-n_{i} \frac{\delta \xi_{i}}{\delta t}\right]\right. \\
& \left.+V \zeta m(0)-\beta^{(1)}(0) \xi_{j} n_{j}\right\} . \tag{5.31}
\end{align*}
$$

Let us assume that $V \neq c_{1}, V \neq c_{2}, V \neq c_{3}$. Then from (5.11) we obtain

$$
\rho_{0}\left(c_{1}^{2}-V^{2}\right) \mu_{i} n_{i}=-\beta(0) \gamma .
$$

If $\beta(0)=0$ then we find that $\mu_{i} n_{i}=0$ and (5.31) reduces to

$$
\left(c_{4}^{2}-V^{2}\right) \gamma=0,
$$

where

$$
\begin{equation*}
c_{4}=\left[\frac{k(0)}{T_{0} a(0)}\right]^{1 / 2} . \tag{5.32}
\end{equation*}
$$

In this case we see that the possible speed of propagation of thermal waves is $V=c_{4}$. If $\beta(0) \neq 0$, then from (4.15) we obtain $\xi_{i} n_{i}=0$ so that $V=c_{2}$ or $V=c_{3}$. For $V=c_{2} \neq c_{3}$ equation (5.11) reduces to

$$
\rho_{0}\left(c_{1}^{2}-c_{2}^{2}\right)\left(a^{\alpha \beta} x_{r ; \beta} \xi_{r ; \alpha}+\mu_{s} n_{s}\right)=-\beta(0) \gamma .
$$

Thus, equation (5.31) can be written in the form

$$
R \gamma=0,
$$

where

$$
R=a(0) \rho_{0}\left(c_{1}^{2}-c_{2}^{2}\right)\left(c_{4}^{2}-c_{2}^{2}\right)+\beta^{2}(0) c_{2}^{2}
$$

If $R \neq 0$, then $\gamma=0$, so that the wave is purely mechanical.
For $V=c_{3}\left(\neq c_{2}\right)$ equations (5.15) and (5.31) imply that

$$
\Lambda \gamma=c_{3}^{2}\left[\rho_{0} m(0)\left(c_{1}^{2}-c_{3}^{2}\right)-b(0) \beta(0)\right],
$$

where

$$
\Lambda=\rho_{0} a(0)\left(c_{1}^{2}-c_{3}^{2}\right)\left(c_{4}^{2}-c_{3}^{2}\right)+c_{3}^{2} \beta^{2}(0) .
$$

Thus, in general, a compaction wave induces a thermal wave. We note that the eigenvalue problems from Section 4 govern also the propagation of thermoelastic waves studied in [3]. However, in the present paper, the amplitudes of waves contain new attenuation factors related to the relaxation functions (see (5.13), (5.15); (5.17), (5.18) and (5.26), (5.27)).

References

1. J.W. Nunziato and S.C. Cowin, A nonlinear theory of elastic materials with voids. Arch. Rational Mech. Anal. 72 (1979) 175-201.
2. S.C. Cowin and J.W. Nunziato, Linear elastic materials with voids. J. Elasticity 13 (1983) 125-147.
3. D. Ieşan, A theory of thermoelastic materials with voids. Acta Mech. 60 (1986) 67-81.
4. M. Ciarletta and A. Scalia, On some theorems in the linear theory of viscoelastic materials with voids. J. Elasticity 25 (1991) 149-158.
5. W.A. Day, Time-reversal and the symmetry of the relaxation function of a linear viscoelastic material. Arch. Rational Mech. Anal. 41 (1971) 132-162.
6. M.E. Gurtin, Time-reversal and symmetry in the thermodynamics of materials with memory. Arch. Rational Mech. Anal. 44 (1972) 387-399.
7. J.W. Nunziato and E.K. Walsh, Small-amplitude wave behaviour in one-dimensional granular materials. J. Appl. Mech. 44 (1977) 559-564.
8. J. Jarič and S. Rancovič, Acceleration waves in granular materials. Mechanika 6 (1986) 66-76.
9. A. Scalia, Shock waves in viscoelastic materials with voids. Wave Motion 9 (1994) 125-133.
10. B.D. Coleman and M.E. Gurtin, Equipresence and constitutive equations for rigid heat conductors. Z. Angew. Math. Phys. 18 (1967) 199-208.
11. M.J. Leitman and G.M.C. Fisher, The linear theory of viscoelasticity. In: C. Trusdell (ed.), Handbuch der Physik, Vol. VI a/3. Springer, Berlin (1973).
12. M.F. McCarty, Singular surfaces and waves. In: A.C. Eringen (ed.), Continuum Physics, Vol. II. Academic Press, New York (1975).
13. G.M.C. Fisher and M.E. Gurtin, Wave propagation in the linear theory of viscoelasticity. Quart. Appl. Math. 23 (1965) 257-263.
14. I. Luca, Singular surfaces in linear homogeneous isotropic thermo-viscoelastic materials of integral type. Internat. J. Engrg. Sci. 25 (1987) 1155-1163.
15. M.E. Gurtin, R.C. McCamy and L.F. Murphy, On optimal strain paths in linear viscoelasticity. Quart. Appl. Math. 37 (1979) 151-156.
16. T.J. Thomas, Concepts for Tensor Analysis on Differential Geometry. Academic Press, New York (1961).
17. T.J. Thomas, Plastic Flow and Fracture of Solids. Academic Press, New York (1961).
18. P. Chadwick and B. Powdrill, Singular surfaces in linear thermoelasticity. Internat. J. Engrg. Sci. 3 (1965) 561-595.

[^0]: * Corresponding author.

