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Abstract The high relevance of location problems in the operations research liter-
ature arises from their wide spectrum of real applications, including decision opti-
mization in industrial management, logistics, and territorial planning. Most of these
optimization problems fall into the class of NP-hard problems, motivating the search
for heuristic and approximated algorithms. Currently, a great interest is being devoted
to those optimization approaches yielding a concrete integration with spatial analysis
instruments (such as Geographical Information Systems) that provide the user with
an easy visualization of input data and optimization results.

Agent-Based computing was recently proposed as an alternative to mathematical
programming in order to solve problems whose domains are concurrently distributed,
complex, and heterogeneous, also thanks to the availability of many commercial and
open source codes including graphical interfaces for the elements of the problem.

In this paper we propose a general Agent-Based framework for modeling vari-
ous location problems. Together with its description, we present some computational
results confirming the suitability and the effectiveness of the proposed approach.
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1 Introduction

As suggested by Plastria (2002), a location problem can be characterized by the ques-
tion “Where are we going to put things?” From this two more questions arise:

• Which places are available?
• On what basis do we choose?

The answer to the first question determines the location space. As location problems
are a particular class of optimization problems, the second question requires the de-
finition of the demand space and of an objective function, which can concern, for
instance, the minimization of costs, damages or discomfort, or the maximization of
profits and quality of services. In some contexts, the objective can be defined by a
single criterion, while, in more complex situations, more criteria must be monitored
simultaneously.

Starting from Weber (1929), location problems have received an uprising atten-
tion related to the increasing demand of decision-making support systems in several
application fields. As such problems are characterized by high computational com-
plexity, often belonging to the NP-hard class (see Bozkaya et al. 2002 and Drezner
and Hamacher 2002), a wide spectrum of heuristic techniques was developed to deal
with them.

Besides the aspects related to the quality of the obtainable solutions, in practical
applications it is important having flexible tools capable of dealing with problems that
are not easy to model and whose data is provided by data management systems. Tools
like Geographical Information Systems (GISs) are currently widely used to represent
spatial systems.

Brown et al. (2005) point out that a very useful tool to enhance GISs capabilities
to solve complex spatial analytic problems, in general, is provided by Agent-Based
Models (ABMs). Indeed, the integration between ABMs and GISs can be a useful
way to deal with complex spatial problems and provide a visual, flexible, and respon-
sive representation of the problem itself.

In this paper, we propose the general framework for an ABM oriented to the so-
lution of location problems, which represents, to the best of our knowledge, the first
attempt to apply ABMs in this context. Our approach is based on the definition of
attributes and rules that can be easily adapted to cope with different kinds of loca-
tion problems and objectives. We present, in particular, an adaptation of the proposed
ABM framework to some location problems.

The paper is organized as follows. In Sect. 2, we provide some generalities about
ABMs with the indication of some works related to their use to solve optimization
problems. In Sect. 3, we shortly describe some classical location problems that we
consider in the following. In Sect. 4, we illustrate the general Agent-Based framework
to represent location problems. In Sect. 5, the adaptation of this framework to the
problems presented in Sect. 3 is depicted. Section 6 shows the implementation of the
framework in an Agent-Based simulation environment, while some computational
results are delineated in Sect. 7. Section 8 presents a benefit of utilizing the proposed
approach in dealing with location problems. Finally, we draw some conclusions and
further lines of research in this field.
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2 Agent-Based models

Agent-Based Models (ABMs) consist of a set of elements (agents) characterized by
attributes which interact with each other through the definition of appropriate rules
in a given environment. ABMs can be useful to reproduce many systems related to
economics and social sciences where the structure can be designed through a network
(Billari et al. 2006; Conte et al. 1997). Through ABMs, it is possible implementing
an environment with its features, forecasting and exploring its future scenarios, ex-
perimenting possible alternative decisions, setting different values for the decision
variables, and analyzing the effects of these changes (see Axelrod 1997).

At an aggregated level, the use of ABMs can help in understanding general prop-
erties and patterns concerning the whole scenario (Billari et al. 2006) that could be
neither deduced nor forecasted by the observation of each agent, due to the complex-
ity of the interactions occurring among the elements of the system.

According to the definition of Wooldridge and Jennings (1995), an agent is a com-
putational system interacting with an environment that can be endowed with the fol-
lowing features:

• Independence. Each agent acts without the direct control of human beings or other
devices.

• Social ability. Interactions occur among entities through a communication lan-
guage in order to satisfy the design objectives.

• Re-activeness. Agents answer in a precise way to signals coming from the envi-
ronment.

• Pro-activeness. Agents are endowed with goal-directed behaviors. They take the
initiative in order to satisfy their design objectives.

Furthermore, as it can be derived from Billari et al. (2006) and Weiss (1999), the
development of an Agent-Based Model needs a complete description for a set of
basic building blocks as follows.

• The object of the simulation. It has to be specified what is the phenomenon/problem
to be reproduced, defining the space where the simulation takes place.

• The agents’ population. Agents can be grouped in different categories with com-
mon characteristics reproducing the various components of the system.

• The adaptive capability of each agent category. Agents of each category present a
specific adaptive capability, i.e., the degree of re-activeness and pro-activeness.

• The interaction paradigm among agents. Each agent can interact with agents of
the same or of other categories. In the literature, several interaction paradigms
have been defined, such as cooperation, competition, and negotiation (see, for in-
stance, Weiss 1999). On the base of the selected paradigm, the agents evolve in the
simulation space in a different way.

Given this peculiarity in dealing with the representation and simulation of complex
systems, ABMs have been recently applied to solve optimization problems whose
domains present several inter-related components in a distributed and heterogeneous
environment (Weiss 1999; Wooldridge 2002), sometimes combined to other opti-
mization techniques.
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Davidsson et al. (2003) state that Agent-Based simulation and conventional opti-
mization techniques present complementary characteristics that should be integrated
into hybrid approaches to solve complex problems, embedding optimization rules in
the behavior of the agents. Cardon et al. (2000) propose an integration of genetic al-
gorithms and multi-agent simulation for solving NP-hard scheduling problems. Wei
et al. (2005) develop an Agent-Based optimization framework for dynamic resource
allocation problems; Desphande and Cagan (2004) introduce an Agent-Based op-
timization algorithm for solving the process-planning problem that combines sto-
chastic optimization techniques with knowledge-based search. Several applications
of Agent-Based optimization to transportation problems can be found in the litera-
ture. Bocker et al. (2001) utilize a multi-agent approach to cope with the train cou-
pling and sharing problem on a railway transport system; Fernandez et al. (2004) il-
lustrate multi-agent service architectures for bus fleet management; Mes et al. (2007)
develop an Agent-Based approach for real-time transportation problems and compare
it to more traditional methods.

3 Brief review on continuous location problems with discrete demand

The scientific literature in the field of continuous location problems with demand
concentrated in discrete points is wide and rich, and some exhaustive surveys can be
found in Klose and Drexl (2005) and Plastria (1996, 2002). We recall some of these
problems and their main related work.

The p-median problem The p-Median problem aims at the minimization of the
weighted sum of the distances between p facilities to be opened and a set of demand
points. The version of this problem in which the location space is continuous, often
indicated as the Multisource Weber Problem (MWP), belongs to the class of NP-hard
optimization problems, as shown in Megiddo and Supowit (1984). Given a set of
demand points i ∈ I , located in (xi, yi), and the coordinates (xa, ya) ∈ S ⊂ � × �
for a number p of facilities, a possible formulation for the MWP is the following one
(Klose and Drexl 2005):

min
∑

i∈I

p∑

a=1

widi(xa, ya)zia (1)

subject to
p∑

a=1

zia = 1 ∀i ∈ I (2)

zia ∈ {0,1} ∀i ∈ I, a = 1, . . . , p (3)

x, y ∈ �p

with di = √
(xa − xi)2 + (ya − yi)2 in the case of Euclidean metrics. In this model,

zia equals 1 when a demand point i is assigned to a facility a.
Fast heuristic methods to cope with the MWP are considered and compared in

Brimberg et al. (2000) and Hansen et al. (1998), while in Aras et al. (2006) the prob-
lem is solved using neural networks. As concerns exact algorithms, the first attempt
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to solve instances of the MWP is proposed by Kuenne and Soland (1972). Later, dif-
ferent approaches are proposed by Rosing (1992), Chen et al. (1998) and Du Merle et
al. (1999). A recently developed branch-and-price algorithm (Righini and Zaniboni
2007) permits to find the optimal solution on instances with some thousands of points
and some hundreds of sources in less than three hours on a PC.

The p-maximal covering location problem Location Covering Models are another
class of problems, in which the objective is to ensure coverage to given demand
points. A demand point is said to be covered by a certain facility if the distance
between the two points is lower than a certain threshold or required distance (RD).
Models of this type generally address the location of urban public facilities, especially
emergency facilities. Church and ReVelle (1974) propose the p-Maximal Covering
Location Problem (MCLP), which seeks to locate p facilities that can cover the max-
imum amount of demand. Given a set of demand points i ∈ I , located in (xi, yi), and
the coordinates (xa, ya) ∈ S ⊂ � × � for a number p of facilities, a possible formu-
lation for the p-Maximal Covering Location Problem with facility placement on the
entire plane can be derived from Mehrez (1983):

max
∑

i∈I

wiζi (4)

subject to
p∑

a=1

zai ≥ ζi, ∀i ∈ I (5)

zaidi(xa, ya) ≤ RD ∀i ∈ I, a = 1, . . . , p (6)

zia, ζi ∈ {0,1} ∀i ∈ I, a = 1, . . . , p

x, y ∈ �p

The variables ζi and zai are binary. The variable ζi is equal to 1 if a demand wi lo-
cated in i is covered (0 otherwise) and the variable zai is equal to 1 if the demand
concentrated in i is covered by a facility located in a. Constraints (5) ensure that a
demand point that is considered to be covered has at least one facility within the re-
quired distance; constraint (6) ensures that the variable zai is equal to 1 if the demand
located in i can be covered by the service located in a within the required distance
RD (0 otherwise). The problem is generally complex, and several heuristic methods
have been developed to deal with it. A survey on this topic is presented by Galvao et
al. (2000).

The single facility minimum variance location problem Another kind of problems
can be defined when the objective is a measure of “equity” from the demand points
to the set of facilities (Eiselt and Laporte 1995). μ(xa, ya) being the average distance
among the demand points i and the facility a of coordinates (xa, ya) and σ 2(xa, ya)

the variance of the distances, the Single Facility Minimum Variance Location Prob-
lem in the Euclidean plane aims at defining the position (xa, ya) of the facility which
minimizes σ 2(xa, ya). Drezner and Drezner (2007) solve to optimality large instances
of this problem using a Big Triangle Small Triangle (BTST) approach.
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4 Agent-based models and location problems: a general framework

Some of the characteristics of ABMs suggest the possibility to apply this approach
to model and solve location problems. The approach appears to be particularly inter-
esting when the location space is a planar region (whose points represent available
locations) and the demand can be represented by an enumerable set of discrete points.

Suppose that we have to locate p facilities in a continuous space in which n de-
mand points are positioned. In order to define an Agent-Based framework, in the
following, we describe how each block illustrated in Sect. 2 can be specified to rep-
resent the problem.

The object of the simulation The object of the simulation is to reproduce all the
elements of the problem and to define the appropriate rules that agents should follow.
The environment of the simulation is represented by the location space, i.e., a portion
of plane (for instance, a rectangle of base b and height h) where agents are positioned.
We assume that distances between elements are defined by a Euclidean metric. Due
to the flexibility of the ABMs, the adaptation of the model to different metrics is
straightforward.

The agents’ population We distinguish between two main agent categories (see
Fig. 1):

• A set P of “passive” agents representing the demand points with an associated
demand wi∀i ∈ P .

• A set A of “active” agents representing the facilities to be located.

The adaptive capability of each agent category The two agent categories present
different adaptive capabilities. Passive agents do not change position, but they interact
with the active agents in an autonomous way. They are neither re-active, as they do not
react to any signal, nor pro-active, as they do not pursue any objective. On the other
hand, the active agents are both re-active, as they answer to the presence of passive
agents, and pro-active, as they move in the location space searching for positions
according to a given objective.

Fig. 1 Location space and agent categories
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Fig. 2 Forces operating on an
active agent

The interaction paradigm among agents As mentioned before, there exist different
paradigms to define the interaction among agents. In this context, we adopt the Ar-
tificial Potential Fields (APF) paradigm, based on some concepts from physics and
biology (see Ferber 1999, Kathib 1986). The paradigm assumes that the agent behav-
ior is regulated by the action of forces. In this context, we suppose that two forces
operate on each active agent a ∈ A (Fig. 2):

• A demand-driven force, Fd
ia , due to the presence of a passive agent i ∈ P which

pushes the agent a toward the position of i.
• A repulsive force, F r

ja , determined by the presence of an active agent j ∈ A which
pushes the agent a in the opposite direction of j .

The intensity of the two forces is a function of the distance between the agents
as widely used in spatial interaction models (see, for instance, Fotheringham and
O’Kelly 1989, Sen and Smith 1995, and Serra and Colomé 2001).

According to the APF paradigm, we suppose that these forces are significant only
within a given distance from the agent a ∈ A. In order to define the forces, the par-
adigm introduces some calibration parameters expressing the width of the neighbor-
hood within which each force is significant.

In this way we can define a resulting demand-driven force (Fig. 3a):

Fd
Ra =

∑
i∈Prd,a

F d
ia

|Prd,a|
where Prd,a is the set of passive agents whose distance from a is within a given
radius rd . In the same way, the resulting repulsive force is given by (Fig. 3b)

F r
Ra =

∑
j∈Arr,a

F r
ja

|Arr,a|
where Arr,a is the set of active agents whose distance from a is within a given ra-
dius rr .

The movement of the agent a is finally determined by the total force Ma , calcu-
lated as a convex combination of the two forces:

Ma = αFd
Ra + (1 − α)F r

Ra (7)

α being a parameter, 0 ≤ α ≤ 1, expressing the relative weight of each resulting
demand-driven and distributive forces.
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Fig. 3 The resulting forces operating on an active agent

5 Adaptations of the ABM framework to location problems

The described framework can be particularized to deal with different location prob-
lems and to consequently solve them through the development of proper procedures
to be implemented in a given environment. In particular, we show how the forces
can be specified in relation with the problems illustrated in Sect. 3, according to the
specific objective of the problem. In the following, we define the distance vector dba

between two agents b and a as the vector applied to the agent a and directed toward
the agent b with an intensity equal to the distance ‖dba‖ between the agents.

The p-median like problem We start by describing the adaptation of the proposed
ABM framework to solve a class of location problems in which one must minimize an
objective function that includes a weighted sum of the distances between p facilities
to be opened and a set of demand points. We refer to this as the “p-Median like
problem.”

In this case, the demand-driven force can be expressed by

Fd
ia = widia ∀i ∈ Prd,a (8)

where wi represents the demand associated to i and dia , the above-mentioned dis-
tance vector. In practice, we suppose that the influence of a demand point i on the fa-
cility a decreases the closer the facility moves towards such a demand point. Indeed,
if the active agent reaches exactly the position of the demand point, the demand-
driven force becomes zero.

As regards the distributive force, we assume that

F r
ja = − dja

‖dja‖
1

‖dja‖
∀j ∈ Arr,a
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The influence of another facility j on the facility a is inversely proportional to the
distance ‖dja‖: the closer the two facilities, the more intense the force F r

ja that will
tend to push the agent a away from the agent j .

The proposed adaptation of the ABM framework to the class of p-Median like
problems can be applied as a heuristic approach to solve instances of the classical
p-Median problem described in Sect. 3, since, given any instance of that problem, it
provides a feasible solution in finite computational time, whose quality will be ex-
perimentally evaluated in the next section, through the comparison with the results
arising from the related literature for the p-Median problem. According to Drezner
(1987), we also observe that, even if the p-Median problem does not explicitly con-
sider mutual distances among facilities, the presence of distributive forces allows
avoiding facilities overlapping that could yield bad quality objective function values.

The values of the radii rd and rr for the determination of Prd and Arr and α are
calibration parameters.

The value of rd can be set as rd = 	min(b,h)
p+1 
, b and h being respectively the base

and the height of the location space.
As regards the value of rr , a default value of 1 space unit can be considered. In

presence of possible constraints on the minimum distance among the facilities, rr can
be fixed according to this aspect.

The value of α can be set equal to 0.5, so the resulting forces are supposed to have
the same relative weight.

The p-maximal covering-like problem We consider now the adaptation of the ABM
framework to the class of p-Maximal Covering-like problems, in which the objective
is to ensure the coverage to some demand points under threshold constraints. In this
case, the demand-driven force is expressed as follows:

Fd
ia = wi

pi

dia ∀i ∈ Prd,a

where pi is the number of active agents covering the demand point i, i.e., within
the distance RD from i. In this way, we suppose that if a demand point i is covered
by more than one facility, its demand-driven force is equally shared among those
facilities.

In this case, the values of the radii rd and rr can be fixed equal to RD and α = 0.5.

The single facility minimum variance-like problem In the adaptation of the ABM
framework to the Single Facility Minimum Variance-like problem, since we deal with
a single facility location, the repulsive forces are not present. The expression of the
demand-driven force is calculated as in (8).

Due to the absence of repulsive forces, α = 1 and rr = 0, the only parameter to
be calibrated is rd , whose value can be fixed as already shown for the p-Median-like
case.

A summary of the adaptations of the Agent-Based framework to the illustrated
location problems is reported in Table 1.
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Table 1 Summary of the expressions of the forces for the illustrated location problems

Problem Demand-driven force Repulsive force Calibration

parameters

p-median-like problem Fd
ia

= widia ∀i ∈ Prd,a F r
ja

= − dja

‖dja‖
1

‖dja‖ ∀j ∈ Arr,a α, rd , rr

p-maximal covering-like Fd
ia

= wi
pi

dia ∀i ∈ Prd,a F r
ja

= − dja

‖dja‖
1

‖dja‖ ∀j ∈ Arr,a α, rd , rr

problem

Single facility minimum Fd
ia

= widia ∀i ∈ Prd,a – rd

variance-like problem

6 Implementation of the framework

The illustrated framework has been implemented within the NetLogo Agent-Based
simulation environment (http://ccl.northwestern.edu/netlogo) using the proprietary
programming language and its Java architecture. NetLogo allows reproducing the
two agent categories introduced above. In particular, passive agents are represented
by cells in a grid network, each cell being identified by a couple of integer coordi-
nates.

In the implemented procedure, whose scheme is represented in Fig. 4, it is possible
to distinguish the following steps.

1. Initialization. The parameters of the problem (number of facilities p, values of the
radii rd and rr , α, objective function, expression of the forces) are defined.

2. Individuation of the initial solution. The position of p active agents in the loca-
tion space is randomly determined according to a uniform distribution with values
ranging within the extreme coordinates of the location space.

3. Evolution of the current solution. For each active agent a located in the current
positions, the total force Ma is calculated according to (7) so that the active agents
change position on the base of this force and the solution assumes a new objective
function value.

4. Diversification. If a diversification criterion (defined in terms of number of nonim-
proving iterations, fixed a priori as a parameter) is satisfied, a diversification move
is enacted, and the procedure goes back to Step 2; otherwise, it goes to Step 5.

5. Stopping criterion. If a stopping criterion is satisfied, the procedure ends; other-
wise it goes back to Step 3.

The procedure behaves as a metaheuristic searching for better solutions thanks to
an evolutionary mechanism which is performed until a diversification or a stopping
criterion are satisfied. On the base of a diversification criterion, the procedure restarts
from a new initial solution.

Possible stopping criteria are represented by a given total number of evolution
iterations or a fixed running time, to be defined as parameters.

http://ccl.northwestern.edu/netlogo
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Fig. 4 The scheme of the
implemented procedure

7 Computational experiences

We illustrate some examples of application of the Agent-Based framework to the
location problems introduced and described in Sects. 3 and 5, in order to show the
capability of the proposed approach to solve these problems and to analyze the pro-
vided performances in terms of computational times and quality of the solution. The
procedure was run on a PC with a Dual-Core T2250 2.0 GHz CPU and 2 GB of
RAM. In all the experiments, the calibration parameters were set according to the
criteria illustrated in Sect. 5.

As stopping criterion, we fixed a number of 150 iterations, while, to start the di-
versification, we considered 10 nonimproving iterations.

In order to evaluate the quality of the provided solution, we calculated the gap
from the known optimal solution as

Gap =
(

ABM Best Solution − Optimal Solution

Optimal Solution

)
× 100

Solving p-median problem instances We applied the proposed framework to solve
one of the benchmark problems (Bongartz287) available for p-Median problem
(http://ina2.eivd.ch/Collaborateurs/etd/problemes.dir/location.html). This problem is
characterized by 287 demand points with variable demand values, whose coordinates
assume integer values in the range [0,50]. We used a 100 × 100 grid of passive
agents; thus, each grid point can be associated or not to a demand point. We solved
the problem for p varying from 2 to 10.

Results reported in Table 2 show that ABM finds near optimal solutions in limited
computing times.

Solving p-maximal covering problem instances In absence of benchmark instances
for this version of the problem, we generated instances in a 100 × 100 location space

http://ina2.eivd.ch/Collaborateurs/etd/problemes.dir/location.html
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Table 2 Computational results
on the Bongartz287 instance p Optimal solution ABM best solution gap ABM runtime (sec)

2 14427.593010 0.00% 0.50

3 12095.442160 0.00% 1.50

4 10661.476590 0.00% 1.50

5 9715.627471 0.10% 2.30

6 8787.556817 0.23% 4.10

7 8160.320284 0.53% 4.20

8 7564.294907 0.22% 5.40

9 7088.128333 0.38% 6.00

10 6705.035556 1.32% 6.00

(for a total number of 10000 demand points) with known optimal solutions according
to the following criteria. Once fixed the distance threshold RD (we assume RD = 4
space units) and given the number p of facilities to be opened, each instance is pro-
duced through the random generation of 4 sets of p circles of radius R ≥ RD in the
location space. The coordinates of the center of each circle were chosen according to
a uniform distribution. For each set s (s = 1..4), we assigned the same demand value
ws to the points internal to each circle. In particular, we fixed w1 = 1, w2 = 1/2,
w3 = 1/4, w4 = 1/8. Points belonging to the intersection of more circles were given
the maximum demand value. This way the optimal solution of the p-Maximal Cov-
ering problem on such instances is known in advance, as it can be obtained locating
the p facilities exactly in the center of the p circles with unitary demand values.

For some combination of values (R,RD) and for each value of p varying from 1
to 10, we generated 5 different instances. For each instance, the procedure was run
10 times.

The results indicate the frequency with which the optimal solution is found (calcu-
lated as [number of times]/50) in the case R = RD and in the case R = 2RD (Table 3).

As the procedure always finds the optimal solution, the average running times to
find the optimal solution are reported for each value of p. The R value does not seem
to affect the results in terms of final solution, but there is a slight variation in the
computational times.

However, the results appear interesting, and the optimal solutions are detected in
limited computing times.

Solving single facility minimum variance problem instances The adaptation of the
ABM framework to the Single Facility Minimum Variance-like problem was applied
to some instances contained in Drezner and Drezner (2007). These instances consider
a continuous location space and a discrete demand space with demand points of equal
demand values distributed on the Euclidean plane.

In order to solve the instances, we used a 100 × 100 grid of agents, i.e., 10000
passive agents. As, in general, the position of an original discrete demand point did
not coincide with any grid points, an adaptation of the instances demand data was
performed, associating each demand point to the closest grid point; thus, each grid
point has been weighted with a demand value equal to the number of associated
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Table 3 Computational results on the p-Maximal Covering randomly generated instances

p R = RD R = 2RD

Optimal solution Average runtime (sec) Optimal solution Average runtime (sec)

frequency frequency

1 100.00% 2.1 100.00% 2.1

2 100.00% 3.2 100.00% 3.4

3 100.00% 4.0 100.00% 4.3

4 100.00% 5.4 100.00% 6.1

5 100.00% 7.2 100.00% 8.3

6 100.00% 10.4 100.00% 11.6

7 100.00% 14.9 100.00% 17.9

8 100.00% 18.3 100.00% 20.8

9 100.00% 22.2 100.00% 23.4

10 100.00% 26.3 100.00% 30.5

Table 4 Computational results on the instances in Drezner and Drezner (2007) for the Single Facility
Minimum Variance problem

Demand points Optimal solution ABM best solution gap ABM runtime (sec)

2000 0.0204669774 0.96% 3.1

5000 0.0203239336 0.08% 3.1

10000 0.0205132773 0.19% 4.3

demand points. The ABM provides the coordinates of the facility to be located with
a ten-digit precision in the continuous location space. Then, the objective function
value was computed as the variance of the distances of the original demand points
from the located facility. This way, the objective function value includes the effects
of the aggregation operation and, thus, associated errors (Plastria 2000).

Table 4 shows the capability of the proposed approach to find good results in
reasonable computational times.

8 Benefits of the proposed approach

The computational results presented in the previous section showed the effectiveness
of the proposed ABM approach to solve the considered continuous location problems
with discrete demand. Even if the approach appears competitive with other heuristics
in terms of computational performances, the interest in using ABMs for location
problems goes far beyond the computational efficiency.

The proposed approach can be viewed as a sort of metaheuristic in which some
steps are performed through agent-based computation. Even if the approach could be
implemented in a “traditional” way, the use of an ABM framework provides several
additional benefits.
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First of all, the current availability of open source environments for ABMs imple-
mentation (i.e., NetLogo, JAS, SWARM, REPAST) with dedicated libraries let model-
ing such heuristics easy to perform even for nonspecialist users. The presence, within
each of the cited toolkits, of integrated Graphical User Interfaces (GUIs) allows the
immediate graphical representation of the elements of the problem together with a
visual indication of the evolution of the solution.

These aspects could help users, even not particularly skilled in implementation
aspects, in the search of adoptable practical solutions, especially in presence of con-
straints which cannot be easily modeled in a mathematical way, such as forbidden
regions, obstacles, and minimum distance constraints among facilities.

The framework presents a significant flexibility that matches the huge variety of
problems arising in the context of location studies. As previously illustrated, ver-
sions of the problems with variations in the objective function and/or constraints can
be tackled through proper modifications of the elements of the framework (i.e., ex-
pressions of forces, calibration parameters) or introducing new characteristics in the
paradigm of the model.

Among the benefits, it should be also mentioned the possibility of an easy and
effective integration of ABM tools with Geographical Information Systems (GIS),
as deeply shown by Brown et al. (2005), Parker (2005) and Guo et al. (2008).
The starting phase of a location decisional process is often the representation and
the analysis of the problem by means of maps, datasets, and geo-statistical analy-
sis tools of GIS software. A straightforward data import process and an inter-
active visualization and contextualization of the output and parameter setting of
the optimization process is therefore a relevant requirement for a decision sup-
port system in the field of location analysis. The use of ABM tools allows users
to solve problems through continuous interactions between optimization framework
and GIS applications. Currently, these processes are simplified by the presence of
a growing number of ABM toolkits that permits a direct access to GIS vector and
raster datasets. For instance, the NetLogo platform we adopted in this paper offers
GIS extensions, developed thanks to the contribution of the Center for Connected
Learning (CCL) and Computer-Based Modeling of the Northwestern University,
Chicago, and available at the Internet address http://ccl.northwestern.edu/netlogo/
docs/gis.html.

9 Conclusions

In recent years, Agent-Based modeling is becoming more and more frequently used
as an approach for solving complex optimization problems. In this work, an Agent-
Based framework for modeling location problems was proposed and illustrated. The
original contribution of the work consists mainly in the proposal of an approach that,
compared to the other heuristic methods in the literature, is easy to implement and
appears particularly suitable for the integration with GIS-based data.

Moreover, it presents characteristics of flexibility as the general framework can be
applied, with slight modifications, to solve different kind of locations problems (i.e.,
p-Median-like problem, p-Maximal Covering-like problem, Single Facility Mini-
mum Variance-like problem). The features of the model suggest also the possibility

http://ccl.northwestern.edu/netlogo/docs/gis.html
http://ccl.northwestern.edu/netlogo/docs/gis.html
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of immediately adapting the approach to take into account constraints (for instance,
minimum distance constraints among facilities, presence of obstacles or forbidden ar-
eas in the location space) whose formulation makes the problem hard to solve using
mathematical programming-based methods.

The preliminary computational experiences appear encouraging and indicate that
the approach provides reasonable quality solutions within limited running times.

Future researches will include an extensive computational experimentation to test
the scalability of the proposed ABM approach on very large scale instances of the
considered problems. Moreover, there will be studied the adaptation of the framework
to other classes of location problems such as the anti-p-Median problem (Erkut and
Neuman 1989; Cappanera et al. 2003) and the p-Minimal Covering problem with
distance constraints (Berman and Huang 2008).
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