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Abstract

In this article we establish a spatial decay estimate of Toupin type in the dynamic linear theory of
micropolar viscoelastic solids. © 1999 Elsevier Science Ltd. All rights reserved.

1. Introduction

The general theory of micromorphic materials with memory has been developed by Eringen
[1]. In Ref. [2], Eringen has established the theory of micropolar viscoelasticity. The
propagation conditions and growth equations, which govern the propagation of waves in
micropolar viscoelasticity, have been derived and discussed by McCarty and Eringen [3]. Some
general theorems in micropolar viscoelasticity have been established in Ref. [4]. In the
framework of the nonpolar viscoelasticity, various results concerning Saint-Venant’s principle
have been established by Sternberg and Al-Khozaie [5], Neapolitan and Edelstein [6], Rionero
and Chirita [7] and Chirita [8]. In the present article we generalize the results from Refs. [6,8]
to the dynamic linear theory of micropolar viscoelastic bodies. In Section 2 we present the
basic equations of the linear theory of micropolar viscoelastic solids. Section 3 is devoted to
preliminary results. In Section 4 we establish a spatial decay estimate of Toupin type for
micropolar viscoelastic bodies.
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2. Basic equations

We consider a body that at time 7, occupies the regular region B of Euclidean three-
dimensional space and is bounded by the piecewise smooth surface dB. The motion of the body
is referred to a fixed system of rectangular Cartesian axes Ox(i =1, 2, 3). We designate by n
the outward unit normal of dB. Letters in boldface stand for tensors of an order p>1, and if v
has the order p, we write v;  (p subscripts) for the components of v in the Cartesian
coordinate system. We shall employ the usual summation and differentiation conventions:
Latin subscripts are understood to range over the integers (1, 2, 3), summation over repeated
subscripts is implied and subscripts preceded by a comma denote partial differentiation with
respect to the corresponding Cartesian coordinate. In all that follows, we use a superposed dot
to denote partial differentiation with respect to the time.

We consider the linear theory of micropolar viscoelastic bodies. In the absence of the body
loads, the equations of motion are given by [2]

liij = pﬁl’, (la)
my; j + Cirslrs = Jﬁbi, (lb)

where #; is the stress tensor, m; is the couple stress tensor, u is the displacement vector, @ is
the micro-rotation vector, p is the reference mass density, ¢;; is the alternating symbol and J is
a coeflicient of inertia. The local form of energy balance is [2]

pe = tyéy + My, @
where ¢ is the internal energy density and

e;j = Uj; + €isQy, (3a)

i = P ()

The constitutive equations of the linear theory of homogeneous micropolar viscoelastic bodies
are

ti(x,1) = J [Ajjpr(t = 8)é pr(X,8) + Bjjpr(t — )7 p,‘(x,s)] ds, (4a)

mij(Xs[) = J_ [Bprl_'/(t - S)épr(X,S) + Ci/‘rp([ - S)er(xas)] dS, (4b)

where the relaxation functions A, B and C are twice continuously differentiable on [0, o) and
have the properties of symmetry

A[jrs = Arsij: (53.)

Cijrs - Crs;'j- (Sb)
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Since a viscoelastic material remembers its past history, we must prescribe u;, ¢;, e;, 1, t; and
m; up to some instant = 0. The initial data consist of the functions (u7, @7, ey, xj i
my) = s*, defined on Bx(—o0, 0), which satisfies the field equations. Thus, we have the initial
history condition s@ = ¢* where s @) = (Urs Prs €pgs Apgs Lpg» Mpg) ON Bx(—00,0).

In what follows, we assume s* = (0, 0, ..., 0) on Bx(—o0, 0). In this case we have the initial
conditions

u(x,0) = 0, (62)
u(x,0) =0, (6b)
»(x,0) =0, (6¢)
@(x,0)=0, x¢e B, (6d)

The constitutive equations can be written in the form

1if(1) = Aijrs(0)ers(1) + Bijrs(0)1,,(1) + Jo [ iipg(t = $)epg(5) + Bijpg(t — )1pg(5)] ds, (7a)
mj(1) = Brgif(0)ers(1) + Cijpg(0)2,4(1) + Jo [Bpgif(t = $)epg(5) + Ciipg(t — )1, (s) ds, (7b)

where, for convenience, we have suppressed the argument x.
Let /' be a function of position and time defined on BxI, where /= [0, oo). We say that
feCMNif

8’7’[ anf
dx;0X;...0x, (W)’

exists and is continuous on BxI for m=0,1, ..., M, n=01, ..., N, and m + n<max (M,
N). We introduce the notion of an admissible process s = {u;, @;, e;, 1, t;; m;} by which we
mean an ordered array of functions u;, ¢;, e;, x; t; and m;; defined on BxI with the following
properties

L. wy, i, 1, @i @iy @4 €4, 'e,jl, 0}5,»]- and j;; are continuous on BxI;
2. t; and my; are of class C " on B x (0, 00);

3. ty, t;;, my and my; ; are continuous on Bx/.

By a viscoelastic process for B corresponding to null body loads we mean an admissible
process that satisfies the field Egs. (1), (3) and (7) on B x (0, c0).
The surface traction and surface couple at regular points of dB are given by

tp = tn;, (8a)
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m; = nm;n;. (8b)
In view of initial conditions (6) we have

e;f(0) =0, (92)

270) =0 (9b)

on B.

3. Preliminaries

We introduce the notations

eij(ti,t2) = ej(1h) — ey(12), (10a)
Li(t,02) = y(t) — 2(t2) (10b)
and
1 _ _ _ _
W (t1,t2,t3) = EAijrs(l3)e[f(zl912)ers(l1312) + Bjjrs(13)e ii(11,02) 1 15(11,12)

1

"2

Cijrs([3))_{ij(t17l2))_<rs([17t2)9 (1 la)

1. _ ) . _ _
A(ti,tr,13) = EAzjjrs(l3)€zj(llJz)errs(ll,fz) + Bijps(t3)ei(t1,12)7 5(11,12)

1

3

Ciins(13)7 (11,027 s(11,12), (11b)

1. . ) . ) _
I'(t1,0,13) = EAg/rs(ls)ey'(ll,lz)ers(ll,lz) + Bji(13)ei(11,12) ) 5(11,12)

1

3

Ciins(13)7 (11,127 1511, 12).- (11c)
Let us note that
ei(1,0) = e(1),

%ii(1,0) = 2;(0).

Theorem 3.1. Let s = {u;, ¢;, ey, x> Lj» My} be a viscoelastic process for B corresponding to null
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body loads. Then

t

t t
J (lz_'/'éij + m,jj(i/) ds = W(1,0,t) — J A(t,0,7) dt — J Attt — 1)
0 . 0 0

(12)
1 t t
dr—i——[ J I(rys, | r—s])drds.
2 Jo Jo
Proof. Clearly, in view of Egs. (7) and (9), we have
t t d . t
[ tiey ds = J |:_([ijeii) - ez‘jlij] ds = e — 1;7(0)e;(0) — J lijeij
t
ds = tijeij - JO eij(S){Aijmn(O)émn(S) + Bijmn(o)j(mn(s) + 4 ijnm(o)emn(s) + Bijmn(O)an(S) (13)

+ JO [A lfimn(s — 1)enn(t) + éz_’imn(s = DL (0)]

dt} ds.
If we take into account the identities [9]
t . t .
Mt = Df(0) de = | Myl = 900

t
0 0

1) [ Mt = D)g(@) dt + .0 J

dr — ,[0 Mijrs([ - T)[ft](t) _.fl_'/'(T)][grs(t) - grs(f)] dr + [Mi/‘rs([) - Mz_'jrs(o)]ﬁ'j(t)grs(t)s

t S t t
2 M(s—r)dsder JM(ls—rl)dsdr,
Jo 0Jo

2 | . Mz_‘jmn(r - S)fij(r)fmn(s) dr ds = J JO Ml_'imn(| r—s |)ﬁj(7)ﬁiziz(s) dr

0 0

ds = j J M (7 = 5 D5 foma(s)
0 Jo

as =5 || i1 7= 5 DUAO) = O fon0) ~ fn(9)] 0 s,
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Jr M(s—1]) dt= JS M(s — 1) dt + Jl M(t —s) dt = M(s) + M(t — 5) — 2M(0),
0 0 s

then from Egs. (5), (7), (9), (11) and (13) we obtain the relation (12).

We introduce the notation
T = (tjp,my).
The magnitude of 7 is defined by

| T|: (ti]-ti,»—i-m,jmi,-)l/z. (14)

Moreover, we introduce the notations

1 1
T(r.) = 5 Aiipg()15(r)tpg(r) + Bispg(8)1i1(r)mpg(r) + 5 Ciipg($)mi(r)mpy (1), (15a)
1 1
QD(I’) = EAg'jrs(O)Z!i(r)er(T) + Bijrs(o)zl_'/'(f)yrs(T) + ECijrs(O)yij(T)yrs(T)a (ISb)

1. . 1.
Y(s,t) = EA iig(s = 0)0(8,7)0pg (5,7) + Bijrg(s — T)otii(5,7)B5(5,7) + EC iig(S

- T)ﬂij(sar)ﬁpq(sur)a (ISC)
where
1
Zij = —lj — oey, (16a)
o
1
Vi = i = %L (16b)
1
OC,']'(S,‘C) = &tl](s) + OC@I'J'(T), (16C)
1
Bi(s,0) = &nagj(s) +ay(s), o> 0. (16d)

Theorem 3.2. Let s = {u;, ¢;, e, Lij» Lij» Mij} be a viscoelastic process for B corresponding to null
body loads. Then
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Jt | T(x) |? dt = 12 Jr [211(z,0) — I1(z,7)] dt + o Jt [2W(1,0,0) — W(z,0, — 7)]
0 o= Jo 0

t t prs
dr — J d(7) dr + J J &(t,s) dt ds.
0 0 Jo

Proof. It follows from Eq. (7) that

L tyty ds = JO (i (0)ep(5)155) + Bipg(0)1,(5)15(5)]

ds + L JO [A ijmn(S — T)enmn(T)1;(s) + B[jmn(s — O (D)3i(5)] ds dr.

If M and H have the symmetries

Mljjrs - erzj:

H ijrs — H rsijs

then, for any positive number «, we can write

1 1
M () frn(1)gi(8) = 57 Mipg()fpg (1) () + EOCZM ipg(DEii(5)gpq(5)

1 1 1
- EMiqu(Z)<&ﬁj(”) - ocg,_y(s)) (&qu(r) - O‘gpq(s))a

Hi)000) = 3 Hi9 (1) + o600 ) (00 + 5500

1 1
- ﬁHly'pq(raS)ﬁaq(s)flj(S) - EazHqu(raS)gij(r)gpq(r)-

Clearly,

JO Fiqu(s - T)fl_'j(s)gpq(s) dr = (Fl_‘/'pq(s) - Fiqu(o))ﬁj(s)gpq(s)a

889

(17

(18)

(19a)

(19b)

(20a)
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J J Fijpg(s — 1) fii(1)gpy(1) dT ds = J J F iing(s — ) fij(1)gpg(7) ds
0 Jo 0 Jo (200)

dr= Jo (Fiipg(t = ) = Fijpg(0)f31()gpy(7) dr.

In view of Egs. (7), (14)—(16), (18)—(20) we obtain the relation (17).

Now we assume that

1. the quadratic form W is positive definite, that is, there exists a positive constant ¢; so that
W(t1,02,53) > c1(eit1,02)e j(t1,02) + 7 (11, 02) 7 (t1,12)) = 1 | F(i1,12) ?, (21)

for any F(1,, 12) = (e; (11, 12), 1;(11, 1)),
2. there exists a positive constant ¢, so that

W<e | FI?; (22)
3. the quadratic forms A and I" have the properties

A4<0, (23a)

r>0. (23b)

These assumptions are consistent with the dissipation inequality for materials with memory.
Assumptions 1-3 have been used in classical viscoelasticity to obtain stability results.

Theorem 3.3 Assume that the hypotheses 1-3 hold. Let u={u;, ¢; ey, x> li, m;} be a
viscoelastic process for B corresponding to null body loads. Then

Jt | T() PP de<16c]! JI J [£(2)¢(2) + my(D)j,(0)] de ds. (24)
0 0 Jo

Proof. By Theorem 3.2 and hypotheses 1-3, we obtain
t 2 t t
[ | T(7) > dr< ?cz J | T(7) 1> dr 4 20%¢, J | E(7) 1’ dr.
0 0 0
If we choose o« = 2,/c5, then we obtain

JI | T(z) |* dr<16¢; J{ | E(t) |* dr. (25)
0 0
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From Theorem 3.1 we get

L (1) 5(0) + my(@ (D] dr= ey | ED) (26)

Clearly, the inequalities (25) and (26) imply that the relation (24) holds.

4. A decay estimate

In what follows, we assume that region B refers to the interior of a region whose boundary
includes a plane portion Dy (cf. Ref. [10]). We choose the rectangular system of coordinates
such that Dg lies in the x;Ox,—plane, and that B lies in the region x3>0. We denote by D(z)
the intersection of B with the plane x; = z. We consider the boundary conditions

tiinj = 0 (272)
on (0 B\Dy) x (0,00).

We assume that on D, the boundary data are different from zero. We denote by B(z) the
region {xe B:x3>z}. Let L be the maximum value of x3 on B.

Theorem 4.1. Assume that the hypotheses 1-3 hold. Let K denote the set of viscoelastic processes
for B that satisfy the initial conditions (6) and the boundary conditions (27), and for each tel
and ze [0, L] define the functional E( -, z, t) on K by

t 1 S
spzn=| | {z[pui(s)a,-(s)+J¢,-(s)¢,-(s)] + | [ + my(@)7, o) dr} dv
0 JB(z) 0 (28)

ds

Sfor any p = {u;, ¢;, e, Lij» Lips m;;} € K. Then

E(p,z,t) <E(p,0,1) exp( - /li)’ (29)

for any peK, ze [0, L] and tel, where

2(J+p)
pcrd

A 2C2 (30)

Proof. It follows from Egs. (1), (3) and the divergence theorem that
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1 d

[ werrmp o= inrmiyda-3 5[ i+ o o (1)
B() D(z) 2 d1 )p

By the initial conditions (6), the boundary conditions (27), the relations (28) and (31), we have

E(p,z,t) = Jo J; JD ) (ti(Du(t) + mi(t)p (t)) da dr ds. (32)

With the help of the arithmetic—geometric mean inequality we obtain

1 [ 1. . 1. .
E(p,z,l)S—tJ J (—uiui + =@, + Pyt +szimz:/) da dr, (33)
2 )o Jp \B Y

when ff and y are arbitrary positive constants. If we take y = fp/J, then from inequality (33)
we obtain

1 ! 1 .. .. P 2
E(p.z,H) < Et Jo JD(:) [%(pu,u,- +Jp,p;)+ ﬁ(l + j) T (r)] da dz. (34)

In view of inequalities (24) and (34) we get

1 1. N

Epanzy | | {ﬁ[pu,-(swf(s) RIOIE)

(35)

| 16Pet +p) J [£5()é (1) + my(0)i ()] dr | da ds.
c1p 0

We choose

ﬁ . L C]J
20\ 2p(J +p)

Then, relation (35) becomes
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t

E(p,z,t) < At J
0

| {1[pu,~(s)ui(s) T OO+ | (1060 + my@), (0] dr} da
) |2 0 (36)

ds,

where / is given by the equality (30).

With the help of relation (28) we obtain

dE(p,z, ! | . . ’ . .
D | ], 5o + 50,600,001+ | 10+ moi ol | -
da ds.

It follows from relations (36) and (37) that

; tdE(p,z,l)
dz

This inequality leads to (29).

+ E(p.z.1,)=0.

For an extensive review of the literature on Saint-Venant’s principle the reader is referred to
the works of Horgan [11,12].
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