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Abstract

The aim of this paper is to propose an approach to quantify the qualitative variables,
within Structural Equation Models (SEM), and in particular of PLS-PM.

We propose a new algorithm, called Partial Alternating Least Squares Optimal
Scaling- Path Modeling (PALSOS-PM), which through an iterative procedure, computes
an optimal quantification, for qualitative variables, and structural parameters of the model
chosen.

1. INTRODUCTION

For data, in the social sciences, there are, usually, four scales of measurement
that must be considered: nominal, ordinal, interval and ratio (Stevens, 1951).
However, choice of the statistical analyses typically rests on a more general or
cruder classification: “categorical” scale for qualitative variables and “continuous”
scale for quantitative variables. Ordinal scales with few categories (2,3, or possibly
4) are often classified as categorical, whereas ordinal scales, with many categories
(5 or more), are classified as continuous. Although Likert-type items are technically
ordinal scales, but most researchers treat them as continuous variables.

When you want to jointly analyze data measured on different scales is
necessary to homogenize variables. Thus, it is quite common practice to recode
quantitative variables into qualitative ones. One needs to be careful to converting
variables measured by continuous scale into categorical or dichotomous ones also
because it can be as problematic if you want to use them for the analysis of Statistical
Models which were developed for quantitative variables.

* This paper is supported by a PRIN project 2006 (Multivariate statistical models for the ex-ante
and the ex-post analysis of regulatory impact) coordinated by Carlo Lauro
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So, it is possible saying that the dichotomy, between categorical and continuous
scales, is an oversimplification and the recoding, of all data in qualitative variables,
is a mistake mainly in the marketing researches, in public-opinion surveys and in
social researches, where data are often measured by ordinal scales and analyzed
with Structural Equation Models (SEM).

We propose, in this paper, a method of quantification of these ordinal
variables: we have developed in a Structural Equation Model, based on the Partial
Least Squares method (PLS), an original algorithm that pursues the optimal
quantification of ordinal variables and nominal variables according to an Alternating
Least Squares (ALS) logic.

To validate the algorithm and verify the advantages of this procedure that uses
a quantification for each ordinal variable we used  the dataset “mobile” published
in the paper of Tenenhaus et al (2005). The results are compared with those obtained
with the traditional algorithm PLS-PM in which ordinal variables are processed as
quantitative variables.

2. THE QUANTIFICATION OF THE ORDINAL VARIABLES

A quantification for ordinal and nominal variables based on an optimal
scaling technique is largely used in literature to analyze the data through statistical
methods developed for continuous variables.

The optimal scaling is defined by Bock as “the assignment of numerical
values to alternatives or categories, so as to discriminate optimally among the
objects, in some sense. Usually it is the least squares sense, and the values are
chosen so that the variance between objects after scaling is a maximum with respect
to that within objects”.

The optimal scaling techniques can be classified in three categories:
• methods of optimal scaling drawn through scale construction models

• methods of optimal scaling drawn through an objective function

• methods of optimal scaling obtained simultaneously with the estimation of
parameters.

The first, the scale construction, is characterized and based on the definition
and construction of a scale of values, as Likert, Guttman and Rash scale. A prior
quantification based on external optimal scaling technique is applied. The simplicity
and applicability of these methods have rendered them the tools more used to
measure and quantify the ordinal/nominal variables.

Despite their simplicity, they have some disadvantages. In particular only the
approach of Rash produces, using a logistic model, numerical variables.
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Moreover, it is important to bear in mind that, in presence of categorical and
continuous variables, this approach does not allow to have a unique function to
optimize. The Rash model does not permit, finally, to estimate simultaneously the
quantification and the parameters of the model: these ones could be estimated only
after the process of quantification and by another algorithm. The second approach
is based on the definition of an objective function coherent with the analysis to be
develop. The optimal scaling is integrated inside the methodology of data analysis
or modeling. This approach has the advantage to obtain the quantification across the
maximization of a criterion, but, if it is used in a Structural Equation Model, the
function optimized does not express a casual model, and so this method does not
allow to estimate in a unique function the parameters of a model and the optimal
quantification.

The third approach is based on the Alternating Least Squares Optimal Scaling
(ALSOS) algorithms, in which, according to the analysis to be develop, the optimal
scaling is a step useful to maximize the relationship between the variables optimally
quantified. The ALSOS algorithms are based on the Kruskal proposal (1964), that
transforms the qualitative variables with assumption that the relationships, among
the quantified variables (dependent and independent), are linear. This approach has
these properties:
– the optimal scaling is used to quantify nominal or ordinal variables,

contextualizing the process in the general analysis to be develop;

– the estimation of the parameters and the quantification are two different steps,
alternated, that take inspiration from the non metric ANOVA of Kruskal (1964)
and the Factorial Analysis (Kruskal-Shepard, 1974);

– the starting point is the algorithm HOMALS that develops a Multiple Corre-
spondence Analysis, from which other methods are derived, adding some
constraints on the parameters.

What kind of optimal scaling techniques are used in SEM and in particular in
the Partial Least Squares-Path Modeling (PLS-PM)?

In the PLS-PM, the basic idea is to assume the continuity for the ordinal
variables, treating them as numerical, and to dichotomize the nominal variables,
increasing the dimension of the raw matrix.

Sometimes are used scale construction models or, in the specific case of the
ordinal variables, an equidistribution linear normalization.

In the literature there is a proposal of E. Jakobowicz and C. Derquenne (2006)
for the estimation of a SEM, with the algorithm of PLS-PM, in presence of
qualitative manifest variables. They propose a new algorithm, called Partial
Maximum Likelihood (PML), based on Generalized Linear Models (GLM) . They
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modify the first step of the PLS-PM algorithm, according to the nature of manifest
variables (nominal or ordinal). The authors introduce the concept of reference
variable as the initial estimation of the latent variable: it is a manifest variable of any
latent block associated to the j-th block that is supposed to better explain the latent
concept. The vector of the initial weights will be equal to (Lohmöller has demonstrated
that for any initial vector of weights the algorithm of PLS-PM converges):

w x x
jh jh i

0

1
= cov( , ) (1)

where xi1 is the reference variable chosen between the blocks associated to j-ith
block. The authors propose a series of statistical methodologies well known in
literature, as the Logistic and ANOVA model, whose differences between themselves
are related to the nature of the variable xjh and the reference variable xi1. The inner
estimation is the same as in the classical PLS-PM algorithm, while for the outer
estimation it is important to consider the nature of the manifest variables; in
particular if the manifest variable xjh is quantitative, the algorithm proceeds in the
classical way, while if it is qualitative, it is used, to obtain a new estimation of the
latent variable, the variance model. In this case for each category of the manifest
variable is computed a weight, that corresponds to the coefficient of the variance
analysis.

This approach has the advantage to make the quantification of the qualitative
variables by an internal procedure to the classical algorithm of PLS-PM and it is
possible to introduce all kind of variables, and for the qualitative ones, each of them
quantified according to its nature.

On the other hand there are two disadvantages:
• the properties1 of the algorithm of PLS-PM are lost;

• the weights of qualitative and quantitative variables are not estimated in the
same way2.

Another proposal in the literature is of P.G. Lovaglio (2002), who developed
an algorithm for the estimation of a multivariate regression model with mixed
variables (dependent and independent): this algorithm computes a regression

1 The properties of the algorithm of PLS-PM are: absence of distributional assumption, the
possibility to apply the technique to matrixes with a number of individuals minor than of number
of variables.

2 Where there are mixed variables, the weights of quantitative variables are computed as the
covariance between manifest and latent variables, instead of the case of ordinal or nominal
variables the weights are either the means of the values of these variables or the coefficient of
logistic regression.
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model in which there are a set of manifest variables X, that are explicative, and a set
Y of manifest variables that are dependent and that define a latent variable. The
algorithm estimates, alternating two steps, the best quantification for the variables
X and Y (in the case in which the sets are composed by qualitative variables) and
the best estimation of the parameters of the model. So the algorithm belongs to the
family of ALSOS and, in particular, the proposal of Lovaglio is based on the join
between two approaches: the first is the Non Linear Regression of the set Y on X
to obtain the optimal quantification for both variables, and the second step is the
Principal Component Analysis to obtain the estimation of the latent variable as the

first component of ˆ ' ˆY Y .  These two steps are alternating until the convergence and
the results are the estimation of the regression coefficients and the optimal
quantification for the qualitative variables. This algorithm allows the possibility to
introduce in a regression model all kind of variables and, therefore, it can be
considered  an alternative proposal to the LISREL approach to estimate a latent
concept, measured by indicators and causes, using the Non Linear Principal
Component Analysis (NPCA). The fundamental characteristic of this algorithm is
the simultaneous estimation of the vector of scaling and of the parameters of the
model (regression coefficients).

3. PALSOS-PM ALGORITHM

Aim of this paper is presenting a method of quantification of ordinal variables:
we have developed in a Structural Equation Model, based on the Partial Least
Squares Path Modeling method ( PLS-PM), an original algorithm that pursues the
optimal quantification of ordinal variables, and also nominal variables, according
to an Alternating Least Squares (ALS) logic. The algorithm is called Partial
Alternating Least Squares Optimal Scaling- Path Modeling (PALSOS-PM), because
it has the structure of the algorithm of PLS-PM, but it uses, as method of Optimal
Scaling, an Alternating Least Squares algorithm to obtain the optimal quantification
for manifest variables and the inner and outer estimation of the model.

The principal characteristic of this approach is the absence of distributional
assumption and the possibility to introduce all kind of variables in same block of
manifest variables. PALSOS-PM algorithm has some characteristics of PLS-PM
and some of Alternating Least Square algorithms: of the first, it has the basic
structure (inner and outer estimation and the Path Analysis) and the inner estimation
of the latent variables, of the second, it has the process of quantification, modifying
the estimation of the outer weights, because it takes into account the nature of the
variables. The PALSOS-PM algorithm obtains the best coefficients of the model
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and the best quantification for the variables by the use of Morals (Young et al. 1976)
algorithm, that computes simultaneously the parameters of a regression model and
the optimal scaling vectors for the manifest variables.

PLS-PM approach (Wold, 1982) is based on alternated simple and multiple
regressions steps. Scores are determined by alternating an external estimate of the
Latent Variable (LV) and an internal one until convergence.

In the external estimate (vq) each LV (ξq) is obtained as a linear combination
of its Manifest Variable (MV) xpq (p = 1, …, Pq):

v w x
q pq pq

p

Pq

∝ ±
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

=
∑

1
(2)

Then, basing on this external estimate vq, the internal estimate zq of each LV
ξq in relation to the other LVs is obtained:
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q qq q

q

k

∝
=

∑ ' '

1
(3)

where eqq’ are the internal weights usually set equal to the sign of the correlation
coefficient between the external estimates of the qth and the q’th LVs. The symbol
∝  means that internal and external estimates of LVs are standardized.

Then, the next step is the estimate of the external weights (wpq) to be assigned
to each MV (in the new external estimate step) of the corresponding LV. They can
be computed according the reflective (mode A) or formative (mode B) scheme. In
particular, in a reflective block, each relationship can be expressed as a simple
regression model where the weights are the simple regression coefficients between
each MV and the LV; in a formative block, one LV depends on its MVs, then its
relations define a multiple regression model, where Xq is the explanatory MV
matrix and the LV is the response and where the weights are estimated like multiple
regression coefficients.

Partial results for external weights are used for the new external estimate of
LV. The estimation algorithm alternates these 3 steps until convergence between
internal and external estimates is reached. Finally, LV estimates are used in a set of
multiple and/or simple regression analyses for determining the structural relations
(among LV), or path-coefficient.

The Morals algorithm optimizes the multiple correlation between a single
criterion variable and a set of predictor variables where any of the variables
(criterion included) may be measured by nominal, ordinal, interval and ratio scales.
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The variables do not all have to be measured at the same level nor does the process,
which is assumed to have generated data, may be either discrete or continuous.
Morals obtains an optimal scaling for each variable within the restrictions imposed
by the regression model, the measurement level, and the generating process. The
scaling is optimal in the Fisher sense of optimal scaling: the multiple correlation is
maximized. It is based on the minimization of a quadratic function in respect to
three parameters.

The independent qualitative variables (nominal and ordinal) are specified as
the product between an indicator matrix Gj (n*kj) and a vector of the scaling
parameters yj (kj*1), that after estimation defines the variables xj

os = Gjyj. This
procedure is made also for the dependent variable z, that becomes  zos = Gzt, where
t is the vector of scaling of the dependent variable z. The loss function to optimize
is:

min ( ), ,β β
t y zj

SSQ G t Gy− (4)

with the constraints  u G t t G G t
z z z

' ' ',= =0 1 with y C
j j
∈  and t C

z
∈ , where u is a

vector of 1 and Cj  and Cz  are the spaces of admissible transformation (they are
closed convex cones) for the categories of each variable, taking into account the
level of measurement. In particular, if the variables are nominal there are not
constraints on the values of quantification, while if the variables are ordinal there
are the constraints of order between the categories.

So the final objects of this technique are to obtain the best quantification of
the qualitative variables and to optimize the regression parameters; obtained, in
fact, the first estimation of the vectors zos and xos (os is the acronym of optimal
scaling) the parameters of multiple regression are updated using as variables the
new obtained to the previous step, reiterating the steps until the convergence.

In PALSOS-PM this procedure is done for each block of latent variables,
separately.

The algorithm starts with an arbitrary quantification of the manifest variables
(the typical coding of a questionnaire). The algorithm proceeds with the inner
estimation of latent variables, and then it updates the outer weights by Morals.
So in the external estimate:
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The internal estimate zq of each LV ξq in relation to the other LVs is obtained:

z e vos
q qq q

os

q

∝ ∑ '

'
' (6)

We have chosen to use this iterative algorithm for three reasons: the first is the
possibility to estimate the relationship between variables in the reflective and
formative case; the second is its capability to treat simultaneously different kind of
variables, because the quantification step is individually; the third is the simultaneous
estimation of the relationship between the manifest and latent variables and the best
quantification.

The steps of PALSOS-PM algorithm are described in the figure 1.

Fig. 1: PALSOS-PM algorithm.

repeat 

Step2 

           for (q in 1:Pq) 

 

           endfor 

Step3 

           for (q in 1:k) 

 

The  weights epp’ can be computed by the Centroid, Factorial or Path scheme, 

as in the PLS-PM        

           endfor 

Step4 

Update the estimation of weights wij by Morals 

Wpq =cov(xpq,zq)  reflective 

Wpq = (X’X)-1 X’Z  formative 

Step5 

       Ceck the convergence 

|wold
pq � wnew

pq | <= 10�5 break 

 

Consider the matrix X of manifest variables and define the path diagram 

Step1 

Compute a first casual vector of weights wpq 
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When the algorithm returns to the outer estimation, a new quantification is
obtained by Morals. The PALSOS-PM algorithm besides to estimate a SEM model
with ordinal or qualitative variables, allows to estimate a model with all quantitative
variables: in this case it computes the parameters by the classical PLS-PM
algorithm.

For the validation of the outer and inner model, we use the bootstrap technique
to create suitable interval confidence, because the quantification procedure is not
based on distributional assumptions. Therefore, information about the variability of
the parameter estimates and hence their significance is generated by means of
resampling procedures.

PALSOS-PM takes into account, during the estimation of the parameters, the
problem of the signs and, as in the PLS-PM, it solves it using the comparison of the
signs of the eigenvectors.

4. PALSOS-PM AT WORK: THE MOBILE DATASET

The PALSOS-PM algorithm is here applied, for comparative aims, to a dataset
used in the work of Tenenhaus et al. (2005), in which an ECSI model is estimated
to evaluate the customer satisfaction. The European Costumer Satisfaction Index
(ECSI) is an economic indicator that measures customer satisfaction. A model has
been derived specifically for the ECSI. In this model, seven interrelated latent
variables are introduced. It is based on well-established theories and approaches in
customer behaviour and it is to be applicable for a number of different industries.
ECSI is an adaptation of the Swedish customer satisfaction barometer (Fornell,
1992) and is compatible with the American customer satisfaction index. The entire
model is important for determining the main target variable, being Customer
Satisfaction Index. The ECSI model is described in figure 2.

A set of manifest variables is associated with each of the Latent Variables. This
model is applied to a sample of 250 customers of a mobile society, to evaluate their
satisfaction respect to the services received.

The manifest variables are 24 and are so subdivided in the latent blocks:
– five manifest variables for the block Image;

– three manifest variables for the block Expectation;

– seven manifest variables for the block Perceived quality;

– two manifest variables for the block Perceived value;

– three manifest variables for the block Customer Satisfaction;

– one manifest variable for the block Complaints;

– three manifest variables for the block Loyalty.
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All variables are ordinal and express on a scale of ten values, so the PALSOS-
PM algorithm is used to obtain an optimal quantification for these variables and to
estimate the structural parameters of the model. This model was estimated with the
classical algorithm of PLS-PM with the software X-LSTAT, and with the algorithm
PALSOS-PM with the quantification of the manifest variables.

In the figures 3 and 4 the results of the inner estimation are reported, allowing
to compare the PALSOS-PM with those of the classical PLS-PM.

We can see that, respect to the model estimated with PLS-PM algorithm,  only
one parameter assumes a negative sign, and so it is no-significant: Expectation on
Customer Satisfaction (this parameter has a negative value for the T-Statistic),
while with the PLS-PM algorithm also the relationship between Expectation and
Perceived Value is no-significant. Besides, the variable with a good impact on the
C. Satisfaction is the Perceived Quality (0.595) (as also with the PLS-PM), followed
by Image (0.228) and Perceived Value (0.194): the difference between the two
algorithms is in the estimation of parameters that  in PALSOS-PM is optimized by
Morals.

It is confirmed the strong impact of Perceived Quality on the Perceived Value
(0.758), like it is interesting to note as the C. Satisfaction, with PASOS-PM
algorithm, has a strong impact on the Loyalty (0.570), respect to PLS-PM (0.195).
So the quantification has produced an improvement in the estimation of the inner
relationship between the latent variables, strengthening existing relationships and
validating other universally rejected.

Fig. 2: The model for the evaluation of Customer Satisfaction.
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Fig. 3: The model with PALSOS-PM.

Fig. 4: The model with PLS-PM (XLSTAT).
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In the table 1 there are the R2 of the inner regressions and the Average
Communality (this index is the mean of the correlations between the manifest and
latent variables) for each block. In the last row we have reported the value of
Goodness of Fit index (GoF is the index used to evaluate the global fit of the model
to the data) for the two models. Respect to the values of R2,  the PALSOS-PM
algorithm improves significantly them, because the quantification step; we have the
same result for the Average Communality, because the correlations are optimized
by Morals.

Tab. 1: The results of validation indexes with the PALSOS-PM.

Latent variable R2 A. communality A. redundancy Gof index

Image 0,943

Expectation 0,948 0,957 0,902

P.quality 0,915 0,960 0,886

P.value 0,949 0,984 0,935

C.Satisfaction 0,980 0,975 0,956

Complaints 0,954 1,000 0,934

Loyalty 0,951 0,889 0,833

0,951

We can see  as the variables are strictly correlated and the latent variables are
the best obtainable from a given set of manifest variables (the maximization of the
correlation coefficients). In particular, for the Average Communality, we have a
significative improvement for the latent block Image, for which the value passes
from 0.48 to 0.94 and  for the latent block Loyalty (0.52 vs 0.88).

For these latent variables the quantification has produced a significative
improvement in their definition. Concerning the value of the redundancy index, its
values for each block, except  for the block C. Satisfaction, are higher than the one
of the model estimated with PLS-PM: the manifest variables and the exogenous
latent variables are able to explain more variability of the manifest variables of
endogenous latent blocks.

This improvement is reflected also in the computation of the GoF index, that
depends from the R2 and Communality. As a consequence of these two results the
value of GoF is higher than of PLS-PM (0.95 against of 0.61).
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Tab. 2: The results of validation indexes with the PLS-PM (XLSTAT).

Latent variable R2 A. communality A. redundancy Gof index

Image 0,478

Expectation 0,255 0,480 0,122

P.quality 0,311 0,577 0,179

P.value 0,345 0,849 0,292

C.Satisfaction 0,680 0,693 0,472

Complaints 0,277 1,000 0,277

Loyalty 0,457 0,517 0,238

0,471

4. CONCLUSION AND FUTURE PERSPECTIVES

In the previous sections we have discussed briefly the characteristics of the
ALS algorithms, and in particular of Morals, that we have used to quantify the
ordinal variables used in a SEM model. The problem of quantification is due to the
strong assumption of continuity of these variables made in the PLS-PM algorithm:
sometimes the relationships between the variables are not significant because they
have a small scale of values. Our proposal allows to introduce all kinds of variables
in a SEM model, and to quantify them respect to their nature (nominal, ordinal,
interval, ratio), and this step of quantification is iterate in the algorithm until the
convergence. The advantage of our proposal is the possibility to use mixed
variables, in the same latent block, because Morals estimates the regression
coefficients in presence also of mixed variables, each of them is treat respect its
nature. The future work is oriented to verify the influence of the scale of measure
(what does happen with a scale of 3, 4 or 5 values?) on the estimation of the model
across PALSOS-PM, and what is the impact of the number of categories of nominal
variables on the estimation of the model.
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UN APPROCCIO ALTERNATING LEAST SQUARE PER LA
STIMA DI UN SEM BASATO SU VARIABILI ORDINALI

Riassunto

In questo lavoro viene proposta una possibile soluzione al trattamento delle variabili
ordinali nel contesto dei Modelli ad Equazioni Strutturali (MES), ed in particolare per il
caso del PLS-PM.

Dopo aver evidenziato i limiti delle soluzioni proposte in letteratura, viene esplicitato
la logica alla base dell’algoritmo PALSOS-PM da noi sviluppato in ambiente R. L’algoritmo
inserendo come metodo di Optimal Scaling (O.S.) la metodologia Alternating Least
Squares (Als), consente di ottenere nel PLS-PM, la migliore quantificazione per ogni tipo
di variabile e la stima dei parametri del modello.

In particolare viene introdotto,per la stima esterna del modello PLS-PM, l’algoritmo
Morals che consente di effettuare una regressione multipla con variabili dipendenti miste
(quantitative, ordinali e/o nominali). L’algoritmo proposto è applicato ad un dataset noto
in letteratura, al fine di confrontare i risultati ottenibili con quelli derivanti dall’applica-
zione del modello classico PLS-PM.


