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Abstract

This paper is concerned with the plane strain problem of the equilibrium theory of microstretch elastic
bodies. First, we study the problem of stress concentration in the neighbourhood of a circular hole located
in a plane subjected to the action of constant loads at a great distance from the hole. Then, the problem of a
rigid inclusion in an infinite body is studied.
© 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

There has been very much written in recent years on the subject of the theory of continua in
which the deformation is described not only by the usual displacement vector field, but by other
vector or tensor fields as well. The theory of microstretch continua was introduced by Eringen [1-
3] in order to study micromorphic materials whose microelements can undergo expansions and
contractions. The material points of the microstretch bodies can stretch and contract indepen-
dently of their translations and rotations. A microstretch body can model composite materials
and various porous bodies (cf. [2]). The linear theory of microstretch elastic bodies was introduced
in [1,2]. The theory of microstretch elastic solids is a generalization of the micropolar theory [4].

In this paper we study the problem of stress concentration in microstretch elastic bodies. This
problem is of great practical and technological importance and in the context of classical elas-
tostatics the problem has been a subject of intensive study (see e.g. [5,6]). In the framework of the
theory of micropolar elasticity the problem of stress concentration around holes was studied in
various papers (see e.g. [4,7-9]). In Section 2 we present the basic equations of the equilibrium
theory of microstretch elastic bodies and derive the equations of the plane strain problem for

" Tel.: +39-81-5523553.
E-mail address: decicco@unina.it (S. De Cicco).

0020-7225/03/$ - see front matter © 2002 Elsevier Science Ltd. All rights reserved.
PII: S0020-7225(02)00154-4


mail to: decicco@unina.it

188 S. De Cicco | International Journal of Engineering Science 41 (2003) 187-199

homogeneous and isotropic bodies. Section 3 is concerned with the problem of a cylindrical cavity
in an infinite solid subjected to the action of constant loads at a great distance from the hole. The
representation used in solving of the problem refers to displacement vector, microrotation vector
and microstretch function. The solution is presented in a closed form. In Section 4 we study the
problem of a cylindrical rigid inclusion in an infinite body which is uniformly stretched along one
axis.

2. Basic equations

We consider the theory of microstretch elastic solids established by Eringen [1,2]. We assume
that the body occupies at some instant the regular region B of three-dimensional Euclidean space.
We let B denote the closure of B, call 0B the boundary of B, and designate by n the outward unit
normal of 0B. Letters in boldface stand for tensors of an order p > 1, and if v has the order p, we
write v;;..; (p subscripts) for the components of v in the Cartesian coordinate system Ox;
(i=1,2,3). We shall employ the usual summation and differentiation conventions: Greek sub-
scripts are understood to range over the integers (1,2), whereas Latin subscripts—unless other-
wise specified—to the range (1,2, 3); summation over repeated subscripts is implied and subscripts
preceded by a comma denote partial differentiation with respect to the corresponding Cartesian
coordinate.

We confine our attention to the equilibrium theory of linearly microstretch elastic materials.
The basic equations of the equilibrium theory of homogeneous and isotropic microstretch elastic
solids, in the absence of the body loads, consist of the equations of equilibrium

tij =0, mjij+&pnty =0, h;—s=0, (2.1)
the constitutive equations

Zij = )Lekkéij + (,u + K)e,-j + ,Uej,' + Ulpéij,
my; = ok 0y + Bici + yici; + boegi

(2.2)
hi = éfq),i + bﬂgijsKsja
s = oe, + by,
and the geometrical equations
€ij = Uj;i t &iPrs  Kij = @ (2.3)

Here, #; is the stress tensor, m;; is the couple stress tensor, /; is the microstress vector, s is the net
pressure involved in dilatation, e;; and k;; are strain measures, u; is the displacement vector, ¢; is
the microrotation vector, ¥ is the microstretch function, ¢, is the alternating symbol, ¢;; is the
Kronecker’s delta and 4, p, «, o, f, v, g, &, b and by are constitutive constants.

Throughout this paper we assume that the internal energy density is a positive definite qua-
dratic form. Thus, the constitutive coefficients satisfy the conditions [2]
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b3+ 214+ K) =36 >0, 2u+Kk>0, k>0, >0, b>0,
3o0+p+y>0, y+p>0, y—p>0. (2.4)

The components of surface traction ¢, the component of the surface moment m and the mi-
crotraction £ at regular points of 0B are defined by

f,‘ = tjﬂ’lj, m; = mj,«nj, h = h‘,-nj, (25)

respectively.

We assume that the region B refers to a right cylinder with the open cross section X and the
smooth lateral boundary I1. The rectangular Cartesian coordinate frame is supposed to be chosen
in such a way that the x;-axis is parallel to the generators of B. We denote by L the boundary of X.
The state of plane strain of the cylinder B, parallel to the plane x;Ox,, is characterized by

Uy = Uy (x1,%2), us =0, ¢,=0, @3=0x,x2), ¥ =y(x,x), (x1,x2) € 2. (2.6)
The above restrictions, in conjunction with the geometrical equations (2.3) and the constitutive
equations (2.2), imply that e;, k;;, t;;, m;;, h; and s are all independent of x3. It follows from (2.3)
and (2.6) that the non-zero strain measures are given by

Coup = U + 8[3013(107 Kﬁ3 = (pﬁ,w Koz = (p,oc' (27)

The constitutive equations show that the non-zero components of the stress tensor, couple stress
tensor and microstress vector are t,s, m,3, t33, ms, and h,. Further,

L = Aepp0up + (1 + K)eup + pieg, + oYo,p,
miz = yKi3 + bWy, maz = yKaz — boy (2.8)
=Yy —bokaz, ha=CY,+bokiz, s =0e,,+by.

The equations of equilibrium (2.1) reduce to

tpop = Oa
mp3 p + 83o:ﬁtcv,ﬁ = 07 (29)
hyy—5s=0

on 2. We assume that on the boundary of the body there are prescribed the surface loads. Given
the surface traction ¢, the surface moment m and the surface microtraction 4 on II, with ¢, m and A
independent of x3 and #; = 0, m, = 0, the boundary conditions on the lateral surface become

tgng =1y, Maan, =iz, hyn, =hon L, (2.10)

where ,, m3 and h are prescribed functions.



190 S. De Cicco | International Journal of Engineering Science 41 (2003) 187-199

In what follows we are interested in a plane strain problem with the displacement vector, the
microrotation vector and the microstretch function being specified in cylindrical coordinates
(r,0,z) as follows:

u,:u(r,ﬁ), MQZU(I",Q), u. =0,

0, =0, 0y=0, ¢.=¢(r0), ¥=y0), (r0)¢€o0. (2.11)

The axis Oz of the cylindrical coordinate system is taken along the axis of the cylinder. The
geometrical equations (2.7) become

~ Ou 1 av+ v
€ = ar7 €pp = ” 60 uj, €9 = ar ?,

(2.12)
1/ %u o) + K_@(p K_l@(p
=5\ a0 P T KT 00
The equilibrium equations (2.9) take the form
ot, 10t, 1 B
ar T7ag Tyl =0,
Oty 10t 1
g T bt te) =0,
ror d (2.13)
o Loyt =0
6r - 69 rmrz 70 or — Y,
10 1 Ohy
yor )+ 5g =0
The constitutive equations can be written in the form
by = (/1 + 2,“ + K)err + j.e()() + O-lp)
tog = Aey + (A +2u+ K)eg + oy,
Lo = (H + K)er() + ueg., tor = (H + K)e()r + uerg,
1 Oy Gl
My, = VK, + bO; @7 my; = YKoz — boa, (214)
oy 1.0y
hr — 65 - b0K927 h9 - ; @ + bOKrz7
10 1 ov

The plane strain problem consists in the finding of the functions u, v, ¢ and y on X which satisfy
the Egs. (2.12)-(2.14) on X and the boundary conditions.
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3. Stress concentration around a circular hole

In this section we study the problem of a cylindrical cavity in an infinite solid. We assume that
the region B is defined by {(x,x2,x3) € R* : x? +x% > @?}, where @ > 0 is a given constant. The
body is in equilibrium in the absence of body loads. We suppose that the surface of the cavity is
free of surface loads and that the body is subject to a field of simple tension at infinity. Let P be
the constant tension field at a plane x; = constant at infinity. We assume that the surface moment
and the surface microtraction vanish at infinity. The body is in a state of plane strain, parallel to
the plane x,Ox,. In this case the domain X is given by {(x|,x2,x;) € R* : x3 +x2 > a?,x; = 0}.

The boundary conditions on the surface of the cavity can be expressed as

Ly = 07 Lo = Oa my, = 07 hr =0 forr=a. (31)

The conditions at infinity require that the stress distribution must reduce to that of a body

without cavity. Thus we have the following conditions at infinity:
ty = 3P(1 4+ cos20), 199 =3P(1 — cos20),
t = to, = —%P sin20, m,, = my, =0, (32)
h, =0, hy=0,

where P is a given constant.

The problem consists in the finding of the functions u, v, ¢ and Y on X which satisfy the Egs.
(2.12)—(2.14) on X and the conditions (3.1) and (3.2). We seek the solution of the problem in the
form

u=F(r)+U(r)cos20, v="V(r)sin20, (3.3)
@ = W(r)sin20, = G(r) + ®(r) cos 20, ‘
where F, G, U, V, W and & are functions only on r. It follows from (2.12), (3.3) and (2.14) that
dr 1
ty =(A+2u+x)—+—-AF + oG
dr r
du 1
+ |[(A+2pn+ K)d—+—/1(U+2V) +o®| cos 20,
r r
1
,

dr
tgg:/15+ (A4+2u+K)F +0G

1
+ [ﬂvcil—U—l—;(i%— 2u+x)(U+2V) + a@} cos 20,
r

1
by = [(,u + K)((li—l: — kW — ;,u(2U—|— V)] sin 20,

dv 1 .
tor = ['ME+ KW — ;(,u + x)(2U + V)] sin 20,
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m,, = <ydd—pf—gb0 ) sin 20,

dG

2 do
mo, = <_’VW_b0_ ER)
r dr

P > cos 20 — b,

h, = é(d—G—i—d—Q 00520) —%bOWCOSZG,
dr dr r
2
hg: <——5<D—|—b0d—W>sin20,
r dr
s:a<dF+1 )—i—bG
dr

+ {a{d—U—i-l(U—l—ﬂ/)] —i—b@} cos 20.
dr r

If we substitute (3.4) into the equilibrium equations (2.13), then we obtain the following equa-
tions:

oS! L] o0

d
&’G  1dG b 1 d
5<dr2 ra“G>‘; o3 ) =0,
dv ,do
(A+2u+ )( ) A—i—,ur——i—ar—
dr
— (A4+6u+5x)U = 2(A+3u+2K)V + 2krW = 0,
3.5
Gt (PS8 Doy g8 eI -
(gt A PR
—2(A43u+2Kk)U — (444 9u+ 5x)V — 20r® = 0,
2
Y rzd—W+rd—W—4W +Kr2d—V+Kr(2U+V)—2Kr2W:0,
r? dr dr
¢ do b ,dU
5(1” F+rd——4®—gr®>—ara—ar(U—i—ZV)—O.
The first equation of (3.5) implies that
1
d * _G=c, (3.6)

-—(F)+—-G
rdr(r )+i+2,u+rc

where C is an arbitrary constant. In view of (3.6), the second equation of (3.5) can be written in
the form
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d’G 1dG

> g
& e YOG G7
where
R
C_f b A+2u+xK) (3.8)

It follows from (2.4) that * > 0. The solution of Eq. (3.7) is

G = A Ko(Lr) + ATy (0r) —écl,

where 7, and K, are the modified Bessel functions of order n, and 4, and A4} are arbitrary con-
stants. Since the function G must be finite at infinity we have 47 = 0. Thus, we get

G = A1Ko(Cr) — é C. (3.9)
It follows from (3.6) and (3.9) that
K@), (3.10)

where C, is an arbitrary constant.
Now we introduce the independent variable ¢ through the relation

t=1Inr, (3.11)
and denote

d

Then, Eq. (3.5, parts 3 and 4) can be written in the form

[D? — (1 +4c)|U +2[(1 —c)D — (1 +¢))]V = —€'(c:D® + 2¢3 W),

(3.12)
(1= e)D+ (1 +e)]U + [1D? — (4 + )]V = & (262 + D),
where
U+ K o K K
_ ok . 3.13
A itk T vtk O T av2ptr . (3.13)
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The general solution of the homogeneous system (3.12) which corresponds to a finite stress field
at infinity is given by

Uo = ble_t +Bze_3t —{—Bget,
(3.14)

VE) = —clBle” + B2€73t — B3€t,

where B;, B, and B; are arbitrary constants. Particular solution of the system (3.12) can be seen to
be

1 1
U' = _ECZ(etSl + ei3tS2) — 2—6103(CIR1 — e’3’R2),
.1
* 1 t —3t 1 t —3t (3 5)
V :fcz(eSl—e S2)+7C3(CR1—|—C Rz),
2 2(31

where

/ltp(s) ds, S(¢) = /te‘“'cl')(s) ds,
/ W(s)ds, Ralt) = / W (s) ds.

S (1)
(3.16)

(1)

With the help of (3.11), (3.14) and (3.15) we obtain

U=Byr '+ By +Bsr

_%CZ [r/rxlcb(x)dx+r3 /rx3¢(x)dx]

1 r r
——q[r/ x_lW(x)dx—r_3/ x3W(x)dx},
2C1
V = —C]B]I"il +Bzi"73 —B3I"

%62 [r/rxlcb(x)dx— r /rx%(x) dx]

(3.17)

+2ch3 [r/rle(x)dx+r3 /rx3W(x)dx}

If we substitute U and ¥ from (3.17) into (3.5, parts 5 and 6) we obtain the equations

2
dr dr (3.18)
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where

2 K(2u+ K)
0 —77)(“_“() ) (3.19)

The solutions of Egs. (3.18) which generate finite stresses for » — oo are given by

2
w :A2K2(5r) —|—§C4Blr72,

) (3.20)
(0] :A3K2(C}") +@016817‘_2,

where 4, and A4; are arbitrary constants. If we substitute (3.20) into relations (3.17) we obtain

1 1 1
U= ;dlBl +r_332 +B3V—FCIC3A2[K3(5}") —Kl(ér)]

+ ZingAs[KS(C") + K, (L)),

| . . (3.21)
V = — ;C2d2Bl + ;Bz — Bgl" — %63142[[(3(57’) +K1(57‘)]
1
+ 2—CCzA3[K3(Cr) — K ({r)],
where
C3C4 C0
d=1+—, db=1+—. (3.22)
o’ &
We introduce the notations
q1 =d| — 2cd, (12:2611 — c1d,
1 2¢,62
= —(2 dy — 2c;d
Q1 2/,L+K_ (M+K) 1 Lrc1dy + éCz ],
1 [ 2¢,02
0, = ()u—|—2u+rc)q1—/1d1+c;§},
2u+x | <4 (3.23)
1 2KCy .
— d — qou —
Q3 2‘u T -(,U + K)Cl 2 — o1 52 :| )
1 [ 2KC4
= d — s
04 2u—|—;c_'ucl h — (4 Kx)q + 52 :|7

k= (24+2u+K)b— .



196 S. De Cicco | International Journal of Engineering Science 41 (2003) 187-199
It follows from (3.4), (3.9), (3.10) and (3.20)~(3.23) that

(2u+x)
£

C,— u+Kk)r?2C, — cydir 'Ky (Cr)

ty =

L
280

1
+ (2,[1 + K){Qll"_zBl — 37‘_432 + B3 + EC@AQF‘_I [Kl (57‘) + 3K3 (57‘)]
1

- 4%02143[6’”_11(3(@”) — (K> (Lr) + CKO(C’”)]} cos 20,

k 1
top = ﬁCI + 2uA4 K)o+ (2u + K)ead [Ko(‘:”) + EKI(C”)}

+ (2,“ + K){Qzl"_ZBl + 37'_482 — B3 — C3A2}"_1[K1(5V) + 3K3(5V)]

1
256‘1

4LC02A3[3CK2(&’) + CK()(&") 61"1K3(CI")]} COS 20,

1
tr() = (2,[1 + K){Q3Bli"2 — 3]’7432 — B3 + KC3A2[6}"71K3(5}’) + 5K0(5I’) — 5K2(5}”)}
C1

— i6‘21‘137’ [3K3(CV) +K1(CI")]} sin 29,

2 (3.24)

C3A2[6I" K3(51") + 35K2(57‘) + (3K0((SV)]

1
= (2/1—|—K){Q4BIV_2—3I"_4BQ B3 +45

— %CCzAﬂ’ [3[(3({1’) + Kl(CI’)]} sin 20,

s {yAz[éKl (0r) + 2 K (7)] + 2bor ' 43Ky (L) + 4By <V§2“ + ])(’;T‘f) } sin 20,

Mo, {2yA2r K> (87) + boA3 [CK, (L) + 27 'Ky (0r)] + 4By <y04 + bzm) } cos 20

+ bolAK, (Lr),

hy = —ELAK () — {5A3[c1<1<a> )

+ 21)()142]"_1[(2(5]") + 4B]I"_3 (62_20' + b204> } COS 28

]’l {261" 1A3K2(C7‘) + boAz[éKl(ér) + 2r~ le(él")] + 4317'73 (C + C45b0) } sin 20
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On the basis of (3.24), the conditions at infinity (3.2) reduce to

2
! P = éP.

Bi=—+— C, =
3 2(2#+K> ) 1 k

We note that the restrictions (2.4) imply that £ > 0.
We introduce the notations

A(z; p) = 627 K3(pz) — pKs(pz) + pKo(p2),
I'(z;p) = pK,(pz) +§K2(pz), 6(z) = Ki(z) + 3K;5(2),

0 = 4a73(yeqo 2 + cobgé 77,

6 =4a (10077 + boesd ),

J = pEr(a; 8)T (a; () — 4bja K, (La)Ka(da),
T =&hI'(a;0) — 2b0€2a_1K2(Ca),

Ty = p6:I (a; 0) — 20,boa 'K, (a).

The boundary conditions (3.1) reduce to

Pa? 1 1
C=———, A1=0, 4=—--T\B Ay = —-=T-B
2 2(2/1“"(:)’ 1 ) 2 Jl 15 3 J21>
P P
H\By—3a*By=—-———, HB —-3a'B=-7+——
1D1 a 2 2(2M+K)’ 201 a 2 2(2,u—|—1<)’
where
H —Qafz—#c Tﬁ(éa)%—ic T A(a; {)
1 — ¥ 2.]61501 341 4CJ22 ) )
1 1
Hz = Q3a*2 _ mqﬂ/l(a; 5) +2€WC27—'2€(€(1)
From (3.27) we find that
P P(H1+H2)a4

Bi=rom—my BT erut o —m)

197

(3.25)

(3.26)

(3.27)

(3.28)

(3.29)

so that all constants C,, 4; and B; are determined. Substituting (3.29), (3.27) and (3.25) into (3.9),
(3.10), (3.20), (3.21) and (3.3) we obtain u,, uy, ¢, and . The stresses are determined from (3.24).

The value of #5 at the periphery of the cavity is given by

2
cos20 |,
A )

f@g_P<1+l

(3.30)
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where

f =N"'[8J6cial(H, — H,) — N],
N = 4J8cila'Qy + 4 cialH, + 2¢3 Ty (6 (Sa) (3.31)
— ¢10,a8Ts[3(K5(La) + (Ko(La) — 6a~'K3(La)].

4. The problem of a rigid inclusion

In this section we study the problem of a rigid cylindrical inclusion in an infinite body which is
uniformly stretched along the axis Ox;. We assume that the elastic body occupies the region
B = {(x1,x2,x3) € R*: x3 +x% > @®}, where a is a positive constant. We assume that the region
{(x1,%2,x3) € R? : x3 +x% < @®} is occupied by a rigid body. We consider the following boundary
conditions:

u, =0, uy=0, ¢.,=0, Yy=0o0nr=aq, (4.1)

and the conditions (3.2) at infinity. The body B is in a state of plane strain parallel to the plane
x10x; in the absence of body loads. We seek the solution in the form (3.3). It follows from (3.24)
that the conditions at infinity (3.2) reduce to (3.25). With the help of (3.9), (3.10), (3.20) and (3.21)
we find that the conditions (4.1) can be written in the form

a _ ba?
4= PKo(a) ™, C=—-T P %AlKl(Ca),
2 1
A2 = —%0431 [Kz(éa)] y
2 _
Ay = _@claBl[Kz(z:a)] " (4.2)
Pa*
dia® + 298 1 (5a) - 220 ]B By= -t
[ Wt MO T g ) B B =
5 C3c4a cicroa Pa*
— L(da) — L B By=———
[ adt + 0075 @”)} T )
where
L(z) = [K3(z) + K1 (2)][Ka(2)] " (4.3)
From (4.2) we obtain
Pa?
Bl - — )
(2u+ k) (dy + c2dr) (4.4)
N )
B, = ra (dh = cado)a® + 224 L (3a) 26223‘7%(@) .

2(2/1 + K) (d1 -+ Czdz) c10
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The solution of the problem has the form (3.3) where the constants 4;, B; and C, are given by
(3.25), (4.2) and (4.4). The stress tensor, the couple stress tensor and the microstress vector can be
determined from the relations (3.24). In particular, the values of ¢,. and ¢,y on the boundary of the
inclusion have the form

1 1 20 K ({a)
t, = =P+—(2 bP|1 +— —
=3P 2etw) { b TV )
Pa? 2c3¢4 Ki(0a) Ao Ki(La

~ P 0 s dy - 2o ! cos 20,
dl + C2d2 {(Ql +é < 2)a * 0153(13 K2(5(1) 5C3a3 KZ(CQ> }COS

Pa? 1 5 5 2ci000 Ki(Ca)  4deseq Ki(da) } )
ty= ———— +=d — >y |a? — + sin 20).
"T T+ o { <Q3 2472 2)“ 22a Kala) | ca’s Ka(da)

As in [10], we can study the behaviour of an infinite microstretch elastic body with a spherical
cavity.
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