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RECONSTRUCTION OF CRACK CLUSTERS IN THE RECTANGULAR
DOMAIN BY ULTRASONIC WAVES

M. Brigante1 and M. A. Sumbatyan2

1Department of Structural Engineering, University of Naples – Federico II,
Naples, Italy
2Faculty of Mathematics, Mechanics, and Computer Science, Southern Federal
University, Rostov-on-Don, Russia

In the present article we study the reconstruction problem for clusters of linear cracks inside
a rectangular domain. The parameters to be reconstructed are the number of cracks and the
size and slope of each defect. The scanning is performed by a single ultrasonic transducer
placed at a certain boundary point. The input data, used for the reconstruction algorithm,
is taken as measured oscillation amplitudes over an array of chosen boundary points.
The proposed numerical algorithm is tested on some examples with multiple clusters of
cracks whose position and geometry are known a priori.

Keywords: BEM, crack clusters, global random search, optimization, reconstruction, rectangular domain

1. INTRODUCTION

In many engineering applications there arise the problems of identifi-
cation of unknown objects located in some domains, the so-called image
recognition. Various methods are used to study such problems. In the
non-destructive testing (NDT) of materials, the acoustic and electromagnetic
methods are based on wave properties of damaged materials, and their
difference from analogous properties of perfect (undamaged) bodies. The
problem of identification of the underground near-surface texture as well
as defects arising in masonry architectural structures is being successfully
studied by using both acoustic and electromagnetic waves [1–3]. In parti-
cular, ultrasonic techniques [4] demonstrate high efficiency in defect identi-
fication. Other acoustic methods are connected with measurements of
dynamic wave fields over some parts of the sample’s boundary, under con-
dition that the latter is loaded by a certain oscillating force. Some theoretical
works prove that the shape of the boundary can uniquely determine the
geometry of the internal defects [5–7]. A contiguous method is founded upon
measurements of the natural frequencies of the sample. In fact, the change of
the geometry of internal defects influences significantly the measurable set of
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natural frequencies. This permits the reconstruction on the basis of alterna-
tive ideas.

It should be noted that from the mathematical point of view the recon-
struction problem under consideration is a typical inverse problem. During
the latest decades, the theory of inverse problems has been developed
very intensively [8–10]. This theory is connected with ill-posed problems
[11], which generate instability when one applies standard direct numerical
methods to construct the solution.

The main goal of the present work is to develop an efficient algorithm
to solve the reconstruction problem in the case when a set of linear
cracks are located in the rectangular specimen. The investigation is per-
formed under the assumption of scalar ultrasonic wave propagation [4].
This means that in the case of solid specimen, where both longitudinal
and transverse types of waves may propagate through the domain, we
assume that one of them plays predominant role, so that the second
one can be neglected. We first develop an appropriate form of the
Green’s function in the rectangular domain. Then by a standard approach
known in the classical potential theory, we reduce the wave problem in
the damaged rectangle to a Boundary Integral Equation (BIE). The recon-
struction problem is formulated as follows. Assume the rectangle contain-
ing a set of internal cracks is loaded by a harmonic pressure source at a
certain point of its outer boundary. If one can measure the amplitude of
harmonic oscillations over the boundary line, then one can try to restore
the full information about the number and the geometry of all defects.
We do not pay much attention to such fundamental questions as exist-
ence and uniqueness. Instead we develop an efficient algorithm for prac-
tical reconstruction.

2. FORMULATION OF THE PROBLEM

Let a rectangular domain (0, a)� (0, b) represent a specimen that admits
propagation of acoustic waves, in frames of two-dimensional problem. A
cluster of Nc linear cracks may appear in the specimen, and the problem
is to reconstruct their number, position, and geometry, by using ultrasonic
scanning. Generally, each crack may have its own length and slope. The
scanning is performed by a single surface harmonic source s0 with the circu-
lar frequency x. In order to be more specific, let us assume that the source is
applied at the point (x0, 0), so that p¼ s0d(x� x0) over the lower face of the
rectangle, where d is Dirac’s delta-function. All other faces of the specimen
are free of load, hence the boundary condition is trivial there: p¼ 0 over
remaining part of the boundary. The dependence of all physical quantities
upon time is taken in the form e� ixt.

Let us assume a cluster of linear cracks to be located in the rectangu-
lar domain (see Fig. 1), and ln, (n¼ 1,. . ., Nc) denotes the surface of n th

194 M. BRIGANTE AND M. A. SUMBATYAN

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
S
u
m
b
a
t
y
a
n
,
 
M
.
 
A
.
]
 
A
t
:
 
0
5
:
3
6
 
1
4
 
O
c
t
o
b
e
r
 
2
0
1
0



crack. Then the acoustic pressure p(x, y) in the damaged specimen
satisfies the Helmholtz equation [4]

@2p

@x2
þ @2p

@y2
þ k2p ¼ 0; k ¼ x

c
ð2:1Þ

where wave number k is associated with that type of wave, among two
ones, which play the dominant role.

The boundary conditions to Eq. (2.1) are described above. Let us denote
the full set of cracks by l: l ¼

SNc

n¼1 ln, and the full outer boundary line (which
consists of four straight-line segments) by L. If the internal faces of defects are
free of load, then the boundary condition over l and on the outer boundary
contour L are

pðx; yÞjl¼ 0; pðx; yÞjL¼ s0dðx � x0ÞdðyÞ: ð2:2Þ

Taking into account that the problem in concern is linear, it is possible
to represent the full solution to the direct problem as a superposition of
the function p0(x, y) corresponding to outer load (2.2) applied to the perfectly
continuous (i.e., without any flaw) rectangle, and the one p1(x, y) corre-
sponding to the problem with trivial boundary conditions over the outer con-
tour L, with the cracks l subjected to a certain pressure

pðx; yÞ ¼ p0ðx; yÞ þ p1ðx; yÞ; p0ðx; yÞjL¼ s0dðx � x0ÞdðyÞ: ð2:3Þ

This results in the following boundary value problem for function p1:

@2p1
@x2

þ @2p1
@y2

þ k2p1 ¼ 0; p1ðx; yÞjl¼ �p0ðx; yÞjl ; p1ðx; yÞjL¼ 0: ð2:4Þ

FIGURE 1. A cluster of cracks in the rectangular sample (S designates the point acoustic source).
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3. A SPECIAL FORM OF GREEN’S FUNCTION

Since the applied technique is based upon the BIE method [12], the key
role for further discussion is played by Green’s function. There are some
classical approaches known in literature to construct Green’s function in
the rectangular domains [13,14], but final representations are not so simple
to be used directly. In order to attain a more simple form of respective
expressions, in the present section we develop a special appropriate form
of Green’s function.

Let us construct the Green’s function for the considered rectangular
domain, i.e., function U(n, g, x, y) satisfying the inhomogeneous Helmholtz
equation with homogeneous boundary condition

@2U

@n2
þ @2U

@g2
þ k2U ¼ � dðn� xÞ dðg� yÞ; Ujðn;gÞ2L¼ 0: ð3:1Þ

It should be noted that point (x, y) in (3.1) is an arbitrary fixed point inside the
rectangle.

Let us represent the solution to Eq. (3.1) in the form

Uðn; gÞ ¼
X1
m¼1

sin
pmn
a

� �
U�

mðgÞ: ð3:2Þ

Obviously, this representation automatically satisfies the trivial boundary
conditions on the left (n¼ 0) and right (n¼ a) boundary sides of the rectangle.

Substitution of (3.2) into (3.1), after taking a scalar product of the arising
relation with functions sinðp �mmn=aÞ over the interval 0� x� a, due to natural
orthogonality of trigonometric functions, results in the following ordinary dif-
ferential equation regarding function U�

mðgÞ:

U�00 � q2
m U� ¼ � 2

a
sin

pmx

a

� �
dðg� yÞ; qm ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pm
a

� �2

�k2

r
; ð3:3Þ

where the subscript m in designation of function U�
mðgÞ is omitted for the

sake of brevity.
The solution to this inhomogeneous equation can be obtained as a gen-

eral solution of the respective homogeneous equation,

U�
h ¼ C1 sinh qmgð Þ þ C2 sinh qmðg� bÞ½ �; ð3:4Þ

plus a particular solution to the full inhomogeneous equation. Since the latter
may not satisfy the boundary conditions over the horizontal boundary sides,
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y¼ 0, b, this can be constructed by applying the Fourier transform with
respect to g over the infinite axis

~UU
�
pðbÞ ¼

Z 1

�1
U�

pðgÞeibg dg; U�
pðgÞ ¼

1

2p

Z 1

�1
~UU
�
pðbÞe�ibg db: ð3:5Þ

Application of the Fourier transform to Eq. (3.3) reduces the latter to the
following simple algebraic equation:

�b2 ~UU
�
pðbÞ � q2

m
~UU
�
pðbÞ ¼ � 2

a
sin

pmx

a

� �
eiby

) ~UU
�
pðbÞ ¼

2

a
sin

pmx

a

� � eiby

b2 þ q2
m

; ð3:6Þ

whose Fourier inversion over b is

U�
pðgÞ ¼

sinðpmx=aÞ
a qm

e�qmjy�gj: ð3:7Þ

Therefore, the full solution to Eq. (3.3) is

U� ¼ C1 sinh qmgð Þ þ C2 sinh qmðg� bÞ½ � þ sinðpmx=aÞ
a qm

e�qmjy�gj: ð3:8Þ

The unknown constants should be determined from the two boundary
conditions, which are U�ðg ¼ 0; bÞ ¼ 0, that defines these constants in the
following form

C1 ¼ � sinðpmx=aÞ
a qm sinhðqmbÞ

e�qmðb�yÞ; C2 ¼ sinðpmx=aÞ
a qm sinhðqmbÞ

e�qmy : ð3:9Þ

Now, collecting together Eqs. (3.2), (3.8), (3.9), one arrives at the represen-
tation

Uðn; g; x; yÞ ¼
X1
m¼1

sinðpmn=aÞ sinðpmx=aÞ
a qm sinhðqmbÞ

� sinh qmðg� bÞ½ �e�qmyf

� sinh qmgð Þe�qmðb�yÞ þ sinh qmbð Þe�qmjg�yj
o
: ð3:10Þ
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It can be shown, by applying expansion of trigonometric and hyperbolic
functions with difference and sum of two arguments, that formula (3.10) can
also be rewritten in the following equivalent form:

Uðn; g; x; yÞ ¼ 2

a

X1
m¼1

sinðpmn=aÞ sinðpmx=aÞ
qm sinhðqmbÞ

�
sinh qmðb � gÞ½ � sinh qmyð Þ; g � y;

sinh qmðb � yÞ½ � sinh qmgð Þ; g < y:

� �
: ð3:11Þ

One more equivalent representation of Green’s function can be extracted
from (3.11), after some routine transformations:

Uðn; g; x; yÞ ¼ 1

a

X1
m¼1

sinðpmn=aÞ sinðpmx=aÞ
qm sinhðqmbÞ

� cosh qmðb � jg� yjÞ½ � � cosh qmðb � g� yÞ½ �f g; ð3:12Þ

which is also equivalent to the following form containing for eachm a sum of
four more elementary terms:

Uðn; g; x; yÞ ¼ 1

2a

X1
m¼1

1

qm sinhðqmbÞ
� cos pm

n� x

a

� �
cosh qmðb � jg� yjÞ½ �

�

� cos pm
nþ x

a

� �
cosh qmðb � jg� yjÞ½ �

þ cos pm
nþ x

a

� �
cosh qmðb � g� yÞ½ �

� cos pm
n� x

a

� �
cosh qmðb � g� yÞ½ �

�
: ð3:13Þ

It should be noted that if the points (n, g) and (x, y) both lie inside the
rectangle, then for all four terms in (3.13) the second argument g�y is such
that jg�yj< 2b, so � b< b� jg�yj< b. This predetermines the series (3.13)
to converge not slower than a geometric progression. It is also easily seen
that the constructed Green’s function (3.11) satisfies the required trivial
Dirichlet boundary conditions indeed.

4. DERIVATION OF THE BASIC BIE

The constructed Green’s function permits derivation of the principal
unknown function p1(x, y) inside the rectangle as an integral over the cracks
faces, contour l, with the use of standard methods of potential theory [12]

p1 x; yð Þ ¼
�Z

C

þ
Z
L

�
p1

@U
@n

� U
@p1
@n

� �
dl; ð4:1Þ
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where both the outer unit normal vector n(n, g) and the elementary arc of length
dl(n, g) are connected with the point (n, g), not (x, y). Besides, we imply that
contour C ¼

SNc

n¼1 Cn and each elementary boundary curve Cn represents itself
a smooth closed contour surrounding the crack ln ‘‘face to face,’’ since the basic
integral representation (4.1) is valid for closed smooth contours only [12].

Now it becomes clear why so specifically constructed Green’s function
is very important in the problem at hand. In fact, both U and p1 functions
vanish over the outer boundary of the domain, due to boundary conditions
(2.4) and (3.1). Therefore, the second integral over contour L is trivial, and
there remains only the integral over C in representation (4.1).

Let us prove that Z
C

p0
@U
@n

� U
@p0
@n

� �
dl ¼ 0: ð4:2Þ

The proof is founded upon the fact that both functions p0(n, g) and U(n, g, x, y)
are regular inside the rectangle. Hence, they possess the same value on
the opposite sides of the crack. Besides, since the direction of normal n
is opposite on the opposite cracks’ faces, the normal derivatives of these func-
tions have the same values with opposite sign. Therefore, the contributions of
the quantities along opposite cracks’ faces in (4.2) cancel to each other.

Now, by summation of (4.1) and (4.2), one can express p1(x, y) in terms
of boundary values of the full pressure p(x, y) and its normal derivative

p1 x; yð Þ ¼
Z
C

p
@U
@n

� U
@p

@n

� �
dl ¼ �

Z
C

@p

@n
Udl; ð4:3Þ

due to boundary condition (2.2).
Now, by bringing nearer surrounding smooth contour Cn close to the

faces of the current crack, one can see that function U possesses again equal
values at opposite points of the two crack faces. Then, by introducing the
new unknown function g as a sum of normal derivative of pressure at two
opposite sides of the crack: g(n, g)¼ (@p=@n)(1)þ (@p=@n)(2), one can write
out representation (4.3) with the integration contour coinciding with the true
full set l of cracks’ segments

p1 x; yð Þ ¼ �
Z
l

gðn; gÞU n; g; x; yð Þdl: ð4:4Þ

By using well-known boundary value of the potential of single layer [12],
if any (X, Y)2 l, then

lim
x;yð Þ! X;Yð Þ

Z
l

gðn; gÞ U n; g; x; yð Þdl ¼
Z
l

gðn; gÞ U n; g;X ;Yð Þdl: ð4:5Þ
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With such a limit (x, y)! (X, Y)2 L, Eq. (4.4) allows one to formulate the
basic BIE in the form

Z
l

gðn; gÞUðn; g;X ;YÞdl ¼ p0ðX;YÞ; ðX ;YÞ 2 l; ð4:6Þ

since p1¼ p� p0 and due to boundary condition (2.2). One thus can see that
if the geometry of the full set of cracks l is known a priori, then the problem
can be reduced to a system of Fredholm integral equations of the first kind
holding over cracks’ segments. It should be noted that kernels of these inte-
gral equations coincide with Green’s function, so they possess a logarithmic
singularity when (n, g)! (X, Y) [12].

In order to complete formulation of the basic BIE (4.6), let us construct its
right-hand side, function p0(X, Y). This can be performed by analogy to the
method applied to derive respective representation for function U. Namely,
one may seek solution to the Helmholtz equation with boundary condition
(2.3) again as a Fourier series analogous to Eq. (3.2)

p0ðx; yÞ ¼
X1
m¼1

sin
pmx

a

� �
umðyÞ; ) u00

m � q2
m um ¼ 0;

) umðyÞ ¼ Bm sinh qmyð Þ þDm sinh qmðy � bÞ½ �: ð4:7Þ

Now, due to orthogonality of the trigonometric functions, boundary con-
dition p0(x, b)¼ 0 implies Bm¼ 0. Then the remaining boundary condition, at
y¼ b, is reduced to the following equality:

�
X1
m¼1

Dm sinhðqmbÞ sin
pmx

a

� �
¼ s0dðx � x0Þ; Dm ¼ � 2s0

a

sinðpmx0=aÞ
sinhðqmbÞ

:

ð4:8Þ

The substitution of (4.8) into (4.7) results in the following expression:

p0ðx; yÞ ¼
2s0
a

X1
m¼1

sin
pmx

a

� �
sin

pmx0
a

� � sinh½qmðb � yÞ�
sinhðqmbÞ

: ð4:9Þ

So long as the principal system of BIE (4.6) with the kernel taken in one of
forms (3.10)–(3.13) and the right hand-side in the form (4.9) is solved, the
acoustic pressure at arbitrary internal point (x, y) of the rectangular domain
can be found from Eq. (4.4).
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5. MATHEMATICAL ASPECTS OF THE RECONSTRUCTION PROBLEM

As indicated in the final part of the previous section, as soon as integral
Eq. (4.6) is solved, i.e., function g(n, g) is defined, the acoustic wave field at
any point inside the rectangle can be calculated from Eq. (4.4). In particular,
one can place ultrasonic probes over some parts of the boundary surface of
the specimen, in order to measure the amplitude of oscillations at a current
boundary point. Assume this amplitude to be determined by the normal
component of the velocity. By neglecting a certain inessential factor, this
velocity is defined by the normal derivative of the acoustic pressure (@p=
@n)jL. Since one can predict the dynamic behavior of the free surface, under
the same harmonic loading, in the case of no crack inside the body, hence
one can easily observe the contribution given by the presence of the flaws,
i.e., normal derivative of p1 at the chosen boundary points of contour L.
The latter can be calculated on the basis of Eq. (4.6) in the following way:

F0ðx; yÞ ¼
@p1ðx; yÞ

@n
¼ �

Z
l

gðn; gÞ @Uðn; g; x; yÞ
@nxy

dl; ðx; yÞ 2 L; ð5:1Þ

and the normal is applied this time at the point (x, y), not (n, g).
Let us write out explicitly the normal derivative of Green’s function. If

n¼ {nx, ny} is the outer unit normal vector to the boundary contour L of
the defect, then it follows from Eq. (3.11) that

@U
@nxy

¼ @U
@x

nx þ
@U
@y

ny ¼ 1

a

X1
m¼1

sinðpmn=aÞ
sinhðqmbÞ

�
�

pm
a qm

cos

�
pmx

a

�
fcosh½qmðb � jg� yjÞ�

� cosh½qmðb � g� yÞ�gnx

þ sin

�
pmx

a

�
fsinh½qmðb � jg� yjÞ�signðg� yÞ

þ sinh½qmðb � g� yÞ�gny
	
:

ð5:2Þ

The reconstruction problem is formulated as follows. Let us assume that
unknown number Nc; ð1 � Nc � N�Þ of cracks, each with unknown pos-
ition and canting angle are located somewhere inside the rectangle. Let us
put a point acoustic source s0 at a certain boundary point (x0, 0) and measure
the amplitude of velocity oscillations over the outer boundary of the domain.
Then, by knowing this measured oscillation, it is required to predict the num-
ber of cracks, their position, and, their geometry. It is obvious that mathemat-
ically the problem is to determine the listed quantities from the known
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function F0(x, y) (5.1). Since another unknown function g(n, g)j(n, g)2l is
involved in all mathematical formulas, this means that mathematically one
needs to solve the system of two integral Eqs. (4.6) and (5.1), which are non-
linear regarding equation of contour l. It should also be noted that we restrict
the possible maximum number of cracks by a certain quantity N�.

Generally, the problem on cracks reconstruction was studied intensively
during some decades past, because of its importance in engineering applica-
tions. This is connected with the fundamental theory of inverse problems (some
interesting theoretical results with further references can be found in [5–10]).
The mathematical results of this sort concern uniqueness of the solution, some
others develop explicit-form analytical solutions. Unfortunately, there are too
few published papers devoted to efficient algorithms of the reconstruction. In
particular, there are no published works on concrete reconstruction algorithms
in the case of multiple cracks located in bounded domains.

In the next section we give the details of a reconstruction algorithm,
which in the case of arrays of cracks is founded on the system of BIE
developed in the previous sections. The reconstruction will be reduced to
an optimization problem for a certain strongly nonlinear objective func-
tional. A special stochastic numerical technique will be applied to solve this
optimization problem.

It should be noted that for the case of a single volumetric flaw in the
half-space, in frames of dynamic elasticity theory, an interesting method
based on BIE theory, was proposed in [15].

6. SOME DETAILS OF NUMERICAL ALGORITHM

When solving the basic system of BIE over the cluster of cracks we apply
the co-location technique. If all contours ln are known, then one can arrange
a dense set of nodes (Xi, Yi), i¼ 1, . . . , Jn, which subdivides the contour to Jn
small intervals of equal length hn. In practice, the length of the step depends
upon the wave length connected with the frequency of oscillations, as well
as upon the length of the n th crack. In any way, one should take at least ten
nodes along the wave length. In order to be more specific, let us take into
account the well-known fact in the ultrasonic detection: it is not realistic
to detect cracks whose size is less than the wave length k. We thus assume,
when developing our algorithm, that the cracks lengths all are greater than
the wave length (equality of the two quantities is admitted too). Starting from
this assumption, we accept all elementary intervals over all cracks to be of
the same length h¼ hn¼ k=10. This guarantees that in the worst case,
when the length of the crack is equal to k, the minimum number of grid
nodes over the crack is 10. For real defects, like in masonry structures, this
number is significantly greater than 10. Obviously, the total number of nodes
is J ¼

PNc

n¼1 Jn, where again Nc is the number of cracks, and the full length of
cracks in the cluster is hJ.
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As follows from the general theory (see, for example, [12]), if h!0, then
the approximate numerical solution to Eq. (4.6) can be obtained by approxi-
mating the integrals by some quadrature formulas. The simplest way is to
approximate the full integrand by a piecewise constant function. The only
problem here is that when solving Fredholm equations of the first kind,
the qualitative properties of the kernels must be taken into account in their
true from. In our problem, the kernels possess a logarithmic singularity as
(n, g)! (X, Y). In order to use correctly this singularity in the integration, it
should be extracted in its explicit form.

The kernel of the developed BIE (4.6) coincides with Green’s function. Let
us start from the representation of Green’s function taken in the form (3.13). It
can be easily seen that if both points (n, g) and (x, y) lie somewhere inside the
rectangle, then the principal behavior of the Green’s function is defined by
the first term in the brackets, among all other four terms presented in
(3.13). Really, the third and the fourth terms in the brackets generate exponen-
tially convergent series as (n, g)! (x, y), because in the case 0< y< b��
b< b� 2y< b the ratio cosh[qm(b� 2y]=sinh(qmb) provides exponential
decay with parameter m increasing. The behavior of the series generated
by the second term in the brackets is predetermined by the properties with
largem, where the series is degenerated to the following tabulated form [16]:

1

2p

X1
m¼1

1

m
cos

2pmx

a

� �
¼ � 1

2p
ln 2 sin

px
a

� �


 


; ð6:1Þ

the value which remains finite if 0< x< a.
The first term in (3.13) is again defined qualitatively by its behavior for

large m generating, when (n, g)! (x, y), the following series [16]:

Uðn; g; x; yÞ 	 1

2p

X1
m¼1

cos½pmðn� xÞ=a�
m

e�pmjg�yj=a

¼ � 1

4p
ln 1� 2e�pjg�yj=a cos

pðn� xÞ
a

þ e�2pjg�yj=a
� �

¼ � 1

4p
ln ð1� e�pjg�yj=aÞ2 þ 2e�pjg�yj=a 1� cos

pðn� xÞ
a

� �� �

	 � 1

4p
ln

p2ðg� yÞ2

a2
þ p2ðn� xÞ2

a2

" #

¼ � 1

4p
ln p2

ðn� xÞ2 þ ðg� yÞ2

a2

" #
:

ð6:2Þ
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One thus can see that the specially constructed Green’s function of rather
complex form reduces to the classical logarithmic Green’s function for
unbounded space: �(lnr)=(2p), r ¼ ½ðn� xÞ2 þ ðg� yÞ2�1=2 when r!0.

Let contour l in BIE (4.6) consist of array of linear cracks ln, n¼ 1, . . . , Nc.
Each crack is defined by its central point with Cartesian coordinates (cn, dn),
by its length fn, and by the angle of slope hn (jhnj � p=2) with respect to x -
axis. If the n -th crack contains Jn grid nodes with the unique step h¼ fn=Jn,
then the full set of nodes is a union of ones varying over all elementary
cracks, as follows:

X
ðnÞ
i ¼ cn þ ½hði � 0:5Þ � fn=2� cos hn;

Y
ðnÞ
i ¼ dn þ ½hði � 0:5Þ � fn=2� sin hn

(
ði ¼ 1; . . . ; Jn;n ¼ 1; . . . ;NcÞ:

ð6:3Þ

Once again, the total number of grid nodes is equal to J ¼
PNc

n¼1 Jn.
It should be noted that the grid nodes over any crack are distributed so

that they are situated just at the half-way point between the end-points of
a current elementary segment. Such an arrangement provides a symmetry
so desired for any algorithm. In frames of such an approach, the integrals
over small vicinity of the logarithmic singularity can be calculated explicitly.
This calculation is founded on the following observation. If (n, g)! (X, Y) in
(4.6), then both points (n, g) and (X, Y) lie on the same crack ln, hence

g� Y ¼ ðn� XÞ tan h; dl ¼ dn
cos h

: ð6:4Þ

Therefore, the sought integral over small neighborhood c of the singular
point, with the use of (6.2), is (assuming function g(n, g) to be constant on
the small elementary interval)

V ¼
Z
c
Uðn; g;X ;YÞdl 	 � 1

4p

Z
c
ln p2

ðn� XÞ2 þ ðg� YÞ2

a2

" #
dl

¼ � 1

4p

Z Xþh cos h=2

X�h cos h=2
ln p2

ðn� XÞ2

a2 cos2 h

" #
dn
cos h

¼ � 1

p

Zh cos h=2

0

ln n� lnða cos h=pÞ
cos h

dn

¼ � 1

p
nðln n� 1Þ

cos h






n¼h cos h=2

n¼0

� h

2
ln

a cos h
p

� �" #
¼ h

2p
1� ln

ph
2a

� �
:

ð6:5Þ
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Note that this quantity is universal for all cracks from the cluster and for all
grid nodes. It is meaningful that quantity V is free of any geometrical para-
meter of the current crack including slope angle h.

Now, by changing the integral in the basic BIE (4.6) taken all over the
cracks with the discretization as discussed above, the latter can be reduced
to the following algebraic system:

XJ

j¼1

aijgj ¼ p0i; i ¼ 1; . . . ; J; ð6:6aÞ

with

gi ¼ gðXi;YiÞ; aii ¼ V ; ðXj;YjÞ 2 l; ðXi;YiÞ 2 l;

p0i ¼ p0ðXi;YiÞ ¼
2s0
a

X1
m¼1

sin
pmXi

a

� �
sin

pmx0
a

� � sinh½qmðb � YiÞ�
sinhðqmbÞ

;

if i 6¼ j : aij ¼
h

a

X1
m¼1

sinðpmXj=aÞ sinðpmXi=aÞ
qm sinhðqmbÞ

� fcosh½qmðb � jYj � YijÞ� � cosh½qmðb � Yj � YiÞ�g:

ð6:6bÞ

This system with the quadratic matrix A¼ {aij} of dimension J� J is con-
structed so that the set of the ‘‘inner’’ discrete integration points {(nj, gj)}, over
which the integration is being performed, coincides with the set of the
‘‘outer’’ nodes {(Xi, Yi)}, which are used to provide the equality between
the left- and the right-hand sides in (4.6). This is indeed the collocation
technique, because (nj, gj)¼ (Xj, Yj), and so there is no need to differ the
nodes (nj, gj) from (Xj, Yj) in the discrete form of BIE.

Coming to the formulated reconstruction problem, let us estimate the
total number of unknown parameters to be reconstructed. If the number of
cracks is Nc, then for each of them one has 4 unknown parameters: cn, dn,
fn, hn, (n¼ 1, . . . , Nc). Therefore, the total number of unknown parameters
is 4Nc.

In order to find all these unknowns, we construct an objective
functional, and reduce the reconstruction to an optimization problem for
this functional. For this purpose let us represent system (6.6) in the operator
form

Ag ¼ p0; A ¼ faijg; g ¼ fgig; p0 ¼ fp0ig; ði; j ¼ 1; . . . ; JÞ; ð6:7Þ
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whose solution can be expressed in terms of the inverse matrix, as
follows:

g ¼ A�1p0; ) gi ¼ ðA�1p0Þi: ð6:8Þ

Obviously, operator A�1 depends upon all 4Nc parameters: A�1¼A�1(cn,
dn, fn, hn).

Now, let us address the question: What is the measured information that
can be used as input data for the reconstruction problem? We assume that a
number of ultrasonic sensor probes can be placed uniformly over the bound-
ary lines of the rectangular specimen, in order to register the amplitudes of its
vibration at the chosen points ðxK ; yK Þ; K ¼ 1;2; . . . ;K �. Even a single sensor
can be used for this aim if one puts it in turn on the same chosen points.
Recall that we suppose these amplitudes to be given by respective boundary
values of normal derivative of the acoustic pressure, function F0 in (5.1).
Now by substitution of (6.8) into (5.1), with the use of (5.2), one comes to
the system of nonlinear equations for parameters cn, dn, fn, hn written in
the following discrete form:

h

a

XJ

j¼1

½A�1ðcn;dn; fn; hnÞp0�j
X1
m¼1

sinðpmXj=aÞ
sinhðqmbÞ

�
�

pm
a qm

cos

�
pm xK

a

�
fcosh½qmðb � jYj � yK jÞ�

� cosh½qmðb � Yj � yK Þ�gnx

þ sin

�
pmxK
a

�
fsinh½qmðb � jYj � yK jÞ�signðYj � yK Þ

þ sinh½qmðb � Yj � yK Þ�gny
	

¼ � F0ðxK ; yK Þ; K ¼ 1; . . . ;K �; ðxK ; yK Þ 2 L:

ð6:9Þ

It is interesting to compare the number of unknown parameters and the
number of equations. As indicated above, the first quantity is 4Nc. Obvi-
ously, the second one is equal to the number of sensor positions, K�. Subject
to which quantity is greater among these two, system (6.9) may be underde-
termined, overdetermined, or well determined. In every case, it is unclear
how one can solve this system directly. Intuitively, one could suppose the
more sensor measurement points the higher precision of the reconstruction.
The method proposed here works well for any input data. It is thus irrelevant
to which case from the three ones described above takes place indeed and
what is the real number of the sensor points. Obviously, the number of the
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sensor points may affect the precision of the reconstruction. However, the
technique itself is universal with respect to this number.

The system of Eqs. (6.9) can be resolved by a minimization of the discrep-
ancy functional:

min½Xðcn;dn;fn;hnÞ�; Xðcn;dn;fn;hnÞ

¼









F0ðxK ;yK Þþh

a

XJ

j¼1

½A�1ðcn;dn;fn;hnÞp0�j
X1
m¼1

sinðpmXj=aÞ
sinhðqmbÞ

�
�
pm
aqm

cos

�
pmxK

a

�
fcosh½qmðb�jYj�yK jÞ�

�cosh½qmðb�Yj�yK Þ�gnx sin
�
pmxK
a

�
fsinh½qmðb�jYj�yK jÞ�signðYj�yK Þ

þsinh

�
qmðb�Yj�yK Þ�gny

	









2

¼
XK �

K¼1

�
F0ðxK ;yK Þ

þh

a

XJ

j¼1

½A�1ðcn;dn;fn;hnÞp0�j
X1
m¼1

sinðpmXj=aÞ
sinhðqmbÞ

�
�

pm
aqm

cos

�
pmxK

a

�
fcosh½qmðb�jYj�yK jÞ�

�cosh½qmðb�Yj�yK Þ�gnx sin
�
pmxK
a

�
fsinh½qmðb�jYj�yK jÞ�signðYj�yK Þ

þsinh

�
qmðb�Yj�yK Þ�gny

	�2

:

ð6:10Þ

It should be noted that in the case of absolute precision in the input data
the true geometry of the cracks’ cluster returns zero minimum value to func-
tional X. However, there arises the problem of uniqueness since we cannot
prove that only true geometry of the cracks makes this functional trivial.

The minimization of functional (6.10) can be attained by any classical
method of optimization [17,18]. However, the main restriction of regular
iterative schemes is that they give a local minimum of respective functional
only. Another difficulty is connected with a non-uniqueness of the solution,
the question already discussed above but to be concerned again in a different
aspect. Namely, it is not evident that a local minimum is at the same time the
global minimum of the functional. In fact, it is well known that for nonlinear
equations such values of local minima may be too far from the desired value
X¼ 0.
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For this reason, we used in our numerical experiments a version of the
method of global random search contiguous to the one described in detail
in [19]. This algorithm is developed to seek maxima, but it can be applied
to minima too. It is constructed so that it moves both up-hill and downhill,
and as the optimization process proceeds, it focuses on the most promising
area. As a first step, it randomly chooses a trial point within the step of the
user selected starting point. The function is evaluated at this trial point,
and its value is compared to its value at the initial point. In a maximization
problem, all uphill moves are accepted, and the algorithm continues from
that trial point. Downhill moves may be accepted. It uses objective function
F and the size of the downhill move in a probabilistic manner. The smaller F
and the size of the downhill move are, the more likely that move will be
accepted. The relationship between the initial value of F and the resulting
step length is function dependent. This algorithm shows perfect convergence
for many problems, also for our inverse problem, but unfortunately some-
times it arrives at a local extremum, instead of global one, in the cases when
there are a lot of global minima of the objective function.

The algorithm applied is a slight modification of this idea. It possesses the
two following specific features: 1) random sampling of values in the neigh-
borhood of the points, for which the values of the functional are smaller,
happens more frequently than in the neighborhood of worse points, and 2)
the domains, in which random values of variables are chosen, are gradually
contracted to the small neighborhoods of the points with smaller values of
the functional. This technique demonstrates remarkable convergence for
all considered examples.

Let us test the proposed method on the example of quadratic sample of
the size a¼ b¼ 50cm. If one applies ultrasonic probes with the cyclic fre-
quency f¼ 100 kHz and the average wave speed 3 km=s, then the wave
length is k¼ 3 
 103=100 
 105¼ 0.03m¼ 3 cm. For this combination of physi-
cal and geometric parameters, in spite of all series over parameter m con-
verge as geometric progressions, a lot of initial terms correspond to the
case when quantities qm are not real but imaginary valued. For such m the
hyperbolic functions transform to respective trigonometric ones, which do
not decrease with m. This happens, with m increasing, until the expression
under the root square in the definition of qm, Eq. (3.3), becomes positive.
Namely, this occurs when m precedes M for which pM=a> k, �M> ak=
p¼ 2a=k. In the considered examples with k¼ 3 cm and a¼ 50 cm, one
can estimate that first 33 terms in all series are not exponentially decaying.

It should also be noted that the intersection of cracks is permissable in the
structure, since the formulated BIE is valid in this case too.

For all examples listed below, the input data for the reconstruction is
taken from the solution of respective direct problem. In our simulation, we
always used Ks¼ 20 points of measurements, uniformly distributed on each
side of the quadratic domain. These 20 points are placed at the central pos-
ition of 20 equal subintervals of the respective side, so that to guarantee that
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all sensors are located with a minimal distance from the corners of the speci-
men. It is obvious that the total number of sensor positions is K � ¼ 4Ks ¼ 80,
again uniformly distributed over full boundary contour of the rectangular
domain. For all examples demonstrated below we used the position for the
acoustic source on the bottom of the sample to be x0¼ a=2, i.e., at the center
of its lower face. Besides, the maximum possible number of cracks in the
cluster is taken N� ¼ 5.

Let us estimate the efficiency of the proposed algorithm, in the case
related to typical examples considered below and applied with 500 iterations
in the described stochastic search, with 30 trials on each iteration step, for
every of N� combinations of the number of cracks. The algorithm thus uses
30� 500� 5¼ 75.000 trials of the objective functional X that takes near one
hour of calculations when implemented on PC with AMD Athlon Core2 pro-
cessor of 6.0HGz CPU clock (recall that each trial requires solution of the
basic BIE system). If anyone would apply direct search by an enumerative
technique, then one would calculate functional X depending upon desired
scale in the precision of all geometric parameters of the cracks. Let in the
poorest case one take 50 values for a and b (with the scale 1 cm). Let then
the maximum crack length be 18 cm and the minimum one 3 cm (coinciding
with the wave length), with the same scale 1 cm and at least 10 possible
values for the slope angle h. Then for each crack, one should apply
50� 50� 15� 10¼ 375.000 trials. In total, one should apply (375.000)N

�

trials, where N� is the maximum possible number of cracks. The reader
can easily understand that the calculation time for such ‘‘direct’’ numerical
experiments exceeds the capabilities of any existing computer.

It is obvious that the proposed algorithm, in the particular case when the
admitted maximum number of cracks is N� ¼ 1, can be used for any single
crack reconstruction. An example of this sort is demonstrated in Table 1.
All sizes are given in cm. As can be seen from the table, in the case of single
crack the reconstruction seems to be perfect.

Some examples on the reconstruction of multiple arrays of cracks are
presented in Tables 2 and 3.

For multiple cracks array the algorithm works so that this selects the most
likely geometry, sequentially for Nc¼ 1, 2, 3, 4, 5 number of cracks (recall
that N� ¼ 5 for all considered examples). Then the algorithm makes a choice
on the best value of functional X, among these 5 geometries, to come to the
true solution.

TABLE 1 Results of the Reconstruction, Single Crack, 500 and 1000 Iterations

c d f h Type of result X

14.968 34.935 9.797 1.047 reconstructed, 500 iter. 0.776 
10�1

15.009 35.019 10.044 1.047 reconstructed, 1000 iter. 0.444 
10�2

15 35 10 p=3¼ 1.047 exact 0
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From the presented results of the numerical simulation one can extract
the following conclusions:

1. Typically, functional X, if one applies it with a randomly chosen set of
four parameters c, d, f, h, varies from the characteristic value 102�103

(single crack) up to characteristic value 105�107 (five cracks). This infor-
mation is helpful when evaluating precision of the reconstruction
reflected in Tables 1–3. One thus can see that the absolute attained mini-
mal value of X for multiple cracks is not so poor when compared to the
case of single crack.

2. In the reconstruction of single crack the behavior of the convergence is
typically monotonic, in the sense that with the number of the iteration
step increasing all four parameters become closer to their exact values,

TABLE 2 Results of the Reconstruction, Three Cracks, 500 and 1000 Iterations

Crack c d f h Type of result X

1st 14.599 35.143 9.102 0.933 reconstructed, 0.207
2nd 26.207 25.323 4.574 �0.142 500 iter.
3rd 32.373 29.205 9.261 �0.662
1st 15.630 34.996 10.345 1.177 reconstructed, 0.834 
10�1

2nd 23.953 24.868 5.077 0.033 1000 iter.
3rd 35.689 29.481 9.893 �0.681
1st 15 35 10 p=3¼ 1.047 exact 0
2nd 25 25 6 0
3rd 35 30 10 �p=4¼�0.785

TABLE 3 Results of the Reconstruction, Five Cracks, 500 and 1000 Iterations

Crack c d f h Type of result X

1st 14.663 37.308 9.710 1.167 reconstructed, 0.196 
101
2nd 25.986 25.754 4.147 �0.207 500 iter.
3rd 34.861 27.318 12.076 �0.841
4th 28.195 9.483 14.404 0.540
5th 37.904 37.055 7.713 1.524
1st 15.279 34.304 10.677 1.055 reconstructed, 0.708
2nd 23.849 25.831 5.967 0.189 1000 iter.
3rd 35.874 29.802 10.206 �0.837
4th 31.112 13.034 12.939 0.546
5th 37.955 37.144 8.156 1.519
1st 15 35 10 p=3¼1.047 exact 0
2nd 25 25 6 0
3rd 35 30 10 –p=4¼�0.785
4th 30 12 13 p=6¼0.524
5th 38 38 8 p=2¼1.571
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and so is the value of functional X. Note that respective exact values in
our test examples are known a priori since they are constructed from
direct problems.

3. If we construct the input data from respective direct problem without any
random perturbation, which is used sometimes in simulation of inverse
problems, then it is obvious that the value of the discrepancy functional
is zero for the exact solution. The influence of the error in the input data
on precision of the reconstruction will be studied in a next paper of the
present authors. However, here we would like to note that for exact input
data the behavior of X versus number of iteration steps is typically mono-
tonic, even in the case of multiple cracks.

4. The convergence of the reconstructed parameters versus iteration num-
ber is typically not monotonic. This means that after more iteration steps
some parameters may approach closer to their exact values; however,
some other parameters sometimes may be slightly more distant from
respective exact values. This is quite natural in multidimensional optimi-
zation, since a smaller value of the discrepancy functional does not
always mean closer values for all variables to their exact quantities.

ACKNOWLEDGEMENTS

The present work has been supported in part by Italian Ministry of
University (M.U.R.S.T.) through its national and local projects. The work
is also supported by the Russian Federal Targeted Programme ‘‘Scientific
and Scientific- Educational Personnel of Innovative Russia’’ for 2009–
2013, Project 02.740.11.5024.

REFERENCES

1. J. Daniels. Surface Penetrating Radar. Inst. Electr. Eng., London (1996).
2. L. Binda, G. Lenzi, and A. Saisi. J. NDT and E Intern. 31:411–419 (1998).
3. C. Maierhofer, and S. Leipold. J. NDT and E Intern. 34:139–147 (2001).
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