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Abstract We study the complete Steenrod algebra ˆA for an odd prime p and its
relations with the generalized Dickson algebra on infinitely many generators, as a
Z[ 1p ]-graded algebra.
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1 Introduction

Let p be an odd prime number, and let A be the algebra of reduced power operations,
which is the quotient of the mod p Steenrod algebra with respect to the ideal gene-
rated by β, the Bockstein coboundary operator associated with the exact coefficient
sequence

0→ Fp → Fp2 → Fp → 0.

It is the graded associative algebra generated by the elements Pi of degree 2i(p− 1),
subject to the Adem relations
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66 A. Ciampella

Pa Pb =
[a/p]∑

j=0

(−1)a+ j
(
(p − 1)(b − j)− 1

a − pj

)
Pa+b− j P j

if a < pb, and P0 = 1. A monomial in A can be written in the form Pi1 Pi2 · · · Pik ,
where i1, . . . , ik ∈ N. We denote this monomial by P I , where I is the multiindex
(i1, . . . , i1k). If is ≥ pis+1 for any s = 1, . . . , k − 1, the monomial P I will be called
admissible. The admissible monomials form a basis for A as an Fp-vector space [9].

The Steenrod algebra is an important tool in algebraic topology. Its action on poly-
nomials commutes with the action of the general linear group and this property has
revealed important in invariant theory [7]. Because of its connection with the sta-
ble homotopy groups of spheres, it would be nice to have a complete knowledge of
the cohomology of A . In [8] the author asks some questions about the interaction
between the map P̃0 (the map induced in cohomology by the Frobenius on A ∗) and
the multiplicative structure of ExtA (Fp,Fp) and he points out that these questions
and conjectures can be reformulated in terms of the (dual) complete Steenrod algebra
ˆA∗. This point of view rises the natural interest on the cohomology of ˆA , which seems

easier to understand than A .
In this paper we study the complete Steenrod algebra and show that its dual is

isomorphic to the p-root closure of the Dickson algebra on infinitely many generators.
The case p = 2 is treated by Llerena and Hu’ng [5]. In order to make this paper
self-contained, we recall all definitions we need, even if they are quite natural gene-
ralizations of those given for the mod 2 case.

2 The p-complete Steenrod algebra

We consider objects graded over Z[ 1p ].

Definition 1 A large Z[ 1p ]-graded algebra A is an algebra A ⊂ �n∈Z[ 1
p ]An , whose

multiplication is defined by maps Am ⊗ An → Am+n , for m, n ∈ Z[ 1p ]. If A =
⊕n∈Z[ 1

p ]An , then A is called a Z[ 1p ]-graded algebra A.

A (large) Z[ 1p ]-graded Hopf algebra A is a Hopf algebra which is a (large) Z[ 1p ]-
graded algebra with respect to its multiplication; the comultiplication is defined by
maps Am → An ⊗ Am−n for m, n ∈ Z[ 1p ].

A Z[ 1p ]-graded module M over a (large) Z[ 1p ]-graded algebra A is an A-module
M = ⊕n∈Z[ 1

p ]Mn where the action of A on M is given by maps Am ⊗Mn → Mm+n ,

for m, n ∈ Z[ 1p ].

If M is a (large) Z[ 1p ]-graded object, we define pt M as the (large) Z[ 1p ]-graded
object which is isomorphic to M as ungraded object and has (pt M)n = M n

pt
for any

t ∈ Z. For example, we can think of the Steenrod algebra A as a Z[ 1p ]-graded Hopf
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The complete Steenrod algebra at odd primes 67

algebra which is zero in negative and fractional degrees. The homomorphism

d : 1

p
A → A

defined by d(Pa) = Pa/p if a ≡ 0 modulo p, and d(Pa) = 0 if a 	≡ 0 modulo p, is
a homomorphism of Hopf algebras which preserves the degree, while d ′ : A → A ,
Pa �→ Pa/p is a map of Hopf algebras which divides degrees by p.

Definition 2 The complete Steenrod algebra is the inverse limit

ˆA = lim←−

{
· · · d→ 1

pt+1 A
d→ 1

pt
A

d→· · ·
}
,

where d : 1
pt+1 A → 1

pt A is the map of Hopf algebras which divides degrees by p.

The tensor product ˆA ⊗ ˆA is defined as

ˆA ⊗ ˆA = lim←−

(
1

p
A ⊗ 1

p
A

)
.

In a way similar to the case p = 2, ˆA can be endowed with a structure of Z[ 1p ]-
graded Hopf algebra: the product and coproduct in A induce operations

φt : 1

pt
A ⊗ 1

pt
A → 1

pt
A , ψt : 1

pt
A → 1

pt
A ⊗ 1

pt
A

compatible with the homomorphism d, so it is possible to define a product and a
coproduct in ˆA as

φ = lim←− φt : ˆA ⊗ ˆA → ˆA , ψ = lim←−ψt : ˆA → ˆA ⊗ ˆA .

Let us denote by Pr/pt
the element of ˆA represented by the sequence {P pnr ∈

1
pt+n A |n ∈ N}, that is, Pr/pt

is the sequence having Pr in 1
pt A , hence Pr p in 1

pt+1 A ,

. . ., Pr pn
in 1

pt+n A and so on. Since d(Pr p) = Pr , we have Pr/pt = Pr p/pt+1
. The

operation Pr/pt
has degree r/pt . Given a finite sequence I = (i1, . . . , ik) of elements

in N[ 1p ], let us denote by P I the operation Pi1 Pi2 · · · Pik .

The complete Steenrod algebra ˆA is not of finite type: for example, for every

a = 1, . . . , p − 1 the operations P
pn−a

pn P
a
pn , n > 1, are of degree 1 and are linearly

independent: P
pn−a

pn P
a
pn represents the sequence having P pn−a Pa in 1

pn A .

The complete Steenrod algebra ˆA is a large Z[ 1p ]-graded Hopf algebra, but not a

Z[ 1p ]-graded Hopf algebra: given a = 1, . . . , p − 1 the element θa = ∑
n∈N Pa/pn

belongs to ˆA , but it does not belong to⊕n∈Z[ 1
p ]
ˆA (think of Pa/pn

as of the sequence
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68 A. Ciampella

with Pa in 1
pn A ; then θa is the sequence having

∑n
k=0 P pka in 1

pn+1 A ). Further-

more, ˆA 	= �n∈Z[ 1
p ]
ˆAn . In fact, α = ∑

n∈N Pn 	∈ ˆA , but α ∈ �n∈Z[ 1
p ]
ˆAn . A sum

∑
I∈I P I belongs to ˆA if and only if, for each t ∈ Z, the number of sequences

I = (i1, . . . , im) ∈ I such that pt iq ∈ N for all iq , q = 1, . . . ,m is finite.
We define the binomial coefficient

(a
b

)
for a, b ∈ N[ 1p ] as the residue class modulo

p of
(pN a

pN b

)
, where N is an integer such that pN a, pN b ∈ Z. It is well defined since it

does not depend on N . The following result gives the Adem relations and the coproduct
formula in ˆA .

Proposition 1 The Adem relations in ˆA are

Pa Pb =
∑

i∈N[ 1
p ]

(
(p − 1)(b − i)− p−N (a,b,i)

a − pi

)
Pa+b−i Pi (1)

for 0 < a < pb. Here 0 ≤ i ≤ a/p and N = N (a, b, i) is a big enough integer such
that pN a, pN b, pN i ∈ Z.

The coproduct formula is

ψ(Pa) =
∑

i∈N[ 1
p ]

Pi ⊗ Pa−i

for any a ∈ N[ 1p ].

Proof Let us recall that if A = a0+a1 p+· · ·+an pn and B = b0+b1 p+· · ·+bn pn

are the p-adic expansions of A and B, respectively, then
(A

B

) ≡ ∏
i

(ai
bi

)
mod p [9].

This proves that the binomial coefficient does not depend on N . Since p A − 1 =
p(A − 1)+ (p − 1), we get

(
p A − 1

pB

)
=

(
p(A − 1)

pB

)
·
(

p − 1

0

)
=

(
A − 1

B

)
.

Hence,

(
(p − 1)(b − i)− p−(N+1)

a − pi

)
=

(
p(p − 1)(pN b − pN i)− 1

p(pN a − pN pi)

)

=
(
(p − 1)(pN b − pN i)− 1

pN a − pN pi

)
=

(
(p − 1)(b − i)− p−N

a − pi

)
.

Now let πt : ˆA → 1
pt A denote the projection. We prove that the images under πt

of both sides are equal for any t big enough, and this suffices to say that (1) holds. Take
t such that pt a, pt b ∈ Z. We have π(Pi ) = P pt i if pt i ∈ N and it is 0 otherwise.
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The complete Steenrod algebra at odd primes 69

Applying πt to both sides of the formula in (1), we have

P pt a P pt b =
∑

0≤i≤ a
p

(
(p − 1)(b − i)− p−t

a − pi

)
P pt a+pt b−pt i P pt i ,

where the sum is taken over those indices i such that pt i ∈ N. The previous sum is
finite. Taking a′ = pt a, b′ = pt b, i ′ = pt i , we get the Adem relations in A :

Pa′ Pb′ =
[ a′p ]∑

i ′=0

(
(p − 1)(b′ − i ′)− 1

a′ − pi ′

)
Pa′+b′−i ′ Pi ′ ,

for any a′, b′, i ′ ∈ N and 0 < a′ < pb′. A similar argument can be applied to prove
the coproduct formula. ��

Given a sequence I = (i1, . . . , im)with elements in N[ 1p ], we say that the operation

P I is admissible if ik ≥ pik+1 for any k = 1, . . . ,m − 1: for t big enough, its image
P pt i1 P pt i2 · · · P pt im by πt is an admissible operation in 1

pt A . Then the admissibles

in ˆA are linearly independent.

3 Root algebras over ˆA

For every A -algebra M , it is possible to define the root closure of M so that it becomes
an ˆA -algebra.

Definition 3 A root algebra B is a Z[ 1p ]-graded commutative Fp-algebra such that

the degree preserving homomorphism δ̂ : pB → B defined by δ̂(x) = x p is an
isomorphism.

Think of a root algebra B as an algebra where any element x ∈ B has a unique p-th

root y = p
√

x , i.e. the element y with δ̂(y) = x . In general, set pt√
x = p

√
pt−1√

x .

Example 1 Let Fp[x1, . . . , xn] be the polynomial algebra over Fp in n indeterminates
x1, . . . , xn of fixed degree m and let

δ : 1

pt−1 Fp[x1, . . . , xn] → 1

pt
Fp[x1, . . . , xn]

be defined by δ(xi ) = x p
i . Then

R[x1, . . . , xn] = lim−→
δ

1

pt
Fp[x1, . . . , xn]

is the free root algebra generated by x1, . . . , xn . This construction can be extended to
polynomial algebras with an infinite number of generators.
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70 A. Ciampella

Definition 4 (1) Given a Z-graded algebra M , the p-root closure of M is the Z[ 1p ]-
graded algebra

M p√ = lim−→
δ

(
1

pt
M

)
,

with respect to the homomorphism δ : 1
pt M → 1

pt+1 M given by δ(x) = x p. It is
a root algebra.

(2) Let f : M → N be a homomorphism of Z-graded algebras. Since f commutes
with the homomorphism δ, it induces a homomorphism of algebras

f p√ : M p√ → N p√
.

In particular, we have f p√
( p
√

u) = p
√

f p√
(u), u ∈ M p√ .

We start from a Z-graded A -algebra M and define an ˆA -module structure on the
root closure M p√ .

Proposition 2 If θ is an operation in 1
pt+1 A and x is an element in 1

pt M, then θδx =
δ(dθx).

Proof It is enough to check the relation for θ = Pi , i a positive integer. Let x be any
element in M . Recall that M is graded commutative. Then, by an iterated use of the
Cartan formula for A -modules, we obtain

Pi (x p) =
∑ (

p

m1 · · ·mk

)
(Pi1(x))m1 · · · (Pik (x))mk , (*)

where the sum is taken over all p-partitions of i , i.e. i = ∑k
j=1 m j i j , 1 ≤ k ≤ p,

i1, . . . , ik are pairwise distinct and
∑k

j=1 m j = p. It means that m j is the multiplicity
of i j as a summund of i (that is m j says how many times i j appears in the sum

i = ∑k
j=1 i j ). Here

( p
m1···mk

)
is the multinomial coefficient p!

m1!···mk ! . It is always
divisible by p but the case m j0 = p for some j0 (hence m j = 0 for any j 	= j0). The
last case occurs iff i ≡ 0 mod p. Thus, Pi x p = 0 if i 	≡ 0 mod p (every multinomial
coefficient in (∗) is 0 mod p). When i = pi ′, the sum (∗) has just one term with non-
zero coefficient, namely (Pi ′(x))p. So, P pi ′(x p) = (Pi ′(x))p. If i 	≡ 0 mod p, then
d(Pi ) = 0 and Piδx = Pi x p = 0. If i = pi ′, Pi (δx) = P pi ′(x p) = (Pi ′(x))p =
δ(d(P pi ′)x). ��

This shows that the action of ˆA on M p√ , extending that of A on M , which we are
going to define, does not depend on the representative.

Definition 5 Let M be an A -algebra, ξ ∈ ˆA and u ∈ M p√ . Then ξ ·u is the element
in M p√ represented by (πtξ) · x , where x ∈ 1

pt M is a representative of u.
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The complete Steenrod algebra at odd primes 71

In particular, for ξ ∈ ˆA , u ∈ M p√ , we have p
√
ξu = d̂(ξ) p

√
u, where d̂ : 1

p
ˆA → ˆA

is the homomorphism which divides the degree by p.
We say that an A -module M verifies the condition of finiteness (f.c. for short) if

Pi (x) = 0 for all but a finite number of integers i . A similar definition holds for
ˆA -modules M , where i ∈ N[ 1p ]. If the f.c. holds for M , then so it does for M p√ .

If an ˆA -module M is an algebra, satisfies the f.c. and

Pl(xy) =
∑

h+k=l

Ph(x)Pk(y)

for l, h, k ∈ N[ 1p ] and for every x, y ∈M , then we sat that M is an ˆA -algebra. It is

easy to prove that if M is an A - algebra satisfying the f.c., then M p√ is an ˆA -algebra
and P( pt√

x) = pt√
P(u) for any x ∈ M p√ and t ∈ Z, having set P =∑

i∈N[ 1
p ] Pi to

mean the total power in ˆA (i.e. the total power in every 1
pt A ). We observe that the

action of P on a module M makes sense if the f.c. holds for M . The root closure of
A -algebras defines an exact functor which can be applied in particular to the coho-
mology of topological spaces, since their unstability as A -algebras ensure that the
f.c. holds.

Remark 1 Suppose in the mod p Steenrod algebra we do not disregard the Bocksteinβ.
We could think of A as a bigraded algebra by assigning βεPi bidegree (2i(p−1), ε).
Then ( 1

pt A )(l,e) = A(l/p,e). We could define d : 1
pt A → A by letting d(βεPi ) =

βεPi/p if i ≡ 0 mod p and zero otherwise, and take ˆA as the inverse limit with
respect to d.

Now, let M be the cohomology ring with coefficients in Fp of L p = S∞/(Z/pZ).
Then M = E[x] ⊗ Fp[y], where x and y are cohomolgy classes of degree 1 and 2,
respectively, and β(x) = y. If we want to define the root closure of M , we have to
declare what δ(x) is. Since x2 = 0, the isomorphism δ should act as the identity on
x . This means that the root closure of M could be thought of as the tensor product of
E[x] with the root closure of the polynomial part Fp[y]:

δ(x) = x, δ(y) = y p.

According to the previous proposition, θδz = δ(dθ z), where θ ∈ 1
pt+1 A and z ∈

1
pt M . For θ = Pi , we have Piδ(xyk) = Pi (xykp) = x Pi (ykp) and δd Pi (xyk) =
δPi/p(xyk) = x((Pi/p(yk))p : they are equal in any case. When θ = β, then βδ(x) =
β(x) = y, while δdβ(x) = δβ(x) = δ(y) = y p.

This shows that the Bockstein β in the mod p Steenrod algebra is an obstruction
to the extension of the A -action on M to an ˆA -action on M p√ . It depends on the
following fact: the polynomial part of H∗(Ln

p) is closed under the action of those
operations in Ap involving the powers Pi only; further the action of the Pi ’s on the
external part of H∗(Ln

p) is zero. The Bockstein β acts as zero on the polynomial part of
H∗(Ln

p), but the external part is not closed under its action: β(xi ) = yi , i = 1, . . . , n.
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72 A. Ciampella

For these reasons we confine the attention to A -algebras M which are trivial in
odd degrees (for example, the cohomology rings of CW -complexes with no cells in
odd dimensions).

Remark 2 Let us consider the Z-graded algebra M = F2[x]/(x2). Its root closure is
simply F2 for the universal property of direct limits. Hence, in general, a Z-graded
algebra M does not canonically embed into its root closure (a mistake in part (2) of
Remark 2.4., p. 276, [Llerena-Hung]). M embeds into its root closure if it does not
contain nilpotent elements (if there was a nilpotent element x of height k, then x2i

would annihilate for every i such that 2i > k; by the property of direct limits, there
could not be roots for x). We can say that the quotient of any Z-graded algebra M by
its p-torsion part can be embedded into its root closure.

4 The Root closure of the Dickson algebra

Let GLn = GL(n,Fp) be the general linear group acting on the polynomial algebra
Pn = Fp[y1, . . . , yn] on generators y1, . . . , yn of degree 2. The Dickson algebra Dn

is the algebra of invariants PGLn
n . It is a polynomial algebra on n generators

Dn = Fp[Qn,0, Qn,1, . . . , Qn,n−1],

where Qn,s is the Dickson invariant of degree 2(pn− ps). They are inductively defined
by the following formula

Qn,s = Qn−1,s V p−1
n + Q p

n−1,s−1,

where Qn,n = 1, Qn,s = 0 if s < 0 or s > n, Vn =∏
λi∈Fp

(λ1 y1+· · ·+λn−1 yn−1+
yn).

We call D
p√

n the generalized Dickson algebra over Fp, according to the name given
by Arnon to the root closure of Dn for p = 2. Observe that δ : 1

pt Pn → 1
pt+1 Pn is a

GLn-homomorphism:

δ(g · p(y1, . . . , yn)) = (g · p(y1, . . . , yn))
p

= g · (p(y1, . . . , yn))
p

= g · δ(p(y1, . . . , yn)),

since (a+b)p = a p+bp in an Fp-algebra. This means that δ brings invariant elements
to invariant elements, hence

D
p√

n := (
PGLn

n

) p√ = (
P

p√
n

)GLn .

In [1] Arnon observed that the root closure of the subalgebra Dn ⊂ Pn of invariants
is the same as the invariants of the root closure of Pn , for the p = 2 case, using
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The complete Steenrod algebra at odd primes 73

particular elements kωn defined by Peterson. Dealing with odd primes we can define
the corresponding elements to the kωn’s only for k = 1 and k = 2, namely

1ωn(p−1) =
(
y p−1

1

)n = zn
1 ∈ D

p√
1

for n ∈ N[ 1p ];

2ωn(p−1) =
∑

s1+s2=n

zs1
1 zs2

2 ∈ D
p√

2 ,

where zi = y p−1
i , i = 1, 2, n ∈ N[ 1p ], si = pmk and k = 0, 1, . . . , p − 1. For

example,

2ωp2−1 =
p−1∑

j=0

z j+1
1 z p− j

2 = Q2,0,

2ωp2−p =
p∑

j=0

z j
1z p− j

2 = Q2,1.

We just recall that

Q2,0 =
∣∣∣∣∣
y1 y2

y p
1 y p

2

∣∣∣∣∣

p−1

= y p−1
1 y p−1

2

p−1∑

j=0

(−1) j
(

p − 1

j

)
y j (p−1)

1 y(p−1)(p−1− j)
2 .

Now,
(p−1

k

)
p = 1 if k is even and it is equal to−1 = p− 1 if k is odd (it follows from

the relation 0 = (p
k

)
p =

(p−1
k

)
p +

(p−1
k−1

)
p
). Then

Q2,0 = z1z2

p−1∑

j=0

z j
1z p−1− j

2 .

The other Dickson invariant is

Q2,1 =

∣∣∣∣∣
y1 y2

y p2

1 y p2

2

∣∣∣∣∣
∣∣∣∣
y1 y2

y p
1 y p

2

∣∣∣∣
= z p+1

2 − z p+1
1

z2 − z1
=

p∑

j=0

z j
1z p− j

2 .

The most natural way to generalise what has already been done for n = 2 would
be defining elements kωn , n ≡ 0 modulo p− 1, in such a way that Qn,i = nωpn−pi .
Looking at the recursive formula defining the Dickson invariants, we deduce that they
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74 A. Ciampella

are polynomials in z1, z2, . . . , zi , . . ., where zi = y p−1
i . The degree of Qn,s with

respect to the zi ’s is pn−pi

p−1 = pi + pi+1 + · · · + pn−1.
Let us recall that

Ln = [0, 1, . . . , n − 1] =

∣∣∣∣∣∣∣∣

y1 y2 · · · yn

y p
1 y p

2 · · · y p
n

· · · · · · · · · · · ·
y pn−1

1 y pn−1

2 · · · y pn−1

n

∣∣∣∣∣∣∣∣

Ln,s = [0, 1, . . . , ŝ, . . . , n], 0 ≤ s ≤ n,

Qn,s = Ln,s/Ln, Vn = Ln/Ln−1,

in particular

Qn,0 = Ln,0/Ln = [1, 2, . . . , n]
[0, 1, . . . , n − 1] =

[0, 1, . . . , n − 1]p
[0, 1, . . . , n − 1] = L p−1

n .

The explicit expression for Qn,0 is

Qn,0 = z1z2 · · · zn

∣∣∣∣∣∣∣∣∣∣∣

1 1 · · · 1
z1 z2 · · · zn

z1+p
1 z1+p

2 · · · z1+p
n

· · · · · ·
z1+p+···+pn−2

1 z1+p+···pn−2

2 · · · z1+p+···pn−2

n

∣∣∣∣∣∣∣∣∣∣∣

p−1

;

it is the (p−1)th power of a sum of n! terms. When we explicitly compute this power,
multinomial coefficients

( p−1
α1,··· ,αn!

)
, α1+· · ·+αn! = p−1, 0 ≤ αi ≤ p−1 appear and

they are not always equal to 1 as it occurs in the p = 2 case. Thus the generalization
of the kωn’s to the odd primes case is not clear. What we can do is defining elements
kωn such that kω

p
n = kωpn , only for particular integers n, namely

kωpi−1 := pk−i√
Qk,k−i .

Its degree is deg(kωpi−1) = 2(pi − 1), which does not depend on k. We get Qk,s =
kωpk−ps .

Proposition 3 D
p√

n is the free root algebra generated by {nωpi−1}ni=1.

Proof For every h ∈ Z, Q ph

n,s = (nωpn−ps )ph = (nωpn−s−1)
ps+h

. Conversely, for any

k ∈ Z, (nωpi−1)
pk = (nωpn−pn−i )pk−n+i = Q pk−n+i

n,n−i = (pn−i√Qn,n−i )
pk

. ��
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The complete Steenrod algebra at odd primes 75

Definition 6 Let in : D
p√

n → D
p√

n+1 be the degree preserving monomorphism of
algebras given by in(nωpi−1) = n+1ωpi−1, for 1 ≤ i ≤ n. Then we define

D
p√
∞ = lim−→

n
D

p√
n and ωpi−1 = lim−→

n
nωpi−1.

D
p√
∞ is the free root algebra generated by {ωpi−1}∞i=1 with deg(ωpi−1) = 2(pi − 1).

Remark 3 in is not a homomorphism of ˆA -algebras. Indeed, P1 · Q p
n,0 = 0 by the

Cartan formula and the relations P1 · Qn,0 = 0, P1 · Qn+1,1 = Qn+1,0, in(Q
p
n,0) =

in( nω
p
pn−1) = n+1ω

p
pn−1 = n+1ωpn+1−p = Qn+1,1. Hence

P1 · in(Q
p
n,0) = Qn+1,0 	= 0 = in(P

1 · Q p
n,0).

There is a relation between the Dickson invariants and the dual of the complete
Steenrod algebra. ˆA is not of finite type, so we first need to make precise what we
mean by its dual Â∗.

Definition 7 Let d∗ : 1
pt A∗ −→ 1

pt+1 A∗ be the dual of the homomorphism

d : 1
pt+1 A → 1

pt A sending P pa to Pa . The graded dual of ˆA is the direct limit

Â∗ = lim−→
d∗

(
1

pt
A∗

)
,

where A∗ is the graded dual of the finite type algebra A .

Lemma 1 If ξ ∈ A∗, then

〈ξ p, P I 〉 =
{
〈ξ, P J 〉 if I = p J

0 otherwise

Proof We have 〈ξ p, P I 〉 = 〈ψ∗(ξ ⊗ · · · ⊗ ξ), P I 〉 = 〈(ξ ⊗ · · · ⊗ ξ), ψ p−1(P I )〉
= 〈ξ⊗· · ·⊗ξ,∑I1+···Ip=I P I1⊗· · ·⊗ P Ip 〉 =∑

I1+···Ip=I 〈ξ, P I1〉 · · · 〈ξ, P Ip 〉. The
terms in this summation cancel mod p, unless I1 = . . . = Ip = J when I = p J .
Now 〈ξ, P J 〉 ∈ Fp, therefore 〈ξ, P J 〉p = 〈ξ, P J 〉. The lemma follows. ��
Theorem 1 Â∗ and D

p√
∞ are isomorphic as Z[ 1p ]-graded algebras.

Proof The dual A∗ of the Steenrod algebra is isomorphic to Fp[ξ1, ξ2, . . .], where ξi

is dual to P pi−1 · · · P p P1 with respect to the basis of admissible monomials in A . Its
degree is 2(pi − 1). Now we prove that d∗(ξi ) = ξ p

i for any i ∈ N. According to the
definition of d,

d(P I ) =
{

P J if I = p J

0 otherwise
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76 A. Ciampella

In particular,

d
(
P pi · · · P p2

P p) = P pi−1 · · · P p P1.

Passing to the dual,

d∗(ξi ) = d∗
(
P pi−1 · · · P p P1)∗ = (

P pi · · · P p2
P p)∗.

By the previous Lemma,

ξ
p

i =
(
P pi · · · P p2

P p)∗ = d∗(ξi ).

Now, by the Milnor isomorphism,

Â∗ = lim−→
d∗

(
1

pt
A∗

)
∼= lim−→

d∗

(
1

pt
Fp[ξ1, ξ2, . . .]

)
= R[ξ1, ξ2, . . . ].

On the other hand, D
p√
∞ is also a free root algebra generated by the elements ωpi−1 of

degree 2(pi−1). Therefore the correspondence ξi �→ ωpi−1 establishes the following

isomorphism of Z[ 1p ]-graded algebras

R[ξ1, ξ2, . . . ] = Fp[ξ1, ξ2, . . .] p√ ∼= D
p√
∞ .

��
Let us consider the algebra
n = Fp[Q±1

n,0, Qn,1, . . . , Qn,n−1], the Dickson algebra
with the Euler class inverted. The action of A on Dn can be extended in a natural
way to 
n through the Cartan formula applied to 1 = Q−1

n,0 Qn,0. For example, when

p = 2, we have in 
2 that Sqi (Q2,0) = Q2,0 Q2,t for i = 4 − 2t , 0 ≤ t ≤ 2, and
vanishes otherwise (see [3] and the extension [4] to the case of odd primes). Then we
get the following recursive formula for Q−1

2,0:

Sq0(Q−1
2,0

) = Q−1
2,0, Sqi (Q−1

2,0

) = Q2,1Sqi−2(Q−1
2,0

)+ Q2,0Sqi−3(Q−1
2,0

)
, i > 0.

Let 
−n be the subalgebra of 
n generated by the elements Q−1
n,0 Qn,i , 1 ≤ i ≤ n.

Again, by the Cartan formula and the action of A on Dn [3], we get, for example in

2 = F2[Q±1

2,0, Q2,1],

Sqi (Q−1
2,0 Q2,1

) = Q2
2,1Sqi−2(Q−1

2,0

)+ Q2,0Sqi−1(Q−1
2,0

)+ Q2,1Sqi (Q−1
2,0

)
.

It turns out that the action of Sq2, Sq3 and Sq5 on Q−1
2,0 Q2,1 is zero and

Sq1(Q−1
2,0 Q2,1

) = 1, Sq4(Q−1
2,0 Q2,1

) = Q2,0,

so that 
−n is not an A -submodule of 
n .
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The complete Steenrod algebra at odd primes 77

Let in be the homomorphism of Definition 4.2. We have:

in(Qn,i ) = in
(

nω
pi

pn−i−1

) = n+1ω
pi

pn−i−1
= p

√
n+1ω

pi+1

pn+1−(i+1)−1
= p

√
Qn+1,i+1,

then

in(Q
−1
n,0 Qn,i ) = p

√
Qn+1,i+1/

p
√

Qn+1,1,

and it does not make sense in any object we are dealing with (Dn, 
n, 

−
n and their

root closure); in particular in(

−
n ) 	⊂ 
−n+1.

Let jn be the following morphism:

jn( nωpi−1) = n+1ωpi+1−1.

It does not preserve the degree and jn(Qn,i ) = Qn+1,i ; indeed,

jn(Qn,i ) = jn
(

nω
pi

pn−i )−1

) = n+1ω
pi

pn+1−i)−1
= Qn+1,i .

Hence,

jn
(
Q−1

n,0 Qn,i
) = Q−1

n+1,0 Qn+1,i ,

so the restriction jn of jn to 
−n is well defined and preserves the degree. Since 
−n is
not an A -module, there is no point in checking if jn is an A -module homomorphism.

Let us denote by 
− the direct limit


− = lim−→
j n


−n

with respect to jn , and by ηi the element

ηi = lim−→
j n

Q−1
n,0 Qn,i

of degree 2(1− pi ). Then

A∗ ∼= Fp[η1, η2, . . . ],

i.e. Fp[η1, η2, . . . ] is another invariant theoretic description of A∗, and its root closure
R[η1, η2, . . . ] is another invariant theoretic description of ˆA∗.
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78 A. Ciampella

5 The complete iterated total power operation

Let X be a CW -complex with no cells in odd dimensions and let H∗(X) be the
cohomology ring with coefficients in Fp. For every integer m ≥ 1 we have the iterated
total power operation

Tm : H∗(X)→ H∗((Z/pZ)m)S̃Lm ⊗ H∗(X),

where S̃Lm is the subgroup of all non-singular matrices M such that
(det M)(p−1)/2 = 1.

Mui gave an expression of Tm in terms of the Milnor bases, showing how the
elements of this basis can be derived from the Dickson invariants. Because of our
assumption on X , Mui’s expression reduces to the following:

Tm(z) = µ(q)m L̃m
q ∑

R

(−1)r(R)Qr0
m,0 Qr1

m,1 · · · Qrm−1
m,m−1 ⊗ St R(z),

where z ∈ Hq(X), R = (r1, . . . , rm), r0 = −r1 − · · · − rm , St R = (ξ
r1
1 · · · ξ rm

m )∗,
r(R) = r1 + 2r2 + · · ·mrm .

In [2] the normalized version Sm of Tm for odd primes is studied (see [6] for p = 2):

Sm : H∗(X)→ �GLm
m ⊗ H∗(X),

where�m is the localization of the polynomial part of H∗(B(Z/p)m) out of its Euler
class.

It has been proved that

Sm(z) =
∑

R

(−1)r(R)Qr0
m,0 Qr1

m,1 · · · Qrm−1
m,m−1 ⊗ St R(z),

or

Sm(z) =
∑

R

(−1)r(R)
(

Qm,1

Qm,0

)r1

· · ·
(

Qm,m

Qm,0

)rm

⊗ St R(z).

Further,

Qm,k

Qm,0
=

∑

J

w−J = (−1)kδm(ξk),

where J is a multiindex of the form (0, . . . , 0, pk−1, . . . , p, 0, . . . , 1, 0, . . .) with
m − k zeros inserted. See [2], Definition 5, for the map δm : A ∗ → �m = �

Bm
m .

Here �Bm
m is the subalgebra of invariants under the action of the Borel subgroup Bn

of GL(n,Fp).
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The complete Steenrod algebra at odd primes 79

Definition 8 Let M be an ˆA -module which the f.c. holds for. Let us define

S1 :M → �
p√

1 ⊗M

as S1(u) =∑
i∈N[ 1

p ] y−i
1 ⊗ Pi (u), u ∈M . The we define inductively

Sm(u) = S1(Sm−1(u)).

By the Cartan formula, Sm is an ˆA -module homomorphism. By the definition of
the action of ˆA on H p√

(X), it is not difficult to prove the following result:

Proposition 4 Given a topological space X,

Sm : H p√
(X)→ (�GLm

m )
p√ ⊗ H p√

(X)

is an algebra homomorphism which coincides with S
p√

m and, for every u ∈: H p√
(X),

Sm(u) =
∑

R=(r1,...,rm )

mω
−(r1+···+rm )
pm−1 mω

pr1

pm−1−1
. . . mω

pm−1rm−1
p−1 ⊗ St R(u),

where i ∈ N[ 1p ].
This shows how the operations in the complete Steenrod algebra ˆA can be derived

from the root closure of 
n = Fp[Q±1
n,0, Qn,1, . . . , Qn,n−1].
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