Final state interaction effects on the $\eta_b \rightarrow J/\psi J/\psi$ decay^{*}

Pietro Santorelli

Università di Napoli "Federico II" & INFN, Napoli, Italy

We study the effects of final state interactions on the $\eta_b \to J/\psi J/\psi$ decay. In particular, we discuss the effects of the annihilation of η_b into two charmed meson and their rescattering into $J/\psi J/\psi$. We find that the inclusion of this contribution may enhance the short-distance branching ratio up to about 2 orders of magnitude.

Large efforts have been invested during the past thirty years to look for η_b but the evidence of its existence emerged very recently thanks to the BABAR collaboration [1]. In [1] is reported the first unambiguous evidence of η_b , with a 10 σ significance, through the hindered magnetic dipole transition process $\Upsilon(3S) \to \eta_b \gamma$. The mass of η_b is also measured to be $m_{\eta_b} = 9388.9^{+3.1}_{-2.3}(\text{stat}) \pm 2.7(\text{syst})$ MeV. Apart from its mass and the branching ratio of the $\Upsilon(3S) \to \eta_b \gamma$, almost nothing is known regarding the decay pattern of η_b [2]. However, rough estimate of the branching ratios of some exclusive two and three-bodies hadronic decays can be found in [3].

Some golden modes have been proposed to observe η_b , such as $\eta_b \to J/\psi J/\psi$ [4] and $\eta_b \to J/\psi \gamma$ [5, 6]. Despite very clean signature due to the J/ψ in final state, these decay modes are estimated to have rather suppressed branching ratios. Regarding the $\eta_b \to J/\psi J/\psi$ decay mode, the original estimate [4], which was compatible with the discovery of η_b in Tevatron Run I, has been reconsidered [3, 7]. In particular, an explicit NRQCD calculation gives $\mathcal{B}r[\eta_b \to J/\psi J/\psi] = (0.5 \div 6.6) \times 10^{-8}$ [3]¹ too small to be observed also in Tevatron Run II.

An interesting decay channel to observe η_b , $\eta_b \to D^{(*)}\overline{D^*}$, has been proposed in [7] where the range $10^{-3} < \mathcal{B}r[\eta_b \to D\overline{D^*}] < 10^{-2}$ and $\mathcal{B}r[\eta_b \to D^*\overline{D^*}] \approx 0$ were predicted. On the other hand, in Ref. [3], by doing reasonable physical considerations, the author obtained $\mathcal{B}r[\eta_b \to D\overline{D^*}] \sim 10^{-5}$ and $\mathcal{B}r[\eta_b \to D^*\overline{D^*}] \sim 10^{-8}$ which are at odds with the ones obtained in [7].

In [9] we assumed that the long distance contribution to the final state made of two J/ψ is dominated by the $D\overline{D^*}$ state and the subsequent rescattering of it into two J/ψ with a charmed meson in the *t*-channel as is shown in figure 1. The branching ratio of $\eta_b \to D\overline{D^*}$ is poorly known at present. However, as we already said there are two theoretical determinations we will use in considering the contribution to the $\eta_b \to J/\psi J/\psi$. Moreover, we will neglect the contribution coming from the annihilation of the η_b to $D^*\overline{D^*}$, in agreement with the results in [3, 7].

The dominance of $D\overline{D^*}$ intermediate state is a consequence of the large coupling of $D^{(*)}\overline{D^{(*)}}$ to J/ψ as a result of quark models and QCD Sum Rules calculations.

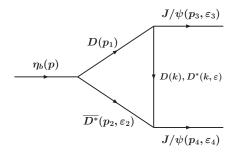


Figure 1: Long-distance t-channel rescattering contributions to $\eta_b \to J/\psi J/\psi$.

^{*}To the memory of Giuseppe (Beppe) Nardulli

¹See also very recent calculation in NRQCD at NLO in $\alpha_s \mathcal{B}r[\eta_b \to J/\psi J/\psi] = (2.1 \div 18.9) \times 10^{-8}$ [8].

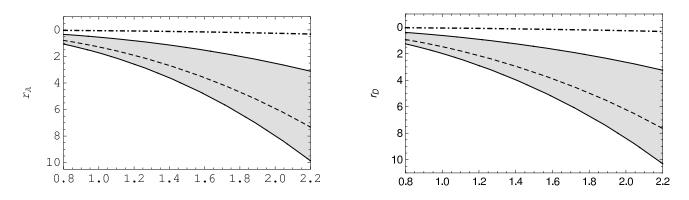


Figure 2: The contributions coming from the loop graphs (for definitions see text). The contributions are plotted for $g_{\eta_b DD^*}/g_{\eta_b JJ} \approx 1$ (dashed-dotted lines) and $g_{\eta_b DD^*}/g_{\eta_b JJ} \approx \{11,35\}$ (solid lines). The dashed lines correspond to $g_{\eta_b DD^*}/g_{\eta_b JJ} \approx 26$.

The full amplitude which takes into account the short distance part and the contribution coming from the evaluation of the graphs in figure 1 can be written as

$$\mathcal{A}_{f}(\eta_{b}(p) \to J/\psi(p_{3},\varepsilon_{3}) \ J/\psi(p_{4},\varepsilon_{4})) = \imath \frac{g_{\eta_{b}JJ}}{m_{\eta_{b}}} \varepsilon_{\alpha\beta\gamma\delta} p_{3}^{\alpha} p_{4}^{\beta} \epsilon_{3}^{*\gamma} \epsilon_{4}^{*\delta} \left[1 + \frac{g_{\eta_{b}DD^{*}}}{g_{\eta_{b}JJ}} \left(\imath \ A_{LD} + D_{LD} \right) \right], \tag{1}$$

where A_{LD} and D_{LD} represent the absorbitive and the dispersive part of the graphs in figure 1, respectively. For details about the calculation of the previous quantities we refer to [9, 10]. The coupling $g_{\eta_b JJ}$ is obtained by using the results in [3] while $g_{\eta_b DD^*}$ from the estimate of the $\mathcal{B}r[\eta_b \to D\overline{D^*}]$ and so

$$\frac{g_{\eta_b DD^*}}{g_{\eta_b JJ}} \begin{cases} = 1 & \text{for } \mathcal{B}r[\eta_b \to D\bar{D^*}] \approx 10^{-5} \quad [3] \\ \in [11,35] & \text{for } 10^{-3} \leq \mathcal{B}r[\eta_b \to D\overline{D^*}] \leq 10^{-2} \quad [7]. \end{cases}$$

$$(2)$$

The numerical values of the on-shell strong couplings g_{JDD} , g_{JDD} , $g_{JDD^*D^*}^2$ are taken from QCD Sum Rules [11], from the Constituent Quark Meson model [12] and from relativistic quark model [13] findings which are compatible each other. We used $(g_{JDD}, g_{JDD^*}, g_{JD^*D^*}) = (6, 12, 6)$. To take into account the off-shellness of the exchanged $D^{(*)}$ mesons in figure 1 we have introduced the t-dependance of these couplings by means of the function

$$F(t) = \frac{\Lambda^2 - m_{D^{(*)}}^2}{\Lambda^2 - t} \,. \tag{3}$$

No first-principles calculation of Λ exists, so, following the authors of [14], we write $\Lambda = m_R + \alpha \Lambda_{QCD}$, where m_R is the mass of the exchanged particle (*D* or D^*), $\Lambda_{QCD} = 220 \ MeV$ and $\alpha \in [0.8, 2.2]$ [14]; with this values, the allowed range for Λ is given by: $2.1 < \Lambda < 2.5 \ GeV$.

In figure 2, left panel (right panel) the ratio $r_A = A_{LD} g_{\eta_b DD^*}/g_{\eta_b JJ}$ ($r_D = D_{LD} g_{\eta_b DD^*}/g_{\eta_b JJ}$) is plotted as a function of α for the allowed value and the range of couplings ratio. Moreover, the dashed lines are for $g_{\eta_b DD^*}/g_{\eta_b JJ} \approx 26$ which correspond to the central value in the allowed range for $\eta_b \to D\overline{D^*}$ estimated in Ref. [7]. It is clear that for $g_{\eta_b DD^*}/g_{\eta_b JJ} \approx 1$ the effects of the final state interactions are negligible independently of α .

Very different is the case in which the annihilation of η_b into $D\overline{D^*}$ is large [7]. The effects of final-state interactions could be large and depend strongly on the value of α (cfr gray bands in figure 2).

²We use dimensionless strong coupling constants in all cases. In particular we use the ratio $g_{JDD^*}/m_{J/\psi}$ instead of the dimensional G_{JDD^*} (GeV⁻¹) usually found in literature.

34th International Conference on High Energy Physics, Philadelphia, 2008

Starting from the estimate of the short-distance part in [3] we are able to give the allowed range for the full branching ratio

$$\mathcal{B}r[\eta_b \to J/\psi \ J/\psi] = 0.5 \times 10^{-8} \div 1.2 \times 10^{-5},$$
(4)

where the lower bound corresponds to the corresponding one in [3], while the upper bound is obtained using the upper value in [3] and for $\alpha = 2.2$, $g_{\eta_b DD^*}/g_{\eta_b JJ} = 35$. The wide range for $\mathcal{B}r[\eta_b \to J/\psi J/\psi]$ in Eq. (4) depends on the large theoretical uncertainty of the estimate of $\mathcal{B}r[\eta_b \to D\overline{D^*}]$ and on the dependence on α parameter. It should be observed that in [14] the preferred value for α is $\alpha \approx 2.2$ for diagrams with D and D^* in t-channel, whereas a direct calculation or measurement of the $\eta_b \to D\overline{D^*}$ process is in order.

Finally we give an estimate of the discovery potential of the decay mode in the LHC experiments. Each J/ψ in the final state can be reconstructed by means of its muonic decay mode which represents about 6% of the total width, so we have $\mathcal{B}r[\eta_b \to J/\psi \ J/\psi \to 4\mu] \approx 2 \times 10^{-11} \div 4 \times 10^{-8}$. Moreover, assuming, as in [3], that i) the η_b production cross section at LHC is about 15 μ b and ii) the integrated luminosity (per year) is about 300 fb⁻¹, the theoretically expected events are between 80 and 2×10^5 . Experimentally we have to consider also the product of acceptance and efficiency for detecting J/ψ decay to $\mu^+\mu^-$ which is of the order of 0.1 [4], so we expect between 0.8 and 2000 observed events per year. Further, if we loose the constraint that J/ψ must be tagged by $\mu^+\mu^-$ pair and also allow its reconstruction through e^+e^- mode, we can have $3 \div 8000$ observed 4-lepton events per year. These results seem to indicate that the chance of observing η_b at LHC through the 4-lepton mode exists.

Acknowledgments

I thank G. De Nardo and D. Monorchio for a discussion on the experimental results from BABAR.

References

- [1] B. Aubert [The BABAR Collaboration], arXiv:0807.1086 [hep-ex].
- [2] N. Brambilla et al, CERN-2005-005 [arXiv:hep-ph/0412158], and references therein.
- [3] Y. Jia, Phys. Rev. D 78, 054003 (2008) [arXiv:hep-ph/0611130].
- [4] E. Braaten, S. Fleming and A. K. Leibovich, Phys. Rev. D 63, 094006 (2001) [arXiv:hep-ph/0008091].
- [5] G. Hao, Y. Jia, C. F. Qiao and P. Sun, JHEP **0702**, 057 (2007) [arXiv:hep-ph/0612173].
- [6] Y. J. Gao, Y. J. Zhang and K. T. Chao, arXiv:hep-ph/0701009.
- [7] F. Maltoni and A. D. Polosa, Phys. Rev. D 70, 054014 (2004) [arXiv:hep-ph/0405082].
- [8] B. Gong, Y. Jia and J. X. Wang, arXiv:0808.1034 [hep-ph].
- [9] P. Santorelli, Phys. Rev. D 77, 074012 (2008) [arXiv:hep-ph/0703232].
- [10] P. Santorelli, AIP Conf. Proc. 964, 132 (2007) [arXiv:0712.3745 [hep-ph]].
- [11] R. D. Matheus, F. S. Navarra, M. Nielsen and R. Rodrigues da Silva, Int. J. Mod. Phys. E 14 (2005) 555; M. E. Bracco, M. Chiapparini, F. S. Navarra and M. Nielsen, Phys. Lett. B 605 (2005) 326 [arXiv:hep-ph/0410071].
- [12] A. Deandrea, G. Nardulli and A. D. Polosa, Phys. Rev. D 68 (2003) 034002 [arXiv:hep-ph/0302273].
- M. A. Ivanov and P. Santorelli, Phys. Lett. B 456 (1999) 248 [arXiv:hep-ph/9903446]; M. A. Ivanov, J. G. Korner and P. Santorelli, Phys. Rev. D 70 (2004) 014005 [arXiv:hep-ph/0311300].
- [14] H. Y. Cheng, C. K. Chua and A. Soni, Phys. Rev. D 71 (2005) 014030 [arXiv:hep-ph/0409317].