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Abstract 

 
Approaches in Automatic Speech Recognition based on 

classic acoustic models seem not to exploit all the information 

lying in a speech signal; furthermore decoding procedures 

have real time constraints preventing the system to achieve 

optimal alignment between acoustic models and signal. In this 

paper, we present an approach to speech recognition in which 

Factorial Hidden Markov Models (FHMM) are used as 

syllabic acoustic models. An alignment algorithm is used for 

unit decoding. As applicative domain we choose numbers 

(range 0-999,999) uttered in Italian. Syllabic accuracy in our 

model is 84.81%, correctness on numbers is 77.74%. Aim of 

the experiment is to show that the performances of FHMMs 

lie in the ability to retrieve the presence of two different 

temporal dynamics in a speech segments: the former with a 

quasi-segmental timing, the latter presenting a quasi-syllabic 

trend. Moreover, we evaluate a unit decoding process based on 

a dynamic programming algorithm in order to exploit the 

acoustic models performances at best.  

Index Terms: Factorial HMM, speech recognition, syllabic 

acoustic models 

 

1. Introduction 

 
Many works from different scientific communities, ranging 

from neurobiology to experimental phonetics, suggest that 

speech signals contain information distributed on different 

time scales. Furthermore, it is necessary that more parallel 

cognitive functions operate a chunking on the unfolding of the 

information over time in order to process speech signals 

properly [1]. Humans seem to perform speech recognition 

successfully because of a partial parallelization process. The 

left-to-right speech stream is captured in a multilevel grid in 

which several linguistic analyses take place simultaneously. 

Evidence of parallelized speech processing can be found in 

literature [1]. These ideas have rapidly influenced many 

research projects on Automatic Speech Recognizers (ASR) as 

well as led to the introduction of new concepts like syllabic 

pre-segmentation, word n-gram statistical combination, 

parallel and multi-scale speech coding [2] [3] [4] [14].  

At the same time, Factorial HMMs (FHMM) [5] have been 

widely used in cases in which several, concurrent dynamics 

take place in an event production. Applications can be found 

especially in speaker separation tasks, where two or more 

voices overlap and a recognizer has to act on one of these [6]. 

In our opinion, speech production can be seen as a multi 

concurrent process, in which different time scale dynamics 

take place. A FHMM could then retrieve the presence of these 

behaviors on a syllable scale speech segment from which it 

separates a slow syllabic process from a fast phonetic one.  

2. Motivation and related work  

 
Greenberg’s theory about the multi-granular nature of speech 

understanding [2] has been developed in two experiments where 

information coming from different time scales of analysis was 

integrated. Wu faces the problem of integrating two different 

recognizers [3], the former based on phonetic units, the latter based 

on the so called “half-syllable”. Several experiments are made in 

the attempt to find the best way for integrating different scales of 

information. The best model is found using a mixture of a half 

syllables and phones as basic speech unit in word decoding. Wu’s 

system, tested on clean speech for recognition of numbers ranging 

from 0 to 999, results in a 6% Word Error Rate. Furthermore, in 

several cases, Wu states that the two recognizers, constituting the 

baseline systems for performance comparison, produce 

complementary errors which can compensate each other in a multi-

scale decision system. 

A different approach for multi-granularity representation is 

made by Chang [4]. In this work, a “multi-tier model” is built, and 

speech is organized as a sequence of syllables, in contrast to the 

conventional “phonetic-segment-based organization” assumed in 

most ASR systems. It differs from conventional syllabic models as 

it represents single syllables as a set of acoustic “cues” instead of a 

succession of phonetic features. Acoustic cues refer to the phonetic 

structure of the syllable in terms of manner, place of articulation, 

vowels, etc., furthermore. some non-segmental information aiding 

the recognition of a syllable in a word are added. Word templates 

made up of a succession of previously defined features have been 

introduced and the possibility of mutation for these descriptions is 

associated to pronounce variability. Many other authors could be 

quoted following this examples, and all their works underline the 

importance of facing multi- granularity in speech processing as a 

crucial step for outperforming ASR design and implementation. 

On the other side, recent work about Factorial HMMs has put in 

evidence their ability to separate multi-channel sources in cases 

where concurrent dynamics have well-defined statistical 

characteristics [6]. Furthermore FHMMs have been used in speech 

recognition, in which voice overlap had to be faced [7], or as 

acoustic models for phonemes classification [8]. In this scenario 

we choose to use such models in syllable recognition. The 

underlying idea is that in a syllable speech segment, two dynamics 

can be retrieved, one with a fast segmental trend, which goes 

through the “fine structure” of the signal portion, and the other 

with a slower rate related to larger syllabic temporal granularity. 

The two dynamics can be seen as two processes with a well 

independent nature, and a Factorial model can be used to let 

naturally emerge this dual phenomenon. A speech recognizer based 
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on a set of FHMM syllabic acoustic models and its 

performances will be discussed in this paper. A comparison 

between standard HMMs and Factorial models performances 

supports our conclusions. 

In addition, a novel approach to unit decoding is presented. It 

tries to find the best alignment of syllables to the signal after 

the utterance recording has stopped. It is not a real time 

algorithm, and it has a higher complexity compared to the 

most used algorithms but it results in high performances. We 

introduced this procedure in order to exploit our Factorial 

model at best, without loss of performance due to real time 

needs or beam search approximations. Performances of this 

decoding strategy will be presented in either the case of using 

a standard HMM acoustic model or a Factorial acoustic 

model.  

 

3. Factorial HMMS  

 
FHMMs, firstly introduced in [5], are HMMs whose state set 

can be decomposed in L subsets. Each subset evolves 

independently as a standard Markov chain and all subsets 

jointly contribute to the observable variables generation, as 

shown in Fig. 1.  

 

 
 

Figure 1: Factorial HMM dynamic from [5]. 

 

In a standard Hidden Markov Model, a sequence of 

observations 
TXXXX ,..,, 21=  is modelled by specifying a 

probabilistic relationship between the observations and a 

sequence of hidden states 
TSSSS ,..,, 21=  taken by a finite set 

of states of dimension K. Moreover the model assumes that 

observations are independent on each other and that each 
tS  

is only dependent on 
1−tS . HMM models are defined by the 

probability )|( 1 tt SSP −
 of state succession, which is a KK ×  

transition matrix and by the emission probabilities )|( tt SXP  

which link the states to the observations. Such values can be 

calculated in many ways, in the case of continuous 

observation vectors, a gaussian mixture or a neural network 

can be used.  

Factorial Hidden Markov Models expand the concept of 

HMM by representing a single state 
tS  as a collection of M 

states 
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each of which can take on )(mK  values (for simplicity we will 

assume KK m =)(
 for all m). So a FHMM consists of a state 

space which can be described by a MM KK ×  transition matrix. 

Such a system is equivalent to a HMM with MK  states, and all 

variables are allowed to interact arbitrarily. The processing 

complexity is obviously exponential in M. Interesting phenomena 

come out when constraints are introduced in the state transition 

matrix. As far as our application concerns, each state variable 
}{mS  is allowed to evolve according to its own dynamic, so that: 
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Fig. 1 depicts this structure. The transition between states can be 

represented as M distinct KK ×  matrices.  

As far as the emission probability of the observation 
tX  concerns, 

a gaussian distribution can be introduced, whose mean will depend 

on the )(m

tS  states 
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where each )(mW is the contribution of )(m

tS  to the mean. The 

covariance matrix length depends on the 
tX  observation vector 

length.  
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FHMMs have shown to be able to decompose automatically 

the state space into features differentiating multiple dynamics 

concurring in a single phenomenon. This is particularly efficient in 

cases in which the data are known to be generated from the 

interaction of multiple, loosely-coupled processes [5]. Our idea is 

that the multi-granular information in speech production, coming 

from syllabic and phonetic structure, may be thought as generated 

by overlapping processes with different time spanning, and a 

factorial model can catch these dynamics. The training can be able 

to associate different time-scale phenomena to different chains of 

the state set automatically. The layered nature of the model arises 

by only allowing transitions between states in the same layer. This 

division models processes with loosely coupled dynamics. Each 

layer operates similarly to a basic HMM but the probability of an 

observation at each time depends upon the current state in all the 

layers. In our work only two levels of chains are used, one for 

phonemes and another for syllables. This structure constitutes the 

acoustic model of the speech recognizer. 

 

4. The decoding algorithm  

 
In order to exploit our model at best, an efficient algorithm for 

syllable decoding had to be developed. Standard algorithms usually 

act in real time using dynamic programming methods and some 

approximations (as in the case of the beam search algorithm) with 

tha aim to reduce execution time. These procedure can introduce 

many errors as the recognition is strongly dependent from the left-

to-right time processing. A more efficient procedure could try any 

possible alignment between words and signal, as it could retreat 

some decisions made during the left-to-right processing, and could 

try to shift the models backwards or forwards to achieve the best 

alignment and word separation. This procedure has been developed 
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using dynamic programming. It does not act in real time 

because of our request to be independent from the signal 

runtime generation. This is undoubtedly an high complexity 

procedure, however we believe that this could drive acoustic 

models performance at best. 

The main aim of the algorithm is to navigate the structure 

formed by the union of the language and acoustic model in 

order to maximize the probability P(W|X) for a sequence of 

units (syllables in our case) W=w1w2…wn given the 

observation sequence X=X1X2…XT.  

We could calculate P(W|X ) as follows: 

( ) ( ) ( )T

tnmn

t

m XwPwwPXwwPXWP 111 ,,)|( +⋅⋅=
γ

K  (5) 

where wn is the last unit if W is not empty and wm is the 

preceding syllable in the sequence. P(wn|wm) is the language 

model probability between wm and wn, γ is the language model 
weight, and t is the optimal time boundary between the units. 

Let’s demonstrate that if P(W|X ) is the optimal solution for 

the units alignment problem, then P(w1w2…wn |X1
t) is the 

optimal solution for the problem of units alignment in the time 

interval [1,t], where t is the best first boundary for wn. This is 

trivial in the fact that if there was another sequence 

w’1w’2…w’n for which P(w’1w’2…w’n|X1
t)>P(w1w2…wn |X1

t) 

then it would be 
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against the hypothesis of P(W|X) to be the optimal solution for 

the problem. This discussion leads us to introduce the 

following recurrence relation for the solution f(m,t) to the 

subproblem of unit alignment in the time interval [1,t] 
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where Syl is the set of all the units involved, P(m|n) is the 

probability of n and m unit concatenation, P(X1
t|m) is the 

likelihood of the model m to the observations X1X2…XT, and  

π(m) is the probability for m to be a starting unit for a 
sequence. Notice the dependency from f(n,t*), which is the 

best solution to the subproblem of units alignment till time 

instant t*. 

The optimal solution will be retrieved as follows 
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∈
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Where E(m) is the probability for the model m to be a 

plausible ending unit. Starting from this solution, a 

backtracking procedure produces the best alignment. The 

algorithm is also based on the calculation of the matrix V, 

which contains the likelihoods of a model m to all the intervals 

of observations.  
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The algorithm complexity is O(T2N2C(V)), were C(V) is the 

complexity of the likelihood calculations for a single model. If S is 

the number of states in the acoustic model, C(V)=O(S2T). This 

value can be reduced considering that using controlled (even if 

connected) speech, a single syllable can rarely have a maximum 

duration greater than a fixed values (500 ms in our case). At this 

point, the matrix V will get a band aspect which allows 

optimization about complexity issues.  

 

Figure 2: Band matrix for complexity reduction based on 

assumptions about syllable length 

If observations are taken every 10 ms this means that we can 

calculate the likelihoods only on 50 observations intervals leaving 

to zero longer span probabilities. The complexity of this algorithm 

seems to be quite high for practical applications, especially if the 

utterance is too long, but it leads to an optimal alignment. Our 

tests have stated that, on an AMD 2800+ processor, the response 

is about 30 seconds, for a 3 seconds utterance, after the recording 

stops. Efforts should be fronted in the next future to improve this 

performance. 

 

5. ASR 

 
Our speech recognizer uses FHMM acoustic models and the above 

presented decoding algorithm for utterance recognition. Notice 

that we adopted a definition of syllable which is inspired by a 

phonological in which we can distinguish an onset, a nucleus and 

a coda. On the other hand, our approach is oriented to individuate 

in the energy temporal pattern particular regularities [9] with the 

consequence that our syllabification process can, in some case, 

deviate from the one usually defined by linguistic rules in the 

Italian phonological framework. Based on this assumption, 

syllabic units were obtained looking for energy islands 

separations. The language model has been weighted in order to 

give the best results. The same schema has been used to build up a 

reference ASR which employs standard HMM acoustic models. 

MFCC as defined in [10, (9):424-426] were used as features 

because of their fine grain structure. Acoustic models are not 

usually able to retrieve a phonetic inner dynamic from syllable 

length features, also because of the lower amount of information 

carried by the observations. The sequence of MFCC vectors stores 

information about the phonetic structure as well as coarticulation 

phenomena then it is foreseeable that, from these features, a 

factorial model could extract the syllabic dynamic presence too.  

 

6. Results 

 
In this section we will show results obtained from the section of 

SPEECON [11] corpus collecting numbers uttered  by . The task 

involves numbers ranging form 0 to 999,999. For a motivation of 

50 observations 

search 

space 
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this choice and for state-of-art achievements in this field see 

[12]. The corpus is formed by about 2000 utterances, with 

about 30 examples for each syllable training. As previously 

stated, MFCC  are used as features in every system.  

Table 1 presents a comparison in performances between 

syllable acoustic models built both with standard HMMs and 

Factorial HMMs. 

 
 Accuracy Correctness 

Standard HMM 81.33% 89.11% 

Factorial HMM 84.81% 94.30% 

Table 1: performances on syllable classification. 

Table 2 shows the mean of the permanence in state (number 

of auto-transitions) for each of the two layers of the FHMM 

acoustic model, calculated on all the models. Generally two 

processes with different speed are retrieved form the signal, 

this is evident especially when a syllable is long and rich of 

voiced phonemes. 

 

Faster level  Slower Level 

4.5016 7.8357 

Table 2: mean permanence in state for FHMM layers 

calculated on all the models. 

Table 3 shows a comparison between three systems: the 

first has been built with HTK [13]. It uses syllabic acoustic 

models, and a Token Passing algorithm for word decoding. 

The second system makes use of syllabic acoustic models with 

a standard HMM structure and of the new algorithm (cfr. 

section 4) for decoding. The last system integrates FHMM 

acoustic models and our decoding algorithm for the decoding 

procedure.  

 

 Correctness  

HTK 62.14 % 

ASR with Standard HMM 74.09 % 

ASR withFactorial HMM 77.74% 

Table 3: performance comparison between ASRs on the 

recognition of a single number in the range 0-999,999. 

7. Discussion 

Performances in Table 1 show that Factorial HMMs can 

achieve an higher performance on syllable classification.  

Table 2 shows that concurrent dynamics, different in 

speed, are actually detected. It is particularly evident when 

syllables have a structure which is far from a single voiced 

speech sound. Table 3 shows that, even if the complexity of 

the novel decoding algorithm is high, it produces best results 

than a classic recogniser based on a Token Passing strategy. 

FHMMs performance are even more emphasized by this exact 

decoding procedure.  

 

8. Conclusions 
 

We have investigated the application of Factorial HMMs to 

acoustic modeling in automatic speech recognition. An high 

complexity decoding procedure has been used for word 

decoding to exploit at best models performances on a task of 

numbers recognition. Results have supported the idea that a 

syllable stores slower and faster dynamics. Factorial HMM models 

can retrieve the presence of these two trends. The decoding 

strategy still has an high complexity, even if responses are given in 

less than 30 seconds for an utterance of 3 seconds on a standard 

PC, but it seems to exploit FHMMs power. Future work will regard 

the investigation of new ways to reduce Factorial models 

recognition complexity without heavily affecting performances. 

New ways for detecting inter-syllabic or inter-word dynamics will 

also be investigated, with the aim to exploit information coming 

from different time scales, adding higher levels of knowledge 

sources.  
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