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Abstract. — We consider a class of homeomorphisms f : WHR2 �!onto W 0 HR2 of the Sobolev

space W1; 1
loc ðW;R2Þ whose Jacobian may vanish on a set of positive measure but cannot be zero a.e.

in W. This class is defined by the bi-Sobolev condition

f and f �1 a W1; 1
locð1Þ

and reveals useful also in the theory of changes of variables for Sobolev functions.
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1. Introduction

Suppose that W and W 0 are planar domains and that f ¼ ðu; vÞ : W �!onto W 0 is a
Sobolev homeomorphism, that is f is a continuous bijection that belongs to
W1;1

loc ðW;R2Þ.
For pb 1, W1;p

loc ðW;R2Þ is the space of mappings f : W ! R2 whose compo-
nents u, v belong to the Sobolev space W

1;p
loc ðWÞ of Lp

loc-functions which have
locally p-integrable distributional derivatives.

By the Gehring-Lehto Theorem (see [2] Section 3.3) a Sobolev homeomor-
phism f : W �!onto W 0 is almost everywhere di¤erentiable in the classical sense,
moreover the Jacobian determinant

Jf ¼ uxvy � uyvx

is locally integrable and satisfies either Jf b 0 a.e. or Jf a 0 a.e. (see [17]). We
will always suppose Jf ðzÞb 0 at each point z a W of di¤erentiability.

In the following we will denote by Cf the zero set of the Jacobian of f , namely
the Borel set

Cf ¼ fz a W : f is di¤erentiable at z and Jf ðzÞ ¼ 0gð1:1Þ
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and by Cu and Cv the critical sets of the components u and v of f :

Cu ¼ fz a W : u is di¤erentiable at z and j‘uðzÞj ¼ 0g;ð1:2Þ
Cv ¼ fz a W : u is di¤erentiable at z and j‘vðzÞj ¼ 0g;ð1:3Þ

and we will consider their reciprocal relations and sizes.
Obviously we have Cu ACv HCf and we are legitimate to expect that regularity

of the inverse map f �1 should guarantee restrictions on the measure of Cf .
For example, the hypothesis f �1 a W1;2

loc ðW 0;R2Þ is su‰cient to conclude that
critical sets have zero measure:

jCuj ¼ jCvj ¼ jCf j ¼ 0ð1:4Þ

as we will prove below (Remark 2.7). Here we notice that there is an example
([27], see also [19] Section 6.5.6) of a Sobolev homeomorphism f : Q0 �!

onto
Q0,

Q0 ¼ ð0; 1Þ2 satisfying the condition

f �1 a W
1;p
loc nW1;2

loc for any 1 < p < 2

whose critical sets have positive measure:

jCuj ¼ jCvj ¼ jCf j > 0:

Notice that, however, it is j f ðCf nZÞj ¼ 0 for some zero set ZHW, according to
Sard Lemma (see Lemma 2.5).

Remark 1.1. Let us now point out that, in the category of W1;p-
homeomorphisms, i.e. of planar homeomorphisms that belong to W

1;p
loc , the case

1a p < 2 is critical respect to the N-property of Lusin, i.e. that a function maps
every sets of zero measure to a set of zero measure. As a matter of fact (see [2]
Theorem 3.3.7) for W1;2-homeomorphisms we have the N-property.

It is also natural to try to characterize the most general class of Sobolev ho-
meomorphisms that prevent the pathological situation:

jCf j ¼ jWjð1:5Þ

that i.e. the Jacobian is zero a.e. in W.
Actually we will see that the assumption f �1 a W1;1

loc ðW 0;R2Þ guarantees the
strict inequality

jCf j < jWj:ð1:6Þ

(see Theorem 1.4).
In [14], for any 1a p < 2 an amazing example is given of a Sobolev homeo-

morphism f0 : Q0 �!
onto

Q0, Q0 ¼ ð0; 1Þ2 such that f0 a W1;pðQ0;R
2Þ and

Cf0 ¼ Q0 a:e:;
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that is

Jf0ðzÞ ¼ 0 a:e: z a Q0:ð1:7Þ

We wish to notice here that for such a homeomorphism the following negative
conditions necessarily hold

f0 B W1;2ðQ0;R
2Þ;ð1:8Þ

f �1
0 B W1;1ðQ0;R

2Þ:ð1:9Þ

Proof of (1.8). Since the area formula for the Sobolev homeomorphism f0
holds up to a zero set Z0 HQ0, then

jZ0j ¼ 0 ¼
Z
Q0nZ0

Jf0ðzÞ dz ¼ j f0ðQ0nZ0Þjð1:10Þ

(see [12]), moreover, being f0ðZ0ÞA f0ðQ0nZ0Þ ¼ Q0, by (1.10) we deduce

j f0ðZ0Þj ¼ jQ0j ¼ 1:

This means that f0 sends a zero set into a set of full measure, it does not satisfy
the N-condition, hence f0 does not belong to W1;2ðQ0;R

2Þ (see Remark 1.1). r

Proof of (1.9). The fact that f �1
0 cannot belong to W1;1ðQ0;R

2Þ derives from
Theorem 1.3 and the fact ([14] Section 7) that there exists a Cantor set C1 in
ð0; 1Þ2 of positive measure such that

jDf0ðzÞj ¼
0 0

0 1

� �
for z a C1;

hence f �1
0 cannot belong to W1;1. r

To give precise statements we need a definition from [18].

Definition 1.1. The homeomorphism f : W �!onto W 0 is a bi-Sobolev map if f
and f �1 are Sobolev homeomorphisms.

A su‰cient condition that a Sobolev homeomorphism is a bi-Sobolev map is
contained in the following

Theorem 1.2 ([15]). Let f : W �!onto W 0 be a Sobolev homeomorphism satisfying
the condition

jCf j ¼ 0 a:e:ð1:11Þ

then, f is a bi-Sobolev map andZ
W

jDf j dz ¼
Z
W 0

jDf �1j dw:
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We emphasize that condition (1.11) is not necessary for f to be a bi-Sobolev
map. It can happen that bi-Sobolev maps have positive sets of critical points (see
the mentioned example of [27]).

Notice also that bi-Sobolev maps escape the pathological equality (1.5) (see
Theorem 1.4).

A first interesting property of a bi-Sobolev map f ¼ ðu; vÞ is shown in the fol-
lowing (see [18]).

Theorem 1.3. If f : W �!onto W 0 is a bi-Sobolev map, then

Cu ¼ Cv ¼ Cf a:e:ð1:12Þ

Here, for A;BHR2, by A ¼ B a.e. we mean that jðAnBÞA ðBnAÞj ¼ 0.
Let us consider the critical sets

Z x ¼ fz a W : j fxðzÞj ¼ 0g;ð1:13Þ
Z y ¼ fz a W : j fyðzÞj ¼ 0g:ð1:14Þ

In Section 5 we will give a simple direct proof of the following result which par-
allels Theorem 1.3:

Theorem 1.4. If f : WHR2 �!onto W 0HR2 is a bi-Sobolev map, then

Z x ¼ Z y ¼ Cf a:e:ð1:15Þ

Moreover

jZ xj ¼ jZ yj ¼ jCf j < jWj:ð1:16Þ

A corresponding result holds also for f �1.
We notice here that if we further weaken the regularity assumptions on the in-

verse, our previous results may fail.

Example 1.5. Let c : ð0; 1Þ ! ð0; 1Þ be the usual Cantor ternary function and
define kðtÞ ¼ tþ cðtÞ and h ¼ k�1 : ð0; 2Þ ! ð0; 1Þ. Then the mapping f ¼ ðu; vÞ
defined by

f ðx; yÞ ¼ ðhðxÞ; yÞ for ðx; yÞ a ð0; 2Þ � ð0; 1Þ;

is a Sobolev homeomorphism whose inverse is in BV (see Section 2 for definition
of mapping of bounded variation) but fails to belong to W1;1

loc . One can check that
jZ xj ¼ 1, jZ yj ¼ 0.

After a Section of Preliminaries, in Section 3 we study the composition of
Sobolev functions with bi-Sobolev maps. In Section 4 various distortions quo-
tients are related each other. In Section 5 an elementary proof of Theorem 1.4 is
given.
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2. Preliminaries

2.1. Lipschitz, Sobolev and BV mappings. Let W be a bounded domain in Rn.
We say that the mapping f : W ! Rn is Lipschitz if there exists a constant
K > 0 such that

j f ðzÞ � f ðz 0ÞjaK jz� z 0jð2:1Þ

for every z; z 0 a W. Further, f : W �!onto W 0 HRn is said to be bi-Lipschitz if

jz� z 0j
K

a j f ðzÞ � f ðz 0ÞjaK jz� z 0jð2:2Þ

for every z; z 0 a W and a K b 1. For 1a pal, we say that f a LpðW;RnÞ
belongs to the Sobolev space W1;pðW;RnÞ if the distributional derivatives of
the coordinate functions of f belong to LpðW;RnÞ. Further, f a W

1;p
loc ðW;RnÞ if

f a W1;pð~WW;RnÞ for each open ~WWHHW.
The function h : W ! Rn is said to be a representative of g : W ! Rn if h ¼ g

a.e..
It is well known (see [1] Section 3.11) that a mapping f a L1

locðW;RnÞ is in
W1;1

loc ðW;RnÞ if and only if there is a representative which is an absolutely contin-
uous function on almost all lines parallel to coordinate axes and the variation on
these lines is integrable.

Recall that for a function j : ða; bÞHR ! Rn the total variation of j is

Vðj; ða; bÞÞ ¼ sup

(Xk

i¼1

jjðaiÞ � jðbiÞj : ðai; biÞ areð2:3Þ

disjoint intervals in ða; bÞ
)
:

A real function u a L1ðWÞ is of bounded variation, u a BVðWÞ if the distribu-
tion partial derivatives of u are measures with finite total variation in W: there are
Radon (signed) measures m1; . . . ; mn in W such that, for i ¼ 1; . . . ; n the total vari-
ations verify jmijðWÞ < l andZ

W

u
qj

qxi
dz ¼ �

Z
W

j dmi

for all j a C1
0 ðWÞ. The gradient of u, ‘u, is then a vector-valued measure with

finite total variation

j‘ujðWÞ ¼ sup

Z
W

u div v dz : v ¼ ðv1; . . . ; vnÞ a C1
0 ðW;RnÞ; jvja 1 a:e:

� �
:ð2:4Þ

If u a W1;1ðWÞ, then j‘ujðWÞ ¼
Z
W

j‘uj dz for all this see [1].
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Further, we say that the mapping f a L1ðW;RnÞ belongs to BVðW;RnÞ if the
coordinate functions of f belong to BVðWÞ. Finally f a BVlocðW;RnÞ requires
that f a BVð~WW;RnÞ for every subdomain ~WWHW.

For 1a pal, WHRn, W 0HRn domains, the homeomorphism f : W �!onto W 0

is a W1;p-homeomorphism if f a W
1;p
loc ðW;RnÞ. For p ¼ 1 we simply say that f is

a Sobolev homeomorphism. For p ¼ l we also say that f is a Lipschitz homeo-
morphism.

2.2. Di¤erentiability of W1;1-homeomorphisms. Let f : WHRn �!onto W 0 HRn be
a homeomorphism. We decompose ([11]) the domain W of f as follows

W ¼Rf ACf AE fð2:5Þ

where

Rf ¼ fz a W : f is di¤erentiable at z and Jf ðzÞA 0gð2:6Þ

is the set (possible empty) of regular points of f , and

Cf ¼ fz a W : f is di¤erentiable at z and Jf ðzÞ ¼ 0gð2:7Þ
E f ¼ fz a W : f is not di¤erentiable at zg:ð2:8Þ

Di¤erentiability is understood in the classical sense. Since f is a homeomor-
phism, those are Borel sets ([31]). Moreover

f ðRf Þ ¼Rf �1

and for all z aRf :

Df �1ð f ðzÞÞ ¼ ðDf ðzÞÞ�1:ð2:9Þ

A Sobolev homeomorphism f is known to be di¤erentiable a.e. in W (see forth-
coming Theorem 2.2). For such a map jE f j vanishes and either Jf ðzÞb 0 or
Jf ðzÞa 0 a.e.. Moreover, Df is a Borel function and is the di¤erential also in
the sense of distributions.

An important property of Lipschitz functions is their a.e. di¤erentiability. The
prototype of such kind of results is the following theorem due to Rademacher
and Stepanov (see [29] p. 311 and also [1], Theorem 2.14):

Theorem 2.1. Any function u a W1;lðWÞ is di¤erentiable a.e.

Let us list some other classical a.e. di¤erentiability theorems for Sobolev func-
tions.

It is well known that if a function u belongs to W1;pðWÞ, WHRn, p > n, then
u is di¤erentiable a.e. ([4] for n ¼ 2 and [3] for general n).

In 1981 Stein [30] proved that if u a W1;1ðWÞ and j‘uj belongs to the Lorentz
space Ln;1ðWÞ then u is di¤erentiable a.e. (for Lorentz space see [22]). Better
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result are available for Sobolev homeomorphisms f a W1;1ðW;RnÞ. First of all,
in the planar case, the following result of Gehring-Lehto is largely satisfactory
([23] Theorem III.3.1).

Theorem 2.2 (Gehring-Lehto). Let f : WHR2 �!onto W 0HR2 be a Sobolev
homeomorphism. Then f is di¤erentiable a.e.

For general n weaker results hold true. In [31] Vaisala proved that to get a.e.
di¤erentiability of f it su‰ces to assume that jDf j is p-integrable for some
p > n� 1, whereas jDf j a Ln�1 is not su‰cient when n > 2.

Recently J. Onninen showed that it is su‰cient to assume jDf j a Ln�1;1ðWÞ
([25]) which, for n ¼ 2 reduces to Gehring-Lehto Theorem.

Remark 2.3. In [7] and in [13] a n-dimensional version of (2.9) is proved.
Since bi-Sobolev maps f a W1;1ðW;RnÞ are not necessarily a.e. di¤erentiable
for n > 2, in those papers the Authors use the notion of approximate di¤erenti-
ability and prove formula (2.9) for all z belonging to a Borel set AH fz a W : f is
approximately di¤erentiable at z and Jf ðzÞ > 0g ¼ ~RRf which is of full measure

in ~RRf , such that f ðAÞH fw a W 0 : f �1 is approximately di¤erentiable at w and
Jf �1ðwÞ > 0g ¼ ~RRf �1 which is of full measure in ~RRf �1 as well.

2.3. Area Formula. A continuous mapping f : W ! R2 is said to satisfy the
N-condition of Lusin if j f ðEÞj ¼ 0 for every EHW such that jEj ¼ 0. For
homeomorphisms this is equivalent to say that f ðEÞ is measurable for any
EHW measurable.

A W1;2-homeomorphism satisfies the N-condition, according to the following
result ([23] p. 150).

Proposition 2.4. Let g : WHR2 �!onto W 0HR2 be a homeomorphism belonging
to W1;2

loc ðW;R2Þ. Then g verifies the N condition.

On the other hand there exists a homeomorphism that does not satisfy the
condition N and jDf j belongs to Lp for each 1 < p < 2; see the examples by
Ponomarev [26], [27].

In a recent paper [21] it is shown that a sharp regularity assumption to rule out
the failure of the N-condition for planar homeomorphism is that

lim
e!0

e

Z
W

jDf j2�e
dz ¼ 0:ð2:10Þ

See [20] and [9] for the introduction and the study of condition (2.10).
Let f be a Sobolev homeomorphism i.e. f a W1;1

loc ðW;R2Þ and let h be a non-
negative Borel measurable function on R2. Without any additional assumption
we have ([6], Theorem 3.1.8)Z

W

hð f ðzÞÞJf ðzÞ dza
Z
R2

hðwÞ dw:ð2:11Þ
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Moreover there exists a set ~WWHW of full measure such that the area formula
holds for f on ~WW ([12]):Z

~WW

hð f ðzÞÞJf ðzÞ dz ¼
Z
f ð~WWÞ

hðwÞ dw:ð2:12Þ

We say that the area formula holds for f on the Borel set B if the equalityZ
B

hð f ðzÞÞJf ðzÞ dz ¼
Z
f ðBÞ

hðwÞ dwð2:13Þ

is satisfied for any nonnegative Borel function h on R2.
Also, the area formula holds on each set on which the Lusin condition N is

satisfied. This follows from the area formula for Lipschitz mappings, from the
a.e. di¤erentiability of f and a general property of a.e. di¤erentiable planar map-
pings, namely that W can be exhausted up to a set of measure zero by sets the
restriction to which of f is Lipschitz. More precisely, we can decompose WHR2

into pairwise disjoint sets

W ¼ ZA
[l
k¼1

Wkð2:14Þ

such that jZj ¼ 0 and fjWk
is Lipschitz ([18]).

From (2.12) we deduce immediately the following general version for W1;1-
homeomorphisms of the classical Sard Lemma concerning the image of the set
Cf (defined in (1.1)) of zeros of the Jacobian.

Lemma 2.5 (Sard). Let f : W ! W 0 be a W1;1-homeomorphism. Then exists
ZHW such that jZj ¼ 0 and j f ðCf nZÞj ¼ 0.

Proof. Let ~WWHW be a full measure set such that the area formula (2.12) holds
for f on ~WW. We may assume that the Borel Cf has positive measure, otherwise we
choose Z ¼ Cf .

Since jCf j > 0, there exists a zero set Z such that Cf nZH ~WW and by (2.12) with
hðwÞ ¼ wf ðCf nZÞðwÞ, we have:Z

~WW

wf ðCf nZÞð f ðzÞÞJf ðzÞ dz ¼
Z
Cf nZ

Jf ðzÞ dz ¼ j f ðCf nZÞj:

Since Jf ¼ 0 on Cf nZ we deduce that j f ðCf nZÞj ¼ 0. r

For completeness let us prove the following useful

Proposition 2.6. Let f : WHR2 ! W 0HR2 be a Sobolev homeomorphism.
Then f �1 verifies the N condition if, and only if, the Jacobian of f satisfies the
condition

Jf ðzÞ > 0 a:e: z a W:ð2:15Þ
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Proof. Suppose f �1 verifies the N-condition. By Lemma 2.5 exists a set Z of
measure zero such that j f ðCf nZÞj ¼ 0 and thus jCf j ¼ 0.

Conversely, suppose (2.15) and assume, by contradiction, that there exists
E 0 HW 0, jE 0j ¼ 0 such that

j f �1ðE 0Þj > 0:

By (2.11) with h ¼ 1, B ¼ f �1ðE 0Þ and (2.15) we have

0 <

Z
f �1ðE 0Þ

Jf dza jE 0j ¼ 0

which is a contradiction. r

Remark 2.7. Combining Proposition 2.6 with Proposition 2.4 for g ¼ f �1, we
deduce that if f is a bi-Sobolev map such that f �1 a W1;2 then jCf j ¼ 0.

3. Composition with Sobolev homeomorphisms

In this section we shall be concerned with the behaviour of a function
j a W1;1ðW 0Þ when composed with a Sobolev homeomorphism

f : WHR2 �!onto W 0HR2:ð3:1Þ

The major di‰culty lies in the fact that, also if we assume that f is a bi-Sobolev
map, the map f �1 need not satisfy the N-condition. In other words, the image of
a null set under f �1 may fail to be measurable. This poses serious problems con-

cerning measurability of the composition j � f : W �!onto R and forces us to assume
that f �1 satisfies the N-condition. In fact, it is well known ([23] p. 121) that the
N-condition on f �1 guarantees that j � f is measurable for any measurable func-
tion j : W 0 �!onto R.

We will give sharp conditions under which j � f a W1;1
loc ðWÞ. The point is that

we will admit that Jacobian Jf may vanish on some positive set, while on the con-
trary, the classical results ([23] p. 151) require that f and f �1 belong to W1;2,
hence f and f �1 carry zero sets into zero sets and, equivalently, Jf A 0 a.e. and
Jf �1 A 0 a.e..

Let us precisely state a result from [23].

Theorem 3.1. Let f : WHR2 �!onto W 0 HR2 be a homeomorphism which satisfies

jDf j a L2ðWÞ; jDf �1j a L2ðW 0Þ:ð3:2Þ

If j a W1;1ðW 0Þ satisfies j‘jj a L2ðW 0Þ then

j � f a W1;1ðWÞ:ð3:3Þ

Notice that (3.2) implies that f and f �1 verify the N-condition. See also ([33]).
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There are other recent results about the Sobolev regularity of compositions.
For example in [15] assumption (3.2) has been relaxed into

jDf j a L1ðWÞ; jDf �1j a L2ðW 0Þ:ð3:4Þ

and in [14] this last condition was proved to be sharp to obtain (3.3), in the sense
that for W ¼ W 0 ¼ ð�1; 1Þ2, for any 0 < � < 1 there exists a bi-Sobolev homeo-

morphism f : W �!onto W 0 such jDf �1j a L2ðW 0Þ and there exists j a W1;2��ðW 0Þ
such that j � f B W1;1

loc ðWÞ. In [10] the following result has been proved

Theorem 3.2. Let f : WHR2 �!onto W 0HR2 be a homeomorphism which satisfies

jDf j a L1
locðWÞ; jDf �1j a L2 loga LlocðW 0Þ ða a RÞ:ð3:5Þ

If j a W1;1
loc ðW 0Þ satisfies j‘jj a L2 log�a LlocðW 0Þ, then (3.3) holds true.

4. The distortion quotients of planar homeomorphisms

Let f : WHR2 �!onto W 0 HR2 be a homeomorphism which is a.e. di¤erentiable to-
gether with its inverse. Let us define the distortion quotient

Kf ðzÞ ¼
jDf ðzÞj2

Jf ðzÞ
ð4:1Þ

whenever z belongs to the regular setRf of f (see (2.6)). If jDf ðzÞj2 ¼ 0, we may

set Kf ðzÞ ¼ 1. However, where jDf ðzÞj2 > 0 but Jf ðzÞ ¼ 0 there is no meaningful
definition for Kf ðzÞ. Assuming that the set of all such degenerate points has zero
measure, that is, assuming

fz a W : Jf ðzÞ ¼ 0g ¼ fz a W : jDf ðzÞj2 ¼ 0g a:e:;ð4:2Þ

then Kf : W ! ½1;l½ is a Borel map which in [11] has been defined precisely at
every z a W as follows:

Kf ðzÞ ¼
jDf ðzÞj2

Jf ðzÞ
; for all z aRf

1 for all z a WnRf :

8><
>:ð4:3Þ

Hereafter the undetermined ratio 0
0 is understood to be equal to 1 for z a Cf (see

(2.7)).
Let us notice that bi-Sobolev maps automatically verify (4.2) ([18]). In [11] for

bi-Sobolev maps the formula

Kf �1ðwÞ ¼ Kf ð f �1ðwÞÞð4:4Þ

was established at every point w a W 0. The main di‰culty in establishing (4.4) for
a bi-Sobolev map f is that f need not satisfy Lusin condition N; this poses some
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problem for the definition and the measurability of Kf � f �1 in (4.4). To over-
come this di‰culty the precise definition (4.4) of Kf was proposed, so that it is
defined at every point, and not only a.e.. Notice that analogous formula holds
for Kf when f is bi-Sobolev

Kf ðzÞ ¼ Kf �1ð f ðzÞÞ for all z a W:ð4:5Þ

Using the same technique, in the following we will give similar formulas, for var-
ious distortion quotients.

For homeomorphisms which are a.e. di¤erentiable with their inverse and have
nonnegative Jacobians, under suitable assumptions, it is possible to introduce dif-
ferent distortions quotients. Namely, if f ¼ ðu; vÞ satisfies the condition

fz : Jf ðzÞ ¼ 0g ¼ fz : j‘uðzÞj ¼ 0g a:e:ð4:6Þ

then we are allowed to define the Borel function

K
ð1Þ
f ðzÞ :¼

j‘uðzÞj2

Jf ðzÞ
for all z aRf ;

1 otherwise.

8<
:ð4:7Þ

Similarly, if f ¼ ðu; vÞ satisfies the condition

fz : Jf ðzÞ ¼ 0g ¼ fz : j‘vðzÞj ¼ 0g a:e:ð4:8Þ

then the Borel function

K
ð2Þ
f ðzÞ :¼

j‘vðzÞj2

Jf ðzÞ
for all z aRf ;

1 otherwise.

8<
:ð4:9Þ

is well defined.
On the other hand, if f ¼ ðu; vÞ satisfies the condition

fz : Jf ðzÞ ¼ 0g ¼ fz : j fxðzÞj ¼ 0g a:e:ð4:10Þ

then we can define the Borel function

H
ð1Þ
f ðzÞ :¼

j fxðzÞj2

Jf ðzÞ
for all z aRf ;

1 otherwise.

8<
:ð4:11Þ

Finally, for f satisfying

fz : Jf ðzÞ ¼ 0g ¼ fz : j fyðzÞj ¼ 0g a:e:ð4:12Þ

217critical points for sobolev homeomorphisms



we define

H
ð2Þ
f ðzÞ :¼

j fyðzÞj2

Jf ðzÞ
for all z aRf ;

1 otherwise.

8<
:ð4:13Þ

We would like to point out here that various interaction between such quotients
of the type (4.4) and (4.5) via composition with f and f �1 hold true.

As a prototype of our results, let us prove the following

Theorem 4.1. Let f : WHR2 �!onto W 0 HR2 be a homeomorphism and suppose
that f ¼ ðu; vÞ, f �1 ¼ ðx; yÞ are di¤erentiable a.e. and satisfy conditions (4.10) and

fw a W 0 : Jf �1ðwÞ ¼ 0g ¼ fw a W 0 : j‘yðwÞj ¼ 0g a:e:ð4:14Þ

respectively. Moreover, assume Jf ðzÞb 0, Jf �1ðzÞb 0 a.e. Then,

H
ð1Þ
f ðzÞ ¼ K

ð2Þ
f �1ð f ðzÞÞ for all z a W:ð4:15Þ

where

K
ð2Þ
f �1ðwÞ :¼

j‘yðwÞj2

Jf �1ðwÞ if Jf �1ðwÞ > 0;

1 otherwise:

8><
>:ð4:16Þ

Proof. We will now use the elementary formulas for the di¤erential of the
inverse

Df �1ð f ðzÞÞ ¼ ðDf ðzÞÞ�1 for every z aRfð4:17Þ

which in two dimension reads as

xuð f ðzÞÞ xvð f ðzÞÞ
yuð f ðzÞÞ yvð f ðzÞÞ

� �
¼

vyðzÞ
Jf ðzÞ

�uyðzÞ
Jf ðzÞ

�vxðzÞ
Jf ðzÞ

uxðzÞ
Jf ðzÞ

0
BBB@

1
CCCA

hence

yuð f ðzÞÞ2 þ yvð f ðzÞÞ2 ¼
uxðzÞ2 þ vxðzÞ2

Jf ðzÞ2
:ð4:18Þ

Clearly the image of regular points of f are regular points of f �1:

f ðRf Þ ¼Rf �1

and then, if z aRf by (4.18)

H
ð1Þ
f ðzÞ ¼ K

ð2Þ
f �1ð f ðzÞÞ
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because f ðzÞ aRf �1 and

Jf �1ð f ðzÞÞ ¼ 1

Jf ðzÞ
> 0:

On the other hand, if z a WnRf , we have by (4.11)

H
ð1Þ
f ðzÞ ¼ 1

and also

K
ð2Þ
f �1ð f ðzÞÞ ¼ 1

because f ðzÞ a W 0nRf �1 . r

Remark 4.2. Similarly we can prove

H
ð2Þ
f ðzÞ ¼ K

ð1Þ
f �1ð f ðzÞÞ for all z a Wð4:19Þ

under the assumptions (4.12) and

fw a W 0 : Jf �1ðwÞ ¼ 0g ¼ fw a W 0 : j‘xðwÞj ¼ 0g a:e:ð4:20Þ

and assuming f and f �1 di¤erentiable a.e. and with non negative Jacobians.

Remark 4.3. The following assumptions of Theorem 4.1

f and f �1 di¤erentiable a:e:ð4:21Þ
Jf b 0; Jf �1 b 0 a:e:ð4:22Þ

are certainly satisfied if f is a BV-homeomorphism (see [16], [5])

Remark 4.4. Using Theorem 4.1 and Remark 4.2 we can recover formulas
(4.4) and (4.5) for bi-Sobolev maps.

In fact, obviously we have

fz a W : jDf ðzÞj ¼ 0g ¼ fz a W : j‘uðzÞj ¼ 0gB fz a W : j‘vðzÞj ¼ 0g

then Kf is well defined if we assume

fz a W : Jf ðzÞ ¼ 0gH fz a W : jDf ðzÞj ¼ 0gð4:23Þ

hence also K
ð1Þ
f and K

ð2Þ
f are well defined under such a condition. Since we have

fw a W 0 : jDf �1ðwÞj ¼ 0g ¼ fw a W 0 : j‘xðwÞj ¼ 0gB fw a W 0 : j‘yðwÞj ¼ 0g

also Kf �1 , H
ð1Þ
f and H

ð2Þ
f are well defined for f a bi-Sobolev map.

Moreover, (4.2) implies similar condition on f �1 and we check that

Kf ðzÞ ¼ K
ð1Þ
f ðzÞ þ K

ð2Þ
f ðzÞ ¼ H

ð1Þ
f ðzÞ þH

ð2Þ
f ðzÞ for all z a W
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and similarly for the inverse

Kf �1ðwÞ ¼ K
ð1Þ
f �1ðwÞ þ K

ð2Þ
f �1ðwÞ ¼ H

ð1Þ
f �1ðwÞ þH

ð2Þ
f �1ðwÞ for all w a W 0:

5. Proof of Theorem 1.4

We first prove that Cf ¼ Z y. Obviously we have Z y JCf .
By contradiction we suppose that there exists a set AHW with positive Leb-

esgue measure such that f is di¤erentiable in A, Jf ðzÞ ¼ 0 and j fyj > 0 on A.
Since, analogously to (2.14), we can decompose A up to a set of measure zero
into countably many pieces where f is Lipschitz and one of them must have pos-
itive measure, we can also assume that f is Lipschitz on A.

Using area formula (2.13), we get

0 ¼
Z
A

Jf ðzÞ dz ¼ j f ðAÞj:

We denote, by

p2 : ðx1; x2Þ a R2 ! ðx1; 0Þ a R2

the orthogonal projection and by

pð2Þ : ðx1; x2Þ a R2 ! x2 a R

the second coordinate function.
Applying the area formula to the di¤erentiable function f ðx; �Þ : y a pð2ÞðAÞ

! f ðx; yÞ a W 0 we get:

0 <

Z
ABp�1

2
ðfðx;0ÞgÞ

j fyðx; yÞj ¼
Z
R2

Nð f ;AB p�1
2 ðfðx; 0ÞgÞ; sÞ dH1ðsÞ

¼ H1ð f ðAB p�1
2 ðfðx; 0ÞgÞÞÞ:

Since j f ðAÞj ¼ 0 we get that H1ð f ðAB p�1
2 ðfðx; 0ÞgÞÞÞ ¼ 0 for almost every

ðx; 0Þ a R2 and this is a contradiction.
The other equality Cf ¼ Z x a.e., is completely analogous.
To prove (1.16) notice that, if f satisfies jCf j ¼ jWj, then j fxj ¼ 0, j fyj ¼ 0 a.e.

in W and hence jDf j ¼ 0 a.e. The contradiction follows from the ACL condition
for f , i.e. that f is absolutely continuous on almost all lines parallel to coordinate
axes.
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