Final state interaction effects on the $\eta_{b} \rightarrow J / \psi J / \psi$ decay*

Pietro Santorelli
Università di Napoli "Federico II" \& INFN, Napoli, Italy

Abstract

We study the effects of final state interactions on the $\eta_{b} \rightarrow J / \psi J / \psi$ decay. In particular, we discuss the effects of the annihilation of η_{b} into two charmed meson and their rescattering into $J / \psi J / \psi$. We find that the inclusion of this contribution may enhance the short-distance branching ratio up to about 2 orders of magnitude.

Large efforts have been invested during the past thirty years to look for η_{b} but the evidence of its existence emerged very recently thanks to the BABAR collaboration 1]. In 1] is reported the first unambiguous evidence of η_{b}, with a 10σ significance, through the hindered magnetic dipole transition process $\Upsilon(3 S) \rightarrow \eta_{b} \gamma$. The mass of η_{b} is also measured to be $m_{\eta_{b}}=9388.9_{-2.3}^{+3.1}$ (stat) ± 2.7 (syst) MeV. Apart from its mass and the branching ratio of the $\Upsilon(3 S) \rightarrow \eta_{b} \gamma$, almost nothing is known regarding the decay pattern of η_{b} [2]. However, rough estimate of the branching ratios of some exclusive two and three-bodies hadronic decays can be found in [3].
Some golden modes have been proposed to observe η_{b}, such as $\eta_{b} \rightarrow J / \psi J / \psi$ 4] and $\eta_{b} \rightarrow J / \psi \gamma$ [5, 6]. Despite very clean signature due to the J / ψ in final state, these decay modes are estimated to have rather suppressed branching ratios. Regarding the $\eta_{b} \rightarrow J / \psi J / \psi$ decay mode, the original estimate [4], which was compatible with the discovery of η_{b} in Tevatron Run I, has been reconsidered [3, 7]. In particular, an explicit NRQCD calculation gives $\mathcal{B} r\left[\eta_{b} \rightarrow J / \psi J / \psi\right]=(0.5 \div 6.6) \times 10^{-8}[\underline{3}]^{1}$ too small to be observed also in Tevatron Run II.

An interesting decay channel to observe $\eta_{b}, \eta_{b} \rightarrow D^{(*)} \overline{D^{*}}$, has been proposed in [7] where the range $10^{-3}<$ $\mathcal{B} r\left[\eta_{b} \rightarrow D \overline{D^{*}}\right]<10^{-2}$ and $\mathcal{B} r\left[\eta_{b} \rightarrow D^{*} \overline{D^{*}}\right] \approx 0$ were predicted. On the other hand, in Ref. [3], by doing reasonable physical considerations, the author obtained $\mathcal{B} r\left[\eta_{b} \rightarrow D \overline{D^{*}}\right] \sim 10^{-5}$ and $\mathcal{B} r\left[\eta_{b} \rightarrow D^{*} \overline{D^{*}}\right] \sim 10^{-8}$ which are at odds with the ones obtained in [7].

In [9] we assumed that the long distance contribution to the final state made of two J / ψ is dominated by the $D \overline{D^{*}}$ state and the subsequent rescattering of it into two J / ψ with a charmed meson in the t-channel as is shown in figure 1. The branching ratio of $\eta_{b} \rightarrow D \overline{D^{*}}$ is poorly known at present. However, as we already said there are two theoretical determinations we will use in considering the contribution to the $\eta_{b} \rightarrow J / \psi J / \psi$. Moreover, we will neglect the contribution coming from the annihilation of the η_{b} to $D^{*} \overline{D^{*}}$, in agreement with the results in [3, 7].

The dominance of $D \overline{D^{*}}$ intermediate state is a consequence of the large coupling of $D^{(*)} \overline{D^{(*)}}$ to J / ψ as a result of quark models and QCD Sum Rules calculations.

Figure 1: Long-distance t-channel rescattering contributions to $\eta_{b} \rightarrow J / \psi J / \psi$.

[^0]

Figure 2: The contributions coming from the loop graphs (for definitions see text). The contributions are plotted for $g_{\eta_{b} D D^{*}} / g_{\eta_{b} J J} \approx 1$ (dashed-dotted lines) and $g_{\eta_{b} D D^{*}} / g_{\eta_{b} J J} \approx\{11,35\}$ (solid lines). The dashed lines correspond to $g_{\eta_{b} D D^{*}} / g_{\eta_{b} J J} \approx 26$.

The full amplitude which takes into account the short distance part and the contribution coming from the evaluation of the graphs in figure 1 can be written as

$$
\begin{equation*}
\mathcal{A}_{f}\left(\eta_{b}(p) \rightarrow J / \psi\left(p_{3}, \varepsilon_{3}\right) J / \psi\left(p_{4}, \varepsilon_{4}\right)\right)=\imath \frac{g_{\eta_{b} J J}}{m_{\eta_{b}}} \varepsilon_{\alpha \beta \gamma \delta} p_{3}^{\alpha} p_{4}^{\beta} \epsilon_{3}^{* \gamma} \epsilon_{4}^{* \delta}\left[1+\frac{g_{\eta_{b} D D^{*}}}{g_{\eta_{b} J J}}\left(\imath A_{L D}+D_{L D}\right)\right] \tag{1}
\end{equation*}
$$

where $A_{L D}$ and $D_{L D}$ represent the absorbitive and the dispersive part of the graphs in figure 1 respectively. For details about the calculation of the previous quantities we refer to 9,10$]$. The coupling $g_{\eta_{b} J J}$ is obtained by using the results in [3] while $g_{\eta_{b} D D^{*}}$ from the estimate of the $\mathcal{B} r\left[\eta_{b} \rightarrow D \overline{D^{*}}\right]$ and so

$$
\frac{g_{\eta_{b} D D^{*}}}{g_{\eta_{b} J J}} \begin{cases}=1 & \text { for } \mathcal{B} r\left[\eta_{b} \rightarrow D \bar{D}^{*}\right] \approx 10^{-5} \tag{2}\\ \in[11,35] & \text { for } 10^{-3} \leq \mathcal{B} r\left[\eta_{b} \rightarrow D \overline{D^{*}}\right] \leq 10^{-2}\end{cases}
$$

The numerical values of the on-shell strong couplings $g_{J D D}, g_{J D D^{*}}$ and $g_{J D^{*} D^{*}}{ }^{2}$ are taken from QCD Sum Rules [11], from the Constituent Quark Meson model 12] and from relativistic quark model [13] findings which are compatible each other. We used $\left(g_{J D D}, g_{J D D^{*}}, g_{J D^{*} D^{*}}\right)=(6,12,6)$. To take into account the off-shellness of the exchanged $D^{(*)}$ mesons in figure 1 we have introduced the t-dependance of these couplings by means of the function

$$
\begin{equation*}
F(t)=\frac{\Lambda^{2}-m_{D^{(*)}}^{2}}{\Lambda^{2}-t} \tag{3}
\end{equation*}
$$

No first-principles calculation of Λ exists, so, following the authors of [14], we write $\Lambda=m_{R}+\alpha \Lambda_{Q C D}$, where m_{R} is the mass of the exchanged particle $\left(D\right.$ or $\left.D^{*}\right), \Lambda_{Q C D}=220 \mathrm{MeV}$ and $\alpha \in[0.8,2.2]$ [14]; with this values, the allowed range for Λ is given by: $2.1<\Lambda<2.5 \mathrm{GeV}$.

In figure 2, left panel (right panel) the ratio $r_{A}=A_{L D} g_{\eta_{b} D D^{*}} / g_{\eta_{b} J J}\left(r_{D}=D_{L D} g_{\eta_{b} D D^{*}} / g_{\eta_{b} J J}\right)$ is plotted as a function of α for the allowed value and the range of couplings ratio. Moreover, the dashed lines are for $g_{\eta_{b} D D^{*}} / g_{\eta_{b} J J} \approx 26$ which correspond to the central value in the allowed range for $\eta_{b} \rightarrow D \overline{D^{*}}$ estimated in Ref. 7]. It is clear that for $g_{\eta_{b} D D^{*}} / g_{\eta_{b} J J} \approx 1$ the effects of the final state interactions are negligible independently of α.

Very different is the case in which the annihilation of η_{b} into $D \overline{D^{*}}$ is large 7]. The effects of final-state interactions could be large and depend strongly on the value of α (cfr gray bands in figure 2).

[^1]Starting from the estimate of the short-distance part in 3] we are able to give the allowed range for the full branching ratio

$$
\begin{equation*}
\mathcal{B} r\left[\eta_{b} \rightarrow J / \psi J / \psi\right]=0.5 \times 10^{-8} \div 1.2 \times 10^{-5} \tag{4}
\end{equation*}
$$

where the lower bound corresponds to the corresponding one in [3], while the upper bound is obtained using the upper value in [3] and for $\alpha=2.2, g_{\eta_{b} D D^{*}} / g_{\eta_{b} J J}=35$. The wide range for $\mathcal{B} r\left[\eta_{b} \rightarrow J / \psi J / \psi\right]$ in Eq. (44) depends on the large theoretical uncertainty of the estimate of $\mathcal{B} r\left[\eta_{b} \rightarrow D \overline{D^{*}}\right]$ and on the dependence on α parameter. It should be observed that in [14] the preferred value for α is $\alpha \approx 2.2$ for diagrams with D and D^{*} in t-channel, whereas a direct calculation or measurement of the $\eta_{b} \rightarrow D \overline{D^{*}}$ process is in order.

Finally we give an estimate of the discovery potential of the decay mode in the LHC experiments. Each J / ψ in the final state can be reconstructed by means of its muonic decay mode which represents about 6% of the total width, so we have $\mathcal{B} r\left[\eta_{b} \rightarrow J / \psi J / \psi \rightarrow 4 \mu\right] \approx 2 \times 10^{-11} \div 4 \times 10^{-8}$. Moreover, assuming, as in [3], that i) the η_{b} production cross section at LHC is about $15 \mu \mathrm{~b}$ and ii) the integrated luminosity (per year) is about $300 \mathrm{fb}^{-1}$, the theoretically expected events are between 80 and 2×10^{5}. Experimentally we have to consider also the product of acceptance and efficiency for detecting J / ψ decay to $\mu^{+} \mu^{-}$which is of the order of 0.1 [4], so we expect between 0.8 and 2000 observed events per year. Further, if we loose the constraint that J / ψ must be tagged by $\mu^{+} \mu^{-}$pair and also allow its reconstruction through $e^{+} e^{-}$mode, we can have $3 \div 8000$ observed 4 -lepton events per year. These results seem to indicate that the chance of observing η_{b} at LHC through the 4-lepton mode exists.

Acknowledgments

I thank G. De Nardo and D. Monorchio for a discussion on the experimental results from Babar.

References

[1] B. Aubert [The BABAR Collaboration], arXiv:0807.1086 [hep-ex].
[2] N. Brambilla et al, CERN-2005-005 arXiv:hep-ph/0412158], and references therein.
[3] Y. Jia, Phys. Rev. D 78, 054003 (2008) arXiv:hep-ph/0611130.
[4] E. Braaten, S. Fleming and A. K. Leibovich, Phys. Rev. D 63, 094006 (2001) arXiv:hep-ph/0008091].
[5] G. Hao, Y. Jia, C. F. Qiao and P. Sun, JHEP 0702, 057 (2007) arXiv:hep-ph/0612173.
[6] Y. J. Gao, Y. J. Zhang and K. T. Chao, arXiv:hep-ph/0701009.
[7] F. Maltoni and A. D. Polosa, Phys. Rev. D 70, 054014 (2004) arXiv:hep-ph/0405082.
[8] B. Gong, Y. Jia and J. X. Wang, arXiv:0808.1034 [hep-ph].
[9] P. Santorelli, Phys. Rev. D 77, 074012 (2008) arXiv:hep-ph/0703232.
[10] P. Santorelli, AIP Conf. Proc. 964, 132 (2007) arXiv:0712.3745 [hep-ph]].
[11] R. D. Matheus, F. S. Navarra, M. Nielsen and R. Rodrigues da Silva, Int. J. Mod. Phys. E 14 (2005) 555 ; M. E. Bracco, M. Chiapparini, F. S. Navarra and M. Nielsen, Phys. Lett. B 605 (2005) 326 arXiv:hep-ph/0410071.
[12] A. Deandrea, G. Nardulli and A. D. Polosa, Phys. Rev. D 68 (2003) 034002 arXiv:hep-ph/0302273.
[13] M. A. Ivanov and P. Santorelli, Phys. Lett. B 456 (1999) 248 arXiv:hep-ph/9903446; M. A. Ivanov, J. G. Korner and P. Santorelli, Phys. Rev. D 70 (2004) 014005 arXiv:hep-ph/0311300.
[14] H. Y. Cheng, C. K. Chua and A. Soni, Phys. Rev. D 71 (2005) 014030 arXiv:hep-ph/0409317.

[^0]: * To the memory of Giuseppe (Beppe) Nardulli
 ${ }^{1}$ See also very recent calculation in NRQCD at NLO in $\alpha_{s} \mathcal{B} r\left[\eta_{b} \rightarrow J / \psi J / \psi\right]=(2.1 \div 18.9) \times 10^{-8}$ [8].

[^1]: ${ }^{2}$ We use dimensionless strong coupling constants in all cases. In particular we use the ratio $g_{J D D^{*}} / m_{J / \psi}$ instead of the dimensional $G_{J D D^{*}}\left(\mathrm{GeV}^{-1}\right)$ usually found in literature.

